Publications by authors named "Bertels Diane"

3 Publications

  • Page 1 of 1

An in vitro air-liquid interface inhalation platform for petroleum substances and constituents.

ALTEX 2021 04 20. Epub 2021 Apr 20.

VITO NV (Flemish Institute for Technological Research), Unit HEALTH, Mol, Belgium.

The goal is to optimize and show the validity of an in vitro method for inhalation testing of petroleum substances and its constituents at the air-liquid interface (ALI). The approach is demonstrated in a pilot study with ethylbenzene (EB), a mono-constituent petroleum substance using a human alveolar epithelial cell line model. This included the development and validation of a generation facility to obtain EB vapors and the optimization of an exposure system for a negative control (clean air, CA), positive control (nitrogen dioxide), and EB vapors. The optimal settings for the VITROCELL® 24/48 system were defined. Cytotoxicity, cell viability, inflammation, and oxidative stress were assessed in A549 after exposure to EB vapors. A concentration-dependent significant decrease in mean cell viability was observed after exposure, which was confirmed by a cytotoxicity test. The oxidative stress marker superoxide dismutase 2 was significantly increased, but no concentration-response was observed. A concentration-dependent significant increase in pro-inflammatory markers C-C motif chemokine ligand 2, interleukin (IL)6, and IL8 was observed for EB-exposed A549 cells compared to CA. The data demonstrated consistency between in vivo air concentrations at which adverse respiratory effects were observed and ALI-concentrations affecting cell viability, provided that the actual measured in vitro delivery efficiency of the compound were included. It can be concluded that extrapolating in vitro air concentrations (adjusted for delivery efficiency and absorption characteristics and applied for testing cell viability) to simulate in vivo air concentrations may be a promising method to screen for acute inhalation toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14573/altex.2010211DOI Listing
April 2021

Alternative air-liquid interface method for inhalation toxicity testing of a petroleum-derived substance.

MethodsX 2020 8;7:101088. Epub 2020 Oct 8.

VITO NV (Flemish Institute for Technological Research), Unit HEALTH, Mol, Belgium.

-based new approach methodologies (NAMs) provide a pragmatic solution to animal testing of petroleum substances and their constituents. A previous study exposed an in vitro model (A549 cells) at the air-liquid interface (ALI) to assess inhalation toxicity of a single compound, ethylbenzene. Experimental conditions using VITROCELL 24/48 exposure system were optimized to achieve a deposition efficiency that resulted in dose-dependent biological changes. The feasibility of this set-up was evaluated for testing the complex substance gasoline, which, at only high concentrations, can induce mild respiratory irritation in animals and cough in humans.•Results showed that perpendicular ALI exposure flow systems (VITROCELL® 6/4 and 24/48) may not be appropriate for testing gasoline because it was not possible to achieve enough deposition onto the cells and in the culture medium to measure dose and to determine dose-dependent biological changes (more information can be found in 'Supplementary material and/or Additional information' section).•Structural features ( aromatic or saturated hydrocarbon structure) and high hydrophobicity, together with the low concentrations of individual components in gasoline, may have caused the low deposition.•To achieve a higher deposition on the cells, A549 cells were exposed to gasoline at the ALI by passive dosing.The results demonstrate that the presented methodology is a promising NAM for inhalation toxicity testing of (semi-)volatile complex substances with low aqueous solubility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mex.2020.101088DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581970PMC
October 2020

Application of comprehensive two-dimensional gas chromatography for the assessment of oil contaminated soils.

J Chromatogr A 2006 Dec 20;1137(1):91-100. Epub 2006 Oct 20.

VITO, Boeretang 200, B-2400 Mol, Belgium.

A crucial step in the remediation of oil contaminated soils is the characterization of the pollution. Information on the chemical composition is used to assess the toxicity (and thus the need for remediation) and to determine the most appropriate technology for treatment. Mostly these analyses are carried out in routine environmental laboratories using gas chromatography with flame ionization detection (GC/FID) based on a protocol developed by the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG). In the present study, an alternative method was developed using comprehensive two-dimensional gas chromatography (GCXGC) with FID. Sample preparation was limited to pressurized liquid extraction (PLE), and the analysis was carried out on a commercially available instrument with a conventional column combination (RTX-1/BPX50) and with standard chromatographic software. Compared to the TPH method, the group-types in the GCXGC analysis are chemically better defined and more specific information is obtained especially for the (toxicologically important) aromatic hydrocarbon fraction. Preliminary results indicate that higher recoveries and lower RSDs are obtained with GCXGC, probably because of the less complex sample preparation. Furthermore a data processing method was developed to generate TPH results from GCXGC data; the volatility distribution profiles compared very well with conventional TPH data. The possibility of extracting physicochemical properties directly from the GCXGC chromatogram was briefly explored, but software limitations hindered this promising application.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2006.10.014DOI Listing
December 2006