Publications by authors named "Bernd Auber"

40 Publications

Breast and Prostate Cancer Risks for Male BRCA1 and BRCA2 Pathogenic Variant Carriers Using Polygenic Risk Scores.

J Natl Cancer Inst 2021 Jul 28. Epub 2021 Jul 28.

Department of Molecular Medicine, University La Sapienza, Rome, Italy.

Background: Recent population-based female breast cancer and prostate cancer polygenic risk scores (PRS) have been developed. We assessed the associations of these PRS with breast and prostate cancer risks for male BRCA1 and BRCA2 pathogenic variant carriers.

Methods: 483 BRCA1 and 1,318 BRCA2 European ancestry male carriers were available from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). A 147-single nucleotide polymorphism (SNP) prostate cancer PRS (PRSPC) and a 313-SNP breast cancer PRS were evaluated. There were three versions of the breast cancer PRS, optimized to predict overall (PRSBC), estrogen-receptor (ER) negative (PRSER-) or ER-positive (PRSER+) breast cancer risk.

Results: PRSER+ yielded the strongest association with breast cancer risk. The odds ratios (ORs) per PRSER+ standard deviation estimates were 1.40 (95% confidence interval [CI] =1.07-1.83) for BRCA1 and 1.33 (95% CI = 1.16-1.52) for BRCA2 carriers. PRSPC was associated with prostate cancer risk for both BRCA1 (OR = 1.73, 95% CI = 1.28-2.33) and BRCA2 (OR = 1.60, 95% CI = 1.34-1.91) carriers. The estimated breast cancer ORs were larger after adjusting for female relative breast cancer family history. By age 85 years, for BRCA2 carriers, the breast cancer risk varied from 7.7% to 18.4% and prostate cancer risk from 34.1% to 87.6% between the 5th and 95th percentiles of the PRS distributions.

Conclusions: Population-based prostate and female breast cancer PRS are associated with a wide range of absolute breast and prostate cancer risks for male BRCA1 and BRCA2 carriers. These findings warrant further investigation aimed at providing personalized cancer risks for male carriers and to inform clinical management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djab147DOI Listing
July 2021

Plasma Metabolome Signature Indicative of Germline Status Independent of Cancer Incidence.

Front Oncol 2021 7;11:627217. Epub 2021 Apr 7.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

Individuals carrying a pathogenic germline variant in the breast cancer predisposition gene (g+) are prone to developing breast cancer. Apart from its well-known role in DNA repair, BRCA1 has been shown to powerfully impact cellular metabolism. While, in general, metabolic reprogramming was named a hallmark of cancer, disrupted metabolism has also been suggested to drive cancer cell evolution and malignant transformation by critically altering microenvironmental tissue integrity. Systemic metabolic effects induced by germline variants in cancer predisposition genes have been demonstrated before. Whether or not systemic metabolic alterations exist in g+ individuals independent of cancer incidence has not been investigated yet. We therefore profiled the plasma metabolome of 72 g+ women and 72 age-matched female controls, none of whom (carriers and non-carriers) had a prior cancer diagnosis and all of whom were cancer-free during the follow-up period. We detected one single metabolite, pyruvate, and two metabolite ratios involving pyruvate, lactate, and a metabolite of yet unknown structure, significantly altered between the two cohorts. A machine learning signature of metabolite ratios was able to correctly distinguish between g+ and controls in ~82%. The results of this study point to innate systemic metabolic differences in g+ women independent of cancer incidence and raise the question as to whether or not constitutional alterations in energy metabolism may be involved in the etiology of -associated breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fonc.2021.627217DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058469PMC
April 2021

Pulmonary Cylindromas in CYLD Cutaneous Syndrome: A Rare Differential Diagnosis of Pulmonary Adenoid Cystic Carcinoma.

Clin Lung Cancer 2021 Mar 27. Epub 2021 Mar 27.

Department of Respiratory Medicine, ELK Thorax Center, Berlin, Germany. Electronic address:

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cllc.2021.03.016DOI Listing
March 2021

De novo missense variants in the RAP1B gene identified in two patients with syndromic thrombocytopenia.

Clin Genet 2020 10 21;98(4):374-378. Epub 2020 Jul 21.

Department of Human Genetics, Hannover Medical School, Hanover, Germany.

We present two independent cases of syndromic thrombocytopenia with multiple malformations, microcephaly, learning difficulties, dysmorphism and other features. Exome sequencing identified two novel de novo heterozygous variants in these patients, c.35G>T p.(Gly12Val) and c.178G>C p.(Gly60Arg), in the RAP1B gene (NM_001010942.2). These variants have not been described previously as germline variants, however functional studies in literature strongly suggest a clinical implication of these two activating hot spot positions. We hypothesize that pathogenic missense variants in the RAP1B gene cause congenital syndromic thrombocytopenia with a spectrum of associated malformations and dysmorphism, possibly through a gain of function mechanism.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cge.13807DOI Listing
October 2020

Bi-allelic missense disease-causing variants in RPL3L associate neonatal dilated cardiomyopathy with muscle-specific ribosome biogenesis.

Hum Genet 2020 Nov 8;139(11):1443-1454. Epub 2020 Jun 8.

Institute of Human Genetics, University Medical Center Göttingen, Heinrich-Düker-Weg 12, 37073, Göttingen, Germany.

Dilated cardiomyopathy (DCM) belongs to the most frequent forms of cardiomyopathy mainly characterized by cardiac dilatation and reduced systolic function. Although most cases of DCM are classified as sporadic, 20-30% of cases show a heritable pattern. Familial forms of DCM are genetically heterogeneous, and mutations in several genes have been identified that most commonly play a role in cytoskeleton and sarcomere-associated processes. Still, a large number of familial cases remain unsolved. Here, we report five individuals from three independent families who presented with severe dilated cardiomyopathy during the neonatal period. Using whole-exome sequencing (WES), we identified causative, compound heterozygous missense variants in RPL3L (ribosomal protein L3-like) in all the affected individuals. The identified variants co-segregated with the disease in each of the three families and were absent or very rare in the human population, in line with an autosomal recessive inheritance pattern. They are located within the conserved RPL3 domain of the protein and were classified as deleterious by several in silico prediction software applications. RPL3L is one of the four non-canonical riboprotein genes and it encodes the 60S ribosomal protein L3-like protein that is highly expressed only in cardiac and skeletal muscle. Three-dimensional homology modeling and in silico analysis of the affected residues in RPL3L indicate that the identified changes specifically alter the interaction of RPL3L with the RNA components of the 60S ribosomal subunit and thus destabilize its binding to the 60S subunit. In conclusion, we report that bi-allelic pathogenic variants in RPL3L are causative of an early-onset, severe neonatal form of dilated cardiomyopathy, and we show for the first time that cytoplasmic ribosomal proteins are involved in the pathogenesis of non-syndromic cardiomyopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-020-02188-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519902PMC
November 2020

SPG7 mutations in amyotrophic lateral sclerosis: a genetic link to hereditary spastic paraplegia.

J Neurol 2020 Sep 23;267(9):2732-2743. Epub 2020 May 23.

Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.

Amyotrophic lateral sclerosis (ALS) and hereditary spastic paraplegia (HSP) are motor neuron diseases sharing clinical, pathological, and genetic similarities. While biallelic SPG7 mutations are known to cause recessively inherited HSP, heterozygous SPG7 mutations have repeatedly been identified in HSP and recently also in ALS cases. However, the frequency and clinical impact of rare SPG7 variants have not been studied in a larger ALS cohort. Here, whole-exome (WES) or targeted SPG7 sequencing was done in a cohort of 214 European ALS patients. The consequences of a splice site variant were analyzed on the mRNA level. The resulting protein alterations were visualized in a crystal structure model. All patients were subjected to clinical, electrophysiological, and neuroradiological characterization. In 9 of 214 (4.2%) ALS cases, we identified five different rare heterozygous SPG7 variants, all of which were previously reported in patients with HSP or ALS. All detected SPG7 variants affect the AAA+ domain of the encoded mitochondrial metalloprotease paraplegin and impair its stability or function according to predictions from mRNA analysis or crystal structure modeling. ALS patients with SPG7 mutations more frequently presented with cerebellar symptoms, flail arm or leg syndrome compared to those without SPG7 mutations, and showed a partial clinical overlap with HSP. Brain MRI findings in SPG7 mutation carriers included cerebellar atrophy and patterns suggestive of frontotemporal dementia. Collectively, our findings suggest that SPG7 acts as a genetic risk factor for ALS. ALS patients carrying SPG7 mutations present with distinct features overlapping with HSP, particularly regarding cerebellar findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00415-020-09861-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7419373PMC
September 2020

Ovarian and Breast Cancer Risks Associated With Pathogenic Variants in RAD51C and RAD51D.

J Natl Cancer Inst 2020 12;112(12):1242-1250

Department of Clinical Genetics Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Background: The purpose of this study was to estimate precise age-specific tubo-ovarian carcinoma (TOC) and breast cancer (BC) risks for carriers of pathogenic variants in RAD51C and RAD51D.

Methods: We analyzed data from 6178 families, 125 with pathogenic variants in RAD51C, and 6690 families, 60 with pathogenic variants in RAD51D. TOC and BC relative and cumulative risks were estimated using complex segregation analysis to model the cancer inheritance patterns in families while adjusting for the mode of ascertainment of each family. All statistical tests were two-sided.

Results: Pathogenic variants in both RAD51C and RAD51D were associated with TOC (RAD51C: relative risk [RR] = 7.55, 95% confidence interval [CI] = 5.60 to 10.19; P = 5 × 10-40; RAD51D: RR = 7.60, 95% CI = 5.61 to 10.30; P = 5 × 10-39) and BC (RAD51C: RR = 1.99, 95% CI = 1.39 to 2.85; P = 1.55 × 10-4; RAD51D: RR = 1.83, 95% CI = 1.24 to 2.72; P = .002). For both RAD51C and RAD51D, there was a suggestion that the TOC relative risks increased with age until around age 60 years and decreased thereafter. The estimated cumulative risks of developing TOC to age 80 years were 11% (95% CI = 6% to 21%) for RAD51C and 13% (95% CI = 7% to 23%) for RAD51D pathogenic variant carriers. The estimated cumulative risks of developing BC to 80 years were 21% (95% CI = 15% to 29%) for RAD51C and 20% (95% CI = 14% to 28%) for RAD51D pathogenic variant carriers. Both TOC and BC risks for RAD51C and RAD51D pathogenic variant carriers varied by cancer family history and could be as high as 32-36% for TOC, for carriers with two first-degree relatives diagnosed with TOC, or 44-46% for BC, for carriers with two first-degree relatives diagnosed with BC.

Conclusions: These estimates will facilitate the genetic counseling of RAD51C and RAD51D pathogenic variant carriers and justify the incorporation of RAD51C and RAD51D into cancer risk prediction models.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnci/djaa030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735771PMC
December 2020

Human STAT1 gain-of-function iPSC line from a patient suffering from chronic mucocutaneous candidiasis.

Stem Cell Res 2020 03 17;43:101713. Epub 2020 Jan 17.

JRG Translational Hematology of Congenital Diseases, Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany; REBIRTH-Cluster of Excellence, Hannover Medical School, 30625 Hannover, Germany. Electronic address:

Chronic mucocutaneous candidiasis (CMC) is a disease that is characterized by susceptibility to chronic or recurrent infections with Candida spp. due to mutations affecting mainly the IL-17 signaling of T-Cells. The most common etiologies of CMC are gain-of-function (GOF) mutations in the STAT1 gene. In this paper we report the generation of a hiPSC line from a patient suffering from CMC due to a heterozygous GOF STAT1 p.R274Q mutation which can be used for disease modeling purposes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2020.101713DOI Listing
March 2020

Fine-mapping of 150 breast cancer risk regions identifies 191 likely target genes.

Nat Genet 2020 01 7;52(1):56-73. Epub 2020 Jan 7.

Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.

Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium and enriched genomic features to determine variants with high posterior probabilities of being causal. Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of those potentially causal variants, using gene expression (expression quantitative trait loci), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways were over-represented among the highest-confidence target genes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0537-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974400PMC
January 2020

Increased Cancer Prevalence in Peripartum Cardiomyopathy.

JACC CardioOncol 2019 Dec 17;1(2):196-205. Epub 2019 Dec 17.

Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany.

Objectives: This study was designed to analyze the prevalence and potential genetic basis of cancer and heart failure in peripartum cardiomyopathy (PPCM).

Background: PPCM manifests as heart failure late in pregnancy or postpartum in women without previous heart disease.

Methods: Clinical history and cancer prevalence were evaluated in a cohort of 236 PPCM patients from Germany and Sweden. Exome sequencing assessed variants in 133 genes associated with cancer predisposition syndromes (CPS) and in 115 genes associated with dilated/hypertrophic cardiomyopathy (DCM/HCM) in 14 PPCM patients with a history of cancer, and in 6 PPCM patients without a history of cancer.

Results: The prevalence of cancer was 16-fold higher (8.9%, 21 of 236 patients) in PPCM patients compared to age-matched women (German cancer registry, Robert-Koch-Institute: 0.59%; p < 0.001). Cancer before PPCM occurred in 12 of 21 patients of whom 11 obtained cardiotoxic cancer therapies. Of those, 17% fully recovered cardiac function by 7 ± 2 months of follow-up compared to 55% of PPCM patients without cancer (p = 0.015). Cancer occurred after PPCM in 10 of 21 patients; 80% had left ventricular ejection fraction of ≥50% after cancer therapy. Whole-exome sequencing in 14 PPCM patients with cancer revealed that 43% (6 of 14 patients) carried likely pathogenic (Class IV) or pathogenic (Class V) gene variants associated with DCM/HCM in CPT2, DSP, MYH7, TTN, and/or with CPS in ATM, ERCC5, NBN, RECQL4, and SLX4. All CPS variants affected DNA damage response genes.

Conclusions: Cardiotoxic cancer therapy before PPCM is associated with delayed full recovery. The high cancer prevalence in PPCM is linked to likely pathogenic/pathogenic gene variants associated with DCM/HCM and/or CPS/DNA damage response-related cancer risk. This may warrant genetic testing and screening for heart failure in pregnant women with a cancer history and screening for cancer in PPCM patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jaccao.2019.09.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352111PMC
December 2019

From a variant of unknown significance to pathogenic: Reclassification of a large novel duplication in BRCA2 by high-throughput sequencing.

Mol Genet Genomic Med 2020 09 13;8(9):e1045. Epub 2019 Nov 13.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

Background: Germline mutations in BRCA1/2 significantly contribute to hereditary breast and/or ovarian cancer. Here, we report a novel BRCA2 duplication of exons 22-24 in a female patient with bilateral breast cancer at age 35 and 44. The duplicated region was initially detected by gene panel sequencing and multiplex ligation-dependent probe amplification. However, the location and orientation of the duplicated region was unknown. Therefore, it was initially classified as a variant of unknown significance.

Methods: The spatial directional characterization of the BRCA2 duplication was achieved by targeted enrichment of the whole-genomic BRCA2 locus including exons and introns, and subsequent high-throughput sequencing. Subsequently, bioinformatics tools and a breakpoint-spanning PCR were used for identification of location and orientation of the duplication.

Results: The duplicated region was arranged in tandem and direct orientation (Chr13(GRCh37):g.32951579_32960394dup; NM_000059.3 c.8754 + 651_9256+6112dup p.(Ala3088Phefs*3)). It is predicted to result in a frameshift and a premature stop codon likely triggering nonsense-mediated mRNA decay. Consequently, it is regarded as pathogenic.

Conclusion: This case study demonstrates that a comprehensive characterization of a structural variant by breakpoint assessment is crucial for its correct classification. Therefore, sequencing strategies including non-coding regions might be necessary to identify cancer predispositions in affected families.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.1045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7506983PMC
September 2020

Association of Genomic Domains in and with Prostate Cancer Risk and Aggressiveness.

Cancer Res 2020 02 13;80(3):624-638. Epub 2019 Nov 13.

Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, Lyon, France.

Pathogenic sequence variants (PSV) in or () are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 and 171 male PSV carriers with prostate cancer, and 3,388 and 2,880 male PSV carriers without prostate cancer. PSVs in the 3' region of (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; = 0.0002). No genotype-phenotype associations were detected for PSVs in . These results demonstrate that specific PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1158/0008-5472.CAN-19-1840DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7553241PMC
February 2020

The :p.Arg658* truncating variant is associated with risk of triple-negative breast cancer.

NPJ Breast Cancer 2019 1;5:38. Epub 2019 Nov 1.

25University of Texas MD Anderson Cancer Center, Department of Breast Medical Oncology, Houston, TX USA.

Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes , , , , and are associated with breast cancer risk. , which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants :p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of or . These three variants were also studied functionally by measuring survival and chromosome fragility in patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that :p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44,  = 0.034 and OR = 3.79;  = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for :p.Arg658* and found that also :p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96;  = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with :p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat -associated tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41523-019-0127-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6825205PMC
November 2019

A novel NFKBIA variant substituting serine 36 of IκBα causes immunodeficiency with warts, bronchiectasis and juvenile rheumatoid arthritis in the absence of ectodermal dysplasia.

Clin Immunol 2020 01 1;210:108269. Epub 2019 Nov 1.

Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany.

Genetic studies have led to identification of an increasing number of monogenic primary immunodeficiency disorders. Monoallelic pathogenic gain-of-function (GOF) variants in NFKBIA, the gene encoding IκBα, result in an immunodeficiency disorder, typically accompanied by anhidrotic ectodermal dysplasia (EDA). So far, 14 patients with immunodeficiency due to NFKBIA GOF mutations have been reported. In this study we report three patients from the same family with immunodeficiency, presenting with recurrent respiratory tract infections, bronchiectasis and viral skin conditions due to a novel pathogenic NFKBIA variant (c.106 T > G, p.Ser36Ala), which results in reduced IκBα degradation. Immunological investigations revealed inadequate antibody responses against vaccine antigens, despite hypergammaglobulinemia. Interestingly, none of the studied patients displayed features of EDA. Therefore, missense NFKBIA variants substituting serine 36 of IκBα, differ from the rest of pathogenic GOF NFKBIA variants in that they cause combined immunodeficiency, even in the absence of EDA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2019.108269DOI Listing
January 2020

Comparison of Different Selection Strategies for Tolvaptan Eligibility among Autosomal Dominant Polycystic Kidney Disease Patients.

Am J Nephrol 2019 30;50(4):281-290. Epub 2019 Aug 30.

Department of Nephrology, Hannover Medical School, Hannover, Germany,

Background: Tolvaptan can slow down renal function decline in autosomal dominant polycystic kidney disease (-ADPKD). While there is consensus across international recommendations that the drug should only be used in patients with high risk of rapid progression, identification criteria for rapid progression vary. Here, we investigated different assessment strategies using a real-life ADPKD cohort.

Methods: Observational retrospective cohort analysis. The study included 131 ADPKD patients aged 19-78 years who were referred to the Hannover Medical School outpatient clinic for evaluation of tolvaptan treatment. Six different assessment strategies for tolvaptan eligibility were tested for each patient. Comparative analysis for different assessments was performed in the total study population, the subpopulation with available computed tomography/magnetic resonance imaging data, and the genotyped subpopulation.

Results: Comparing 6 assessment strategies revealed strong variations in the individual selection processes resulting in treatment recommendations for 14.5-64.9% of patients. The highest patient number was selected by the Scottish and the lowest by the Japanese approach. Few patients had positive recommendations by all 6 systems, but strong congruency was observed between the Scottish, U.K. and Canadian patient selection. The lowest number of overlapping patients was found between the Japanese and the ERA-EDTA selection. Important discrepancies were also found between the ERA-EDTA and the U.S. system due to different emphases on parameters of kidney function versus kidney volume. Limitations of the study included the restricted sample size, heterogeneity in parameter availability and lack of outcome data.

Conclusions: The study draws attention to important discrepancies between different decision algorithms for tolvaptan eligibility in ADPKD patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000502634DOI Listing
September 2020

Investigating the effects of additional truncating variants in DNA-repair genes on breast cancer risk in BRCA1-positive women.

BMC Cancer 2019 Aug 8;19(1):787. Epub 2019 Aug 8.

Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.

Background: Inherited pathogenic variants in BRCA1 and BRCA2 are the most common causes of hereditary breast and ovarian cancer (HBOC). The risk of developing breast cancer by age 80 in women carrying a BRCA1 pathogenic variant is 72%. The lifetime risk varies between families and even within affected individuals of the same family. The cause of this variability is largely unknown, but it is hypothesized that additional genetic factors contribute to differences in age at onset (AAO). Here we investigated whether truncating and rare missense variants in genes of different DNA-repair pathways contribute to this phenomenon.

Methods: We used extreme phenotype sampling to recruit 133 BRCA1-positive patients with either early breast cancer onset, below 35 (early AAO cohort) or cancer-free by age 60 (controls). Next Generation Sequencing (NGS) was used to screen for variants in 311 genes involved in different DNA-repair pathways.

Results: Patients with an early AAO (73 women) had developed breast cancer at a median age of 27 years (interquartile range (IQR); 25.00-27.00 years). A total of 3703 variants were detected in all patients and 43 of those (1.2%) were truncating variants. The truncating variants were found in 26 women of the early AAO group (35.6%; 95%-CI 24.7 - 47.7%) compared to 16 women of controls (26.7%; 95%-CI 16.1 to 39.7%). When adjusted for environmental factors and family history, the odds ratio indicated an increased breast cancer risk for those carrying an additional truncating DNA-repair variant to BRCA1 mutation (OR: 3.1; 95%-CI 0.92 to 11.5; p-value = 0.07), although it did not reach the conventionally acceptable significance level of 0.05.

Conclusions: To our knowledge this is the first time that the combined effect of truncating variants in DNA-repair genes on AAO in patients with hereditary breast cancer is investigated. Our results indicate that co-occurring truncating variants might be associated with an earlier onset of breast cancer in BRCA1-positive patients. Larger cohorts are needed to confirm these results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-019-5946-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6686546PMC
August 2019

Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification.

Hum Mutat 2019 09;40(9):1557-1578

Institute of Human Genetics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Kiel, Germany.

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/humu.23818DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6772163PMC
September 2019

Looking for the hidden mutation: Bannayan-Riley-Ruvalcaba syndrome caused by constitutional and mosaic 10q23 microdeletions involving PTEN and BMPR1A.

Am J Med Genet A 2019 07 6;179(7):1383-1389. Epub 2019 May 6.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

The PTEN hamartoma tumor syndrome (PHTS) is caused by heterozygous germline variants in PTEN. Here, we report two unrelated patients with juvenile polyposis, macrocephaly, intellectual disability, and hyperpigmented skin macules. Both patients were clinically suspected for the Bannayan-Riley-Ruvalcaba syndrome (BRRS), a PHTS subentity. By array-CGH analysis, we identified an interstitial 10q23.1q23.3 deletion in a buccal mucosa sample of Patient 1 that encompassed PTEN, BMPR1A, and KLLN, among others. In contrast, neither sequencing nor array-CGH analysis identified a pathogenic variant in PTEN or BMPR1A in a blood sample of Patient 2. However, in a surgical specimen of the thyroid gland high-level mosaicism for a 10q23.2q23.3 deletion was observed. Additionally, the pathogenic PTEN variant c.956_959delCTTT p.(Thr319LysfsTer24) was detected in his thyroid tissue. The frame shift variant was neither detected in the patient's blood nor in his buccal mucosa sample. Low-level mosaicism for the microdeletion was identified in a buccal swap sample, and reanalysis of the blood sample suggested marginal-level mosaicism for deletion. The 10q23.2q23.3 deletion mosaicism was also identified in a subsequently resected colonic polyp. Thus, in both cases, the diagnosis of a 10q23 deletion syndrome, which clinically presented as BRRS, was established. Overall, the study expands the BRRS spectrum and highlights the relevance of considering mosaicism in PHTS. We conclude that in all patients with a clear clinical suspicion of PHTS, in which genetic analyses of DNA from blood and buccal swap samples fail to identify causative genetic variants, genetic analyses of additional tissues are recommended.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.61166DOI Listing
July 2019

Homozygous frame shift variant in ATP7B exon 1 leads to bypass of nonsense-mediated mRNA decay and to a protein capable of copper export.

Eur J Hum Genet 2019 06 5;27(6):879-887. Epub 2019 Feb 5.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

Wilson disease (WD) is an autosomal recessive disease of copper excess due to pathogenic variants in the ATP7B gene coding for a copper-transporting ATPase. We present a 5-year-old girl with the homozygous frame shift variant NM_000053.3: c.19_20del in exon 1 of ATP7B (consecutive exon numbering with c.1 as first nucleotide of exon 1), detected by whole-exome sequencing as a secondary finding. The variant leads to a premature termination codon in exon 2. The girl exhibited no WD symptoms and no abnormalities in liver biopsy. ATP7B liver mRNA expression was comparable to healthy controls suggesting that nonsense-mediated mRNA decay (NMD) could be bypassed by the mechanism of translation reinitiation. To verify this hypothesis, a CMV-driven ATP7B minigene (pcDNA3) was equipped with the authentic ATP7B 5' untranslated region  and a truncated intron 2. We introduced c.19_20del by site-directed mutagenesis and overexpressed the constructs in HEK293T cells. We analyzed ATP7B expression by qRT-PCR, northern and western blot, and examined protein function by copper export capacity assays. Northern blot, qRT-PCR, and western blot revealed that c.19_20del ATP7B mRNA and protein is expressed in size and amount comparable to wild-type. Copper export capacity was also comparable to wild-type. Our results indicate that c.19_20del in ATP7B is able to bypass NMD by translation reinitiation, demonstrating that the classification of truncating variants as pathogenic without additional investigations should be done carefully.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41431-019-0345-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777614PMC
June 2019

The identification of pathogenic variants in BRCA1/2 negative, high risk, hereditary breast and/or ovarian cancer patients: High frequency of FANCM pathogenic variants.

Int J Cancer 2019 06 11;144(11):2683-2694. Epub 2019 Jan 11.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

NGS-based multiple gene panel resequencing in combination with a high resolution CGH-array was used to identify genetic risk factors for hereditary breast and/or ovarian cancer in 237 high risk patients who were previously tested negative for pathogenic BRCA1/2 variants. All patients were screened for pathogenic variants in 94 different cancer predisposing genes. We identified 32 pathogenic variants in 14 different genes (ATM, BLM, BRCA1, CDH1, CHEK2, FANCG, FANCM, FH, HRAS, PALB2, PMS2, PTEN, RAD51C and NBN) in 30 patients (12.7%). Two pathogenic BRCA1 variants that were previously undetected due to less comprehensive and sensitive methods were found. Five pathogenic variants are novel, three of which occur in genes yet unrelated to hereditary breast and/or ovarian cancer (FANCG, FH and HRAS). In our cohort we discovered a remarkably high frequency of truncating variants in FANCM (2.1%), which has recently been suggested as a susceptibility gene for hereditary breast cancer. Two patients of our cohort carried two different pathogenic variants each and 10 other patients in whom a pathogenic variant was confirmed also harbored a variant of unknown significance in a breast and ovarian cancer susceptibility gene. We were able to identify pathogenic variants predisposing for tumor formation in 12.3% of BRCA1/2 negative breast and/or ovarian cancer patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ijc.31992DOI Listing
June 2019

A tandem duplication of BRCA1 exons 1-19 through DHX8 exon 2 in four families with hereditary breast and ovarian cancer syndrome.

Breast Cancer Res Treat 2018 Dec 6;172(3):561-569. Epub 2018 Sep 6.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

Purpose: The purpose of this study is to characterize a novel structural variant, a large duplication involving exons 1-19 of the BRCA1 gene in four independent families, and to provide diagnostically valuable information including the position of the breakpoints as well as clues to its clinical significance.

Methods: The duplication of exons 1-19 of the BRCA1 gene was initially detected by routine laboratory testing including MLPA analysis and next generation sequencing. For detailed characterization we performed array-comparative genome hybridization analysis, fluorescent in situ hybridization, next generation mapping, and long-distance PCR for break-point sequencing.

Results: Our data revealed a tandem duplication on chromosome 17 that encompassed 357 kb and included exons 1-19 of the BRCA1 gene and the genes NBR2, NBR1, TMEM106A, LOC100130581, ARL4D, MIR2117 up to parts of the DHX8 gene. This structural variant appeared as a tandem duplication with breakpoints in intron 19 of the BRCA1 gene and in intron 3 of the DHX8 gene (HGVS:chr17(hg19):g.41210776_41568516dup). Segregation analysis indicated that this structural rearrangement is phased in trans with a known pathogenic exon deletion of the BRCA1 gene in one family.

Conclusions: The copy number variation initially recognized as duplication of exon 1-19 of the BRCA1 gene by MLPA analysis is a structural variation with breakpoints in the BRCA1 and DHX8 genes. Although currently to be classified as a variant of unknown significance, our family data indicates that this duplication may be a benign variation or at least of markedly reduced penetrance since it occurs in trans with another known fully pathogenic variant in the BRCA1 gene.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10549-018-4957-xDOI Listing
December 2018

Breast cancer patients suggestive of Li-Fraumeni syndrome: mutational spectrum, candidate genes, and unexplained heredity.

Breast Cancer Res 2018 08 7;20(1):87. Epub 2018 Aug 7.

Department of Human Genetics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.

Background: Breast cancer is the most prevalent tumor entity in Li-Fraumeni syndrome. Up to 80% of individuals with a Li-Fraumeni-like phenotype do not harbor detectable causative germline TP53 variants. Yet, no systematic panel analyses for a wide range of cancer predisposition genes have been conducted on cohorts of women with breast cancer fulfilling Li-Fraumeni(-like) clinical diagnostic criteria.

Methods: To specifically help explain the diagnostic gap of TP53 wild-type Li-Fraumeni(-like) breast cancer cases, we performed array-based CGH (comparative genomic hybridization) and panel-based sequencing of 94 cancer predisposition genes on 83 breast cancer patients suggestive of Li-Fraumeni syndrome who had previously had negative test results for causative BRCA1, BRCA2, and TP53 germline variants.

Results: We identified 13 pathogenic or likely pathogenic germline variants in ten patients and in nine genes, including four copy number aberrations and nine single-nucleotide variants or small indels. Three patients presented as double-mutation carriers involving two different genes each. In five patients (5 of 83; 6% of cohort), we detected causative pathogenic variants in established hereditary breast cancer susceptibility genes (i.e., PALB2, CHEK2, ATM). Five further patients (5 of 83; 6% of cohort) were found to harbor pathogenic variants in genes lacking a firm association with breast cancer susceptibility to date (i.e., Fanconi pathway genes, RECQ family genes, CDKN2A/p14, and RUNX1).

Conclusions: Our study details the mutational spectrum in breast cancer patients suggestive of Li-Fraumeni syndrome and indicates the need for intensified research on monoallelic variants in Fanconi pathway and RECQ family genes. Notably, this study further reveals a large portion of still unexplained Li-Fraumeni(-like) cases, warranting comprehensive investigation of recently described candidate genes as well as noncoding regions of the TP53 gene in patients with Li-Fraumeni(-like) syndrome lacking TP53 variants in coding regions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-018-1011-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6081832PMC
August 2018

KBG syndrome patient due to 16q24.3 microdeletion presenting with a paratesticular rhabdoid tumor: Coincidence or cancer predisposition?

Am J Med Genet A 2018 06 25;176(6):1449-1454. Epub 2018 Apr 25.

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

KBG syndrome is a rare autosomal dominant disorder caused by constitutive haploinsufficiency of the ankyrin repeat domain-containing protein 11 (ANKRD11) being the result of either loss-of-function gene variants or 16q24.3 microdeletions. The syndrome is characterized by a variable clinical phenotype comprising a distinct facial gestalt and variable neurological involvement. ANKRD11 is frequently affected by loss of heterozygosity in cancer. It influences the ligand-dependent transcriptional activation of nuclear receptors and tumor suppressive function of tumor protein TP53. ANKRD11 thus serves as a candidate tumor suppressor gene and it has been speculated that its haploinsufficiency may lead to an increased cancer risk in KBG syndrome patients. While no systematic data are available, we report here on the second KBG syndrome patient who developed a malignancy. At 17 years of age, the patient was diagnosed with a left-sided paratesticular extrarenal malignant rhabdoid tumor. Genetic investigations identified a somatic truncating gene variant in SMARCB1, which was not present in the germline, and a constitutional de novo 16q24.3 microdeletion leading to a loss of the entire ANKRD11 locus. Thus, KBG syndrome was diagnosed, which was in line with the clinical phenotype of the patient. At present, no specific measures for cancer surveillance can be recommended for KBG syndrome patients. However, a systematic follow-up and inclusion of KBG syndrome patients in registries (e.g., those currently established for cancer prone syndromes) will provide empiric data to support or deny an increased cancer risk in KBG syndrome in the future.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.a.38724DOI Listing
June 2018

Gene panel testing of 5589 BRCA1/2-negative index patients with breast cancer in a routine diagnostic setting: results of the German Consortium for Hereditary Breast and Ovarian Cancer.

Cancer Med 2018 04 9;7(4):1349-1358. Epub 2018 Mar 9.

Center for Hereditary Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany.

The prevalence of germ line mutations in non-BRCA1/2 genes associated with hereditary breast cancer (BC) is low, and the role of some of these genes in BC predisposition and pathogenesis is conflicting. In this study, 5589 consecutive BC index patients negative for pathogenic BRCA1/2 mutations and 2189 female controls were screened for germ line mutations in eight cancer predisposition genes (ATM, CDH1, CHEK2, NBN, PALB2, RAD51C, RAD51D, and TP53). All patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germ line testing. The highest mutation prevalence was observed in the CHEK2 gene (2.5%), followed by ATM (1.5%) and PALB2 (1.2%). The mutation prevalence in each of the remaining genes was 0.3% or lower. Using Exome Aggregation Consortium control data, we confirm significant associations of heterozygous germ line mutations with BC for ATM (OR: 3.63, 95%CI: 2.67-4.94), CDH1 (OR: 17.04, 95%CI: 3.54-82), CHEK2 (OR: 2.93, 95%CI: 2.29-3.75), PALB2 (OR: 9.53, 95%CI: 6.25-14.51), and TP53 (OR: 7.30, 95%CI: 1.22-43.68). NBN germ line mutations were not significantly associated with BC risk (OR:1.39, 95%CI: 0.73-2.64). Due to their low mutation prevalence, the RAD51C and RAD51D genes require further investigation. Compared with control datasets, predicted damaging rare missense variants were significantly more prevalent in CHEK2 and TP53 in BC index patients. Compared with the overall sample, only TP53 mutation carriers show a significantly younger age at first BC diagnosis. We demonstrate a significant association of deleterious variants in the CHEK2, PALB2, and TP53 genes with bilateral BC. Both, ATM and CHEK2, were negatively associated with triple-negative breast cancer (TNBC) and estrogen receptor (ER)-negative tumor phenotypes. A particularly high CHEK2 mutation prevalence (5.2%) was observed in patients with human epidermal growth factor receptor 2 (HER2)-positive tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cam4.1376DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911592PMC
April 2018

BRIP1 loss-of-function mutations confer high risk for familial ovarian cancer, but not familial breast cancer.

Breast Cancer Res 2018 01 24;20(1). Epub 2018 Jan 24.

Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Kerpener Straße 34, 50931, Cologne, Germany.

Background: Germline mutations in the BRIP1 gene have been described as conferring a moderate risk for ovarian cancer (OC), while the role of BRIP1 in breast cancer (BC) pathogenesis remains controversial.

Methods: To assess the role of deleterious BRIP1 germline mutations in BC/OC predisposition, 6341 well-characterized index patients with BC, 706 index patients with OC, and 2189 geographically matched female controls were screened for loss-of-function (LoF) mutations and potentially damaging missense variants. All index patients met the inclusion criteria of the German Consortium for Hereditary Breast and Ovarian Cancer for germline testing and tested negative for pathogenic BRCA1/2 variants.

Results: BRIP1 LoF mutations confer a high OC risk in familial index patients (odds ratio (OR) = 20.97, 95% confidence interval (CI) = 12.02-36.57, P < 0.0001) and in the subgroup of index patients with late-onset OC (OR = 29.91, 95% CI = 14.99-59.66, P < 0.0001). No significant association of BRIP1 LoF mutations with familial BC was observed (OR = 1.81 95% CI = 1.00-3.30, P = 0.0623). In the subgroup of familial BC index patients without a family history of OC there was also no apparent association (OR = 1.42, 95% CI = 0.70-2.90, P = 0.3030). In 1027 familial BC index patients with a family history of OC, the BRIP1 mutation prevalence was significantly higher than that observed in controls (OR = 3.59, 95% CI = 1.43-9.01; P = 0.0168). Based on the negative association between BRIP1 LoF mutations and familial BC in the absence of an OC family history, we conclude that the elevated mutation prevalence in the latter cohort was driven by the occurrence of OC in these families. Compared with controls, predicted damaging rare missense variants were significantly more prevalent in OC (P = 0.0014) but not in BC (P = 0.0693) patients.

Conclusions: To avoid ambiguous results, studies aimed at assessing the impact of candidate predisposition gene mutations on BC risk might differentiate between BC index patients with an OC family history and those without. In familial cases, we suggest that BRIP1 is a high-risk gene for late-onset OC but not a BC predisposition gene, though minor effects cannot be excluded.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13058-018-0935-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5784717PMC
January 2018

Identification of ten variants associated with risk of estrogen-receptor-negative breast cancer.

Nat Genet 2017 Dec 23;49(12):1767-1778. Epub 2017 Oct 23.

Department of Epidemiology, University of California, Irvine, Irvine, California, USA.

Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3785DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5808456PMC
December 2017

germline variants in early-onset breast cancer patients from hereditary breast and ovarian cancer families.

Genes Cancer 2017 Jan;8(1-2):472-483

Department of Human Genetics, Hannover Medical School, Hannover, Germany.

, located 470 kb downstream of , encodes for the nuclear PSMC3-interacting protein, which functions as co-activator of steroid hormone-mediated gene expression, and is involved in RAD51 and DMC1-mediated homologous recombination during DNA repair of double-strand breaks. Recently, germline variants in have been identified in hereditary breast and ovarian cancer (HBOC) patients, mainly in cases with early-onset. We screened a cohort of 166 mutation-negative HBOC patients, of which 56 developed early-onset breast cancer before the age of 36 years, for variants. We identified 7 novel or rare variants in 8 out of 166 index patients: c.-115G>A (rs191843707); c.-70T>A (rs752276800); c.-37A>T (rs199620968); c.-24C>G (rs200359709); c.519G>A p.(Trp173*); c.537+51G>C (rs375509656); c.*24G>A. Three out of 7 identified variants (c.-115G>A, c.519G>A and c.*24G>A) with putative pathogenic impact were found in HBOC patients with breast cancer onset at ≤ 36 years. The nonsense mutation c.519G>A p.(Trp173*) was located within the DNA binding domain of GT198 and is predicted to induce nonsense-mediated mRNA decay. Functional analyses of c.-115G>A, and c.*24A>G indicated an influence of these variants on gene expression. This is the second study that gives evidence for an association between pathogenic germline variants and early-onset breast cancer in HBOC.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/genesandcancer.132DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369655PMC
January 2017
-->