Publications by authors named "Betsy M Karle"

12 Publications

  • Page 1 of 1

2019 Survey of Antimicrobial Drug Use and Stewardship Practices in Adult Cows on California Dairies: Post Senate Bill 27.

Microorganisms 2021 Jul 14;9(7). Epub 2021 Jul 14.

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA 93274, USA.

Antimicrobial resistance (AMR) is a global issue for both human and animal health. Antimicrobial drug (AMD) use in animals can contribute to the emergence of AMR. In January 2018, California (CA) implemented legislation (Senate Bill 27; SB 27) requiring veterinary prescriptions for medically important AMD use in food animals. The objective of our survey was to characterize AMD use, health management, and AMD stewardship practices of adult cows on CA dairies since the implementation of SB 27. In 2019, we mailed a questionnaire to 1282 California dairies. We received a total of 131 (10.2%) survey responses from 19 counties in CA. Our results showed that 45.6% of respondents included a veterinarian in their decision on which injectable AMD to purchase. Additionally, 48.8% of dairy producers included a veterinarian in their decision on which AMDs were used to treat sick cows. The majority (96.8%) of dairy producers were aware that all uses of medically important AMDs require a prescription. Approximately 49% of respondents agreed or strongly agreed that AMD use in livestock does not cause problems in humans. The survey documents antimicrobial use and stewardship practices in CA's dairy industry and focus areas for future research and education.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/microorganisms9071507DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8304910PMC
July 2021

2018 Survey of factors associated with antimicrobial drug use and stewardship practices in adult cows on conventional California dairies: immediate post-Senate Bill 27 impact.

PeerJ 2021 13;9:e11596. Epub 2021 Jul 13.

Veterinary Medicine Teaching and Research Center, University of California, Davis, Tulare, CA, United States.

Background: Antimicrobial drugs (AMD) are critical for the treatment, control, and prevention of diseases in humans and food-animals. Good AMD stewardship practices and judicious use of AMD are beneficial to the preservation of animal and human health from antimicrobial resistance threat. This study reports on changes in AMD use and stewardship practices on California (CA) dairies, following the implementation of CA Senate Bill 27 (SB 27; codified as Food and Agricultural Code, FAC 14400-14408; here onward referred to as SB 27), by modeling the associations between management practices on CA conventional dairies and seven outcome variables relating to AMD use and stewardship practices following SB 27.

Methods: A survey questionnaire was mailed to 1,282 grade A licensed dairies in CA in spring of 2018. Responses from 132 conventional dairies from 16 counties were included for analyses. Multivariate logistic regression models were specified to explore the associations between survey factors and six outcome variables: producers' familiarity with the Food and Drug Administration's (FDA), Silver Spring, WA, USA medically important antimicrobial drugs (MIAD) term; change in over-the-counter (OTC) AMD use; initiation or increased use of alternatives to AMD; changes to prevent disease outbreaks; changes in AMD costs; and better animal health post SB 27. We employed machine learning classification models to determine which of the survey factors were the most important predictors of good-excellent AMD stewardship practices of CA conventional dairy producers.

Results: Having a valid veterinary-client-patient-relationship, involving a veterinarian in training employees on treatment protocols and decisions on AMDs used to treat sick cows, tracking milk and/or meat withdrawal intervals for treated cows, and participating in dairy quality assurance programs were positively associated with producers' familiarity with MIADs. Use or increased use of alternatives to AMDs since 2018 was associated with decreased use of AMDs that were previously available OTC prior to SB 27. Important variables associated with good-excellent AMD stewardship knowledge by CA conventional dairy producers included having written or computerized animal health protocols, keeping a drug inventory log, awareness that use of MIADs required a prescription following implementation of SB 27, involving a veterinarian in AMD treatment duration determination, and using selective dry cow treatment.

Conclusions: Our study identified management factors associated with reported AMD use and antimicrobial stewardship practices on conventional dairies in CA within a year from implementation of SB 27. Producers will benefit from extension outreach efforts that incorporate the findings of this survey by further highlighting the significance of these management practices and encouraging those that are associated with judicious AMD use and stewardship practices on CA conventional dairies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.11596DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284309PMC
July 2021

2018 Survey of antimicrobial drug use and stewardship practices in adult cows on California dairies: post-Senate Bill 27.

PeerJ 2021 13;9:e11515. Epub 2021 Jul 13.

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, United States.

Background: A survey of California (CA) dairies was performed in spring 2018 to characterize antimicrobial stewardship practices, antimicrobial drug (AMD) use, and health management of adult cows on CA dairies since the implementation of the Veterinary Feed Directive (VFD) and the CA Senate Bill 27 (SB 27). Effective January 1, 2017, the U.S. Food and Drug Administration (FDA) implemented regulatory changes requiring veterinary oversight for therapeutic uses of medically-important antimicrobial drugs (MIADs) administered in feed (VFD) and water (veterinary prescription). Similarly, effective January 1, 2018, the CA legislature enacted California Food and Agricultural Code (FAC) 14400-14408, formerly known as Senate Bill 27 (SB 27) requiring veterinary prescriptions for all other dosage forms of MIADs.

Methods: The questionnaire consisted of 43 questions partitioned into three sections to assess herd information, management practices, and AMD use and perspectives. The questionnaire was mailed to 1,282 grade A licensed dairies in CA and 149 responses (11.6%) were collected from 19 counties across the three defined regions of CA: Northern CA (NCA), Northern San Joaquin Valley (NSJV), and Greater Southern CA (GSCA).

Results: Most dairies reported treating all dry cows with intramammary AMD and/or teat sealant at the end of a lactation (87.2%). In 92.3% of dairies, producers relied on the veterinarian for information about AMD used to treat cows. Treatment duration for cows treated with AMD was based on the drug manufacturer's label and veterinarian's instructions in most dairies (98.6%). Most respondents to the survey confirmed having a valid veterinarian-client-patient-relationship (VCPR) for their dairies (91.7%), participated in animal welfare audit programs (81.8%) and dairy quality assurance programs (52.9%). Approximately 98.6% respondents were aware that all uses of MIADs in livestock required a veterinary feed directive (VFD) or prescription and are no longer sold over-the-counter (OTC) in CA since January 1, 2018. Multiple factor analysis (MFA) was performed and identified seven components composed of 21 variables (questions) that explained 99.7% of the total variance in the data. Hierarchical cluster analysis on the principal coordinates of the MFA based on conventional dairy survey responses identified two clusters characterized as large conventional dairies (median herd size: 1,265 cows) and mid-sized conventional dairies (median herd size: 715 cows) mostly in GSCA and NSJV. The organic dairies grouped into a single cluster of median herd size of 325 cows mostly in NCA.

Conclusions: The survey results contribute to the knowledge of AMD use and antimicrobial stewardship practices on CA dairies since the implementation of the SB 27 and VFD laws and provide useful information for future evaluation of resistance-related risk in adult cows.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.11515DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8284310PMC
July 2021

Epidemiology of antimicrobial resistance (AMR) on California dairies: descriptive and cluster analyses of AMR phenotype of fecal commensal bacteria isolated from adult cows.

PeerJ 2021 20;9:e11108. Epub 2021 Apr 20.

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA, USA.

Background: This study describes the occurrence of antimicrobial resistance (AMR) in commensal and spp. (ES) isolated from fecal samples of dairy cows and assesses the variation of AMR profiles across regions and seasons following the implementation of the Food and Agricultural Code (FAC) Sections 14400-14408 (formerly known as Senate Bill, SB 27) in California (CA).

Methods: The study was conducted on ten dairies distributed across CA's three milk sheds: Northern California (NCA), Northern San Joaquin Valley (NSJV), and the Greater Southern California (GSCA). On each study dairy, individual fecal samples were collected from two cohorts of lactating dairy cows during the fall/winter 2018 and spring/summer 2019 seasons. Each cohort comprised of 12 cows per dairy. The fecal samples were collected at enrollment before calving (close-up stage) and then monthly thereafter for four consecutive time points up to 120 days in milk. A total of 2,171 and 2,158 ES isolates were tested for antimicrobial susceptibility using the broth microdilution method against a select panel of antimicrobials.

Results: The isolates showed high resistance to florfenicol (83.31% ± 0.80) and sulphadimethoxine (32.45%), while resistance to ampicillin (1.10% ± 0.21), ceftiofur (1.93% ± 0.29), danofloxacin (4.01% ± 0.42), enrofloxacin (3.31% ± 0.38), gentamicin (0.32% ± 0.12) and neomycin (1.61% ± 0.27) had low resistance proportions. The ES isolates were highly resistant to tildipirosin (50.18% ± 1.10), tilmicosin (48% ± 1.10), tiamulin (42%) and florfenicol (46% ± 1.10), but were minimally resistant to ampicillin (0.23%) and penicillin (0.20%). Multidrug resistance (MDR) (resistance to at least 1 drug in ≥3 antimicrobial classes) was observed in 14.14% of isolates and 39% of ES isolates. isolates recovered during winter showed higher MDR prevalence compared to summer isolates (20.33% vs. 8.04%). A higher prevalence of MDR was observed in NSJV (17.29%) and GSCA (15.34%) compared with NCA (10.10%).

Conclusions: Our findings showed high rates of AMR to several drugs that are not labeled for use in lactating dairy cattle 20 months of age or older. Conversely, very low resistance was observed for drugs labeled for use in adult dairy cows, such as cephalosporins and penicillin. Overall, our findings identified important differences in AMR by antimicrobial class, region and season.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7717/peerj.11108DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063881PMC
April 2021

Components of a risk assessment tool for prevention and control of bovine respiratory disease in preweaned dairy calves.

Anim Health Res Rev 2020 12 16;21(2):153-159. Epub 2020 Dec 16.

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare, CA93274, USA.

Bovine respiratory disease (BRD) is the leading natural cause of death in US beef and dairy cattle, causing the annual loss of more than 1 million animals and financial losses in excess of $700 million. The multiple etiologies of BRD and its complex web of risk factors necessitate a herd-specific intervention plan for its prevention and control on dairies. Hence, a risk assessment is an important tool that producers and veterinarians can utilize for a comprehensive assessment of the management and host factors that predispose calves to BRD. The current study identifies the steps taken to develop the first BRD risk assessment tool and its components, namely the BRD risk factor questionnaire, the BRD scoring system, and a herd-specific BRD control and prevention plan. The risk factor questionnaire was designed to inquire on aspects of calf-rearing including management practices that affect calf health generally, and BRD specifically. The risk scores associated with each risk factor investigated in the questionnaire were estimated based on data from two observational studies. Producers can also estimate the prevalence of BRD in their calf herds using a smart phone or tablet application that facilitates selection of a true random sample of calves for scoring using the California BRD scoring system. Based on the risk factors identified, producers and herd veterinarians can then decide the management changes needed to mitigate the calf herd's risk for BRD. A follow-up risk assessment after a duration of time sufficient for exposure of a new cohort of calves to the management changes introduced in response to the risk assessment is recommended to monitor the prevalence of BRD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S1466252320000201DOI Listing
December 2020

Evaluation of four commercial tests for detecting ceftiofur in waste milk bulk tank samples.

PLoS One 2019 12;14(11):e0224884. Epub 2019 Nov 12.

Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA, United States of America.

The objective of this study was to identify factors affecting the accuracy of four commercial tests for ceftiofur drug residue in milk samples from bulk tank waste milk (WM). WM samples were collected from 12 California dairy farms which were initially tested using liquid chromatography (LC-MS/MS) to confirm their negative status for drug residues above the FDA established tolerance/safe levels. The milk samples were also tested for fat, protein, lactose, solids non-fat (SNF), somatic cell count (SCC), coliform count, and standard plate count (SPC). Each WM sample was divided into two aliquots, one labeled as negative for drug residues (WMN) and the second spiked with ceftiofur as positive for ceftiofur residues (WMPos). Both types of WM samples were tested to evaluate the performance of 4 commercially available tests: Penzyme® Milk Test, SNAP® β-lactam, BetaStar® Plus and Delvo SP-NT®. Three assays in triplicates for the WMN and WMPos were conducted for each WM sample. Test were evaluated using sensitivity, specificity, positive predictive value, negative predictive value and positive likelihood ratio. Kruskal-Wallis method was used to evaluate the effect of milk quality parameters on true positive (TP) and false negative (FN) test results. All WMPos samples were identified as positive by all four tests, rendering 100% sensitivity for each test. The specificity for Penzyme, BetaStar, Delvo, and SNAP tests were 59.2, 55.5, 44.4, and 29.6, respectively. Overall, all tests correctly identified samples with ceftiofur residues (WMPos), as shown by 100% sensitivity. Greater variability was observed regarding identification of samples free of any drug residue, with Penzyme and BetaStar having the highest risk for correctly identifying TN samples. Our findings indicate that when selecting commercial tests to detect drug residues in WM, milk quality parameters must be considered if the aim is to reduce FP test results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224884PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850555PMC
March 2020

Development of a clinical scoring system for bovine respiratory disease in weaned dairy calves.

J Dairy Sci 2019 Aug 13;102(8):7329-7344. Epub 2019 Jun 13.

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California, Davis, Tulare 93274; Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis 95616. Electronic address:

Clinical scoring systems for bovine respiratory disease (BRD) in weaned dairy calves have been developed in the past with calves experimentally infected with specific respiratory pathogens. In this prevalent case control study, a BRD clinical scoring system for weaned calves was developed using field data from 689 dairy calves housed in group pens on 5 dairies in California. Of the 689 calves in the study, 89 were selected because they appeared sick based on the display of lethargy, depression, or separation from the group, whereas the remaining 600 were randomly selected. Clinical signs were recorded for all calves, and BRD case status was determined by thoracic auscultation and ultrasound examinations, which were interpreted in parallel. Of the 689 calves, 238 were identified as BRD cases. Five survey-adjusted generalized linear mixed models with a logit link function, calf as the unit of analysis, and dairy as a random intercept were assessed using 3-fold cross-validation. The best model chosen based on performance and parsimony contained the variables cough (2 points), abnormal respiration (1 point), low body condition (5 points), sunken eyes (4 points), and a 24-h ambient temperature range >15°C (1 point) with a 2-point cutoff for a BRD suspect score. An alternative model did not contain a score for the covariate 24-h ambient temperature range and had a 1-point cutoff. The best model was tested on 174 observations not used for model training and resulted in 77.0% screening sensitivity, 100% diagnostic sensitivity, and 61.9% specificity. Adding rectal temperature ≥39.2°C (102.5°F) as a second-tier test increased specificity to 76.7% and lowered the screening sensitivity to 64.8% and diagnostic sensitivity to 76.9%. The alternative model had a screening sensitivity of 84.2%, diagnostic sensitivity of 100%, and specificity of 45.7%. Adding rectal temperature ≥39.2°C (102.5°F) as a second-tier test for score-positive animals improved specificity of the alternative model to 62.6% while lowering its screening sensitivity to 70.5% and diagnostic sensitivity to 76.9%. Use of a 2-tier California BRD postweaning scoring system may provide producers and veterinarians with a new tool to monitor BRD in group-housed dairy calves. Furthermore, the scoring system may aid in judicious medical intervention for BRD cases and reduce unnecessary treatments of animals with antimicrobials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3168/jds.2018-15474DOI Listing
August 2019

Fecal Microbial Communities in a Large Representative Cohort of California Dairy Cows.

Front Microbiol 2019 16;10:1093. Epub 2019 May 16.

Department of Animal Science, University of California, Davis, Davis, CA, United States.

Improved sequencing and analytical techniques allow for better resolution of microbial communities; however, the agriculture field lacks an updated analysis surveying the fecal microbial populations of dairy cattle in California. This study is a large-scale survey to determine the composition of the bacterial community present in the feces of lactating dairy cattle on commercial dairy operations. For the study, 10 dairy farms across northern and central California representing a variety of feeding and management systems were enrolled. The farms represented three typical housing types including five freestall, two drylot and three pasture-based management systems. Fresh feces were collected from 15 randomly selected cows on each farm and analyzed using 16S rRNA gene amplicon sequencing. This study found that housing type, individual farm, and dietary components significantly affected the alpha diversity of the fecal microbiota. While only one Operational Taxonomic Unit (OTU) was common among all the sampled individuals, 15 bacterial families and 27 genera were shared among 95% of samples. The ratio of the families to was significantly different between housing types and farms with pasture fed animals having a higher relative abundance of . A majority of samples were positive for at least one OTU assigned to and 31% of samples contained OTUs assigned to . However, the relative abundance of both taxa was <0.1%. The microbial composition displays individual farm specific signatures, but housing type plays a role. These data provide insights into the composition of the core fecal microbiota of commercial dairy cows in California and will further generate hypotheses for strategies to manipulate the microbiome of cattle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2019.01093DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6532609PMC
May 2019

Optimizing accuracy of sampling protocols to measure nutrient content of solid manure.

Waste Manag 2019 Feb 26;85:121-130. Epub 2018 Dec 26.

Department of Animal Science, One Shields Avenue, University of California, Davis, CA 95616, USA. Electronic address:

Precise applications of manure to cropland can help optimize productivity and minimize environmental nutrient losses. Applying manure precisely is a challenge because the nutrient content of manures is inherently variable and the accuracy of sampling protocols are unknown. This study aimed to quantify the accuracy of sampling protocols for static solid manure piles considering both the number and depth of grab samples entering a composite sample. Over 35 grab samples were collected from each of ten static piles of dairy manure in California's Central Valley. Grab samples were individually analyzed for dry matter (DM), ash, total nitrogen, potassium, and phosphorous concentrations. Resampling simulations quantified the precision and bias of sampling protocols varying in both grab sample number and depth. Results showed that number of grab samples required for measurements to meet an accuracy standard of ±10% of the true value varied significantly by pile makeup. Over 25 grab samples were often required for multi-source manure piles, where an average of six grab samples were required from single source piles. The DM concentration of manure piles decreased at depths greater than 0.4 m, and sampling simulations showed that measurements were biased unless 70-80% of grab samples were collected from the pile interior. Both the number and location of grab samples necessary to create a representative composite require resource investments by farmers, and should be considered to manage nutrient applications cropland.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2018.12.021DOI Listing
February 2019

Optimizing accuracy of protocols for measuring dry matter and nutrient yield of forage crops.

Sci Total Environ 2018 May 14;624:180-188. Epub 2017 Dec 14.

Department of Animal Science, One Shields Avenue, University of California, Davis, CA 95616, USA. Electronic address:

Farmers around the world must precisely manage nutrients applied to and removed from crop fields to maintain production and without causing nutrient pollution. This study is the first to quantify the baseline accuracy of current industry measurement protocols and achievable accuracy from intensifying protocols for measuring dry matter (DM), nitrogen (N), potassium (K), and phosphorus (P) yields from forage crops harvested for silage. The 'true' DM and nutrient yields of three fields each of corn, sorghum, and small grain were intensively measured by weighing and sampling every truckload of harvested forage. Simulations quantified the accuracy of practical sampling protocols by repeatedly subsampling the complete dataset for each field to measure average truckload weight and average DM and nutrient concentrations. Then uncertainty was propagated to DM, N, P, and K yield calculations using standard error equations. Yields measured using current industry protocols diverged from the true yields of some fields by more than ±40%, emphasizing the need for improved protocols. This study shows that improving average DM and nutrient concentration measurements is unlikely to improve accuracy of yield measurements if average load weight is not precisely measured. Accuracy did not come within 27% of true yields without weighing all truckloads on some fields even when DM and nutrient concentration measurements were perfectly accurate. Once all truckloads were weighed, the timing of forage sample collection to measure average DM concentration had the greatest impact on accuracy; precision improved by an average of 6.2% when >3 samples were evenly spaced throughout the harvest compared to the same number of consecutive samples. All crop fields are affected by within field variation in growing conditions that results in heterogeneity in DM and nutrient yield. Globally, this study provides foundational methodology to quantitatively evaluate and improve yield measurement protocols that ultimately support sustainable crop production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.11.203DOI Listing
May 2018

Developing risk models of Cryptosporidium transport in soils from vegetated, tilted soilbox experiments.

J Environ Qual 2008 Jan-Feb;37(1):245-58. Epub 2008 Jan 4.

Dep. of Land, Air, and Water, University of California-Davis, Davis, California 95616-8628, USA.

Transport of Cryptosporidium parvum through macroporous soils is poorly understood yet critical for assessing the risk of groundwater contamination. We developed a conceptual model of the physics of flow and transport in packed, tilted, and vegetated soilboxes during and immediately after a simulated rainfall event and applied it to 54 experiments implemented with different soils, slopes, and rainfall rates. Using a parsimonious inverse modeling procedure, we show that a significant amount of subsurface outflow from the soilboxes is due to macropore flow. The effective hydraulic properties of the macropore space were obtained by calibration of a simple two-domain flow and transport model that accounts for coupled flow in the matrix and in the macropores of the soils. Using linear mixed-effects analysis, macropore hydraulic properties and oocyst attenuation were shown to be associated with soil bulk density and rainfall rate. Macropore flow was shown to be responsible for bromide and C. parvum transport through the soil into the underlying pore space observed during the 4-h experiments. We confirmed this finding by conducting a pair of saturated soil column studies under homogeneously repacked conditions with no macropores in which no C. parvum transport was observed in the effluent. The linear mixed-effects and logistic regression models developed from the soilbox experiments provide a basis for estimating macropore hydraulic properties and the risk of C. parvum transport through shallow soils from bulk density, precipitation, and total shallow subsurface flow rate. The risk assessment is consistent with the reported occurrence of oocysts in springs or groundwater from fractured or karstic rocks protected only by shallow overlying soils.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2134/jeq2006.0281DOI Listing
March 2008

Transport of Cryptosporidium parvum oocysts through vegetated buffer strips and estimated filtration efficiency.

Appl Environ Microbiol 2002 Nov;68(11):5517-27

Veterinary Medicine Teaching and Research Center, School of Veterinary Medicine, University of California-Davis, Tulare, California 93274, USA.

Vegetated buffer strips were evaluated for their ability to remove waterborne Cryptosporidium parvum from surface and shallow subsurface flow during simulated rainfall rates of 15 or 40 mm/h for 4 h. Log(10) reductions for spiked C. parvum oocysts ranged from 1.0 to 3.1 per m of vegetated buffer, with buffers set at 5 to 20% slope, 85 to 99% fescue cover, soil textures of either silty clay (19:47:34 sand-silt-clay), loam (45:37:18), or sandy loam (70:25:5), and bulk densities of between 0.6 to 1.7 g/cm(3). Vegetated buffers constructed with sandy loam or higher soil bulk densities were less effective at removing waterborne C. parvum (1- to 2-log(10) reduction/m) compared to buffers constructed with silty clay or loam or at lower bulk densities (2- to 3-log(10) reduction/m). The effect of slope on filtration efficiency was conditional on soil texture and soil bulk density. Based on these results, a vegetated buffer strip comprised of similar soils at a slope of or=3 m should function to remove >or=99.9% of C. parvum oocysts from agricultural runoff generated during events involving mild to moderate precipitation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC129871PMC
http://dx.doi.org/10.1128/AEM.68.11.5517-5527.2002DOI Listing
November 2002
-->