Publications by authors named "Benjamin Q Duong"

11 Publications

  • Page 1 of 1

Multisite evaluation of institutional processes and implementation determinants for pharmacogenetic testing to guide antidepressant therapy.

Clin Transl Sci 2021 Sep 25. Epub 2021 Sep 25.

University of Minnesota Medical School, Minneapolis, Minnesota, USA.

There is growing interest in utilizing pharmacogenetic (PGx) testing to guide antidepressant use, but there is lack of clarity on how to implement testing into clinical practice. We administered two surveys at 17 sites that had implemented or were in the process of implementing PGx testing for antidepressants. Survey 1 collected data on the process and logistics of testing. Survey 2 asked sites to rank the importance of Consolidated Framework for Implementation Research (CFIR) constructs using best-worst scaling choice experiments. Of the 17 sites, 13 had implemented testing and four were in the planning stage. Thirteen offered testing in the outpatient setting, and nine in both outpatient/inpatient settings. PGx tests were mainly ordered by psychiatry (92%) and primary care (69%) providers. CYP2C19 and CYP2D6 were the most commonly tested genes. The justification for antidepressants selected for PGx guidance was based on Clinical Pharmacogenetics Implementation Consortium guidelines (94%) and US Food and Drug Administration (FDA; 75.6%) guidance. Both institutional (53%) and commercial laboratories (53%) were used for testing. Sites varied on the methods for returning results to providers and patients. Sites were consistent in ranking CFIR constructs and identified patient needs/resources, leadership engagement, intervention knowledge/beliefs, evidence strength and quality, and the identification of champions as most important for implementation. Sites deployed similar implementation strategies and measured similar outcomes. The process of implementing PGx testing to guide antidepressant therapy varied across sites, but key drivers for successful implementation were similar and may help guide other institutions interested in providing PGx-guided pharmacotherapy for antidepressant management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cts.13154DOI Listing
September 2021

Multisite investigation of strategies for the clinical implementation of pre-emptive pharmacogenetic testing.

Genet Med 2021 Jul 19. Epub 2021 Jul 19.

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA.

Purpose: The increased availability of clinical pharmacogenetic (PGx) guidelines and decreasing costs for genetic testing have slowly led to increased utilization of PGx testing in clinical practice. Pre-emptive PGx testing, where testing is performed in advance of drug prescribing, is one means to ensure results are available at the time of prescribing decisions. However, the most efficient and effective methods to clinically implement this strategy remain unclear.

Methods: In this report, we compare and contrast implementation strategies for pre-emptive PGx testing by 15 early-adopter institutions. We surveyed these groups, collecting data on testing approaches, team composition, and workflow dynamics, in addition to estimated third-party reimbursement rates.

Results: We found that while pre-emptive PGx testing models varied across sites, institutions shared several commonalities, including methods to identify patients eligible for testing, involvement of a precision medicine clinical team in program leadership, and the implementation of pharmacogenes with Clinical Pharmacogenetics Implementation Consortium guidelines available. Finally, while reimbursement rate data were difficult to obtain, the data available suggested that reimbursement rates for pre-emptive PGx testing remain low.

Conclusion: These findings should inform the establishment of future implementation efforts at institutions considering a pre-emptive PGx testing program.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-021-01269-9DOI Listing
July 2021

Development of Customizable Implementation Guides to Support Clinical Adoption of Pharmacogenomics: Experiences of the Implementing GeNomics In pracTicE (IGNITE) Network.

Pharmgenomics Pers Med 2020 17;13:217-226. Epub 2020 Jul 17.

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics & Precision Medicine, University of Florida College of Pharmacy, Gainesville, FL, USA.

Introduction: Clinical adoption of genomic medicine has lagged behind the pace of scientific discovery. Practice-based resources can help overcome implementation challenges.

Methods: In 2015, the IGNITE (Implementing GeNomics In pracTicE) Network created an online genomic medicine implementation resource toolbox that was expanded in 2017 to incorporate the ability for users to create targeted implementation guides. This expansion was led by a multidisciplinary team that developed an evidence-based, structured framework for the guides, oversaw the technical process/build, and pilot tested the first guide, -Clopidogrel Testing Implementation.

Results: Sixty-five resources were collected from 12 institutions and categorized according to a seven-step implementation framework for the pilot -Clopidogrel Testing Implementation Guide. Five months after its launch, 96 -Clopidogrel Testing Implementation Guides had been created. Eighty percent of the resources most frequently selected by users were created by IGNITE to fill an identified resource gap. Resources most often included in guides were from the test reimbursement (22%), Implementation support gathering (22%), EHR integration (17%), and genetic testing workflow steps (17%).

Conclusion: Lessons learned from this implementation guide development process provide insight for prioritizing development of future resources and support the value of collaborative efforts to create resources for genomic medicine implementation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/PGPM.S241599DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373415PMC
July 2020

Design and Early Implementation Successes and Challenges of a Pharmacogenetics Consult Clinic.

J Clin Med 2020 Jul 17;9(7). Epub 2020 Jul 17.

Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, 1345 Center Dr, Gainesville, FL 32603, USA.

Pharmacogenetic testing (PGT) is increasingly being used as a tool to guide clinical decisions. This article describes the development of an outpatient, pharmacist-led, pharmacogenetics consult clinic within internal medicine, its workflow, and early results, along with successes and challenges. A pharmacogenetics-trained pharmacist encouraged primary care physicians (PCPs) to refer patients who were experiencing side effects/ineffectiveness from certain antidepressants, opioids, and/or proton pump inhibitors. In clinic, the pharmacist confirmed the need for and ordered and/or testing, provided evidence-based pharmacogenetic recommendations to PCPs, and educated PCPs and patients on the results. Operational and clinical metrics were analyzed. In two years, 91 referred patients were seen in clinic (mean age 57, 67% women, 91% European-American). Of patients who received PGT, 77% had at least one CYP2C19 and/or CYP2D6 phenotype that would make conventional prescribing unfavorable. Recommendations suggested that physicians change a medication/dose for 59% of patients; excluding two patients lost to follow-up, 87% of recommendations were accepted. Challenges included PGT reimbursement and referral maintenance. High frequency of actionable results suggests physician education on who to refer was successful and illustrates the potential to reduce trial-and-error prescribing. High recommendation acceptance rate demonstrates the pharmacist's effectiveness in providing genotype-guided recommendations, emphasizing a successful pharmacist-physician collaboration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/jcm9072274DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7408871PMC
July 2020

A Scoping Review of the Evidence Behind Cytochrome P450 2D6 Isoenzyme Inhibitor Classifications.

Clin Pharmacol Ther 2020 07 13;108(1):116-125. Epub 2020 Feb 13.

Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision Medicine, University of Florida College of Pharmacy, Gainesville, Florida, USA.

The US Food and Drug Administration (FDA) lists 22 medications as clinical inhibitors of cytochrome P450 2D6 isoenzyme, with classifications of strong, moderate, and weak. It is accepted that strong inhibitors result in nearly null enzymatic activity, but reduction caused by moderate and weak inhibitors is less well characterized. The objective was to identify if the classification of currently listed FDA moderate and weak inhibitors is supported by publicly available primary literature. We conducted a literature search and reviewed product labels for area under the plasma concentration-time curve (AUC) fold-changes caused by inhibitors in humans and identified 89 inhibitor-substrate pairs. Observed AUC fold-change of the substrate was used to create an observed inhibitor classification per FDA-defined AUC fold-change thresholds. We then compared the observed inhibitor classification with the classification listed in the FDA Table of Inhibitors. We found 62% of the inhibitors within the pairs matched the listed FDA classification. We explored reasons for discordance and suggest modifications to the FDA table of clinical inhibitors for cimetidine, desvenlafaxine, and fluvoxamine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpt.1768DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7292748PMC
July 2020

A stepwise approach to implementing pharmacogenetic testing in the primary care setting.

Pharmacogenomics 2019 10;20(15):1103-1112

Department of Health Policy & Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Pharmacogenetic testing can help identify primary care patients at increased risk for medication toxicity, poor response or treatment failure and inform drug therapy. While testing availability is increasing, providers are unprepared to routinely use pharmacogenetic testing for clinical decision-making. Practice-based resources are needed to overcome implementation barriers for pharmacogenetic testing in primary care.The NHGRI's IGNITE I Network (Implementing GeNomics In pracTicE; www.ignite-genomics.org) explored practice models, challenges and implementation barriers for clinical pharmacogenomics. Based on these experiences, we present a stepwise approach pharmacogenetic testing in primary care: patient identification; pharmacogenetic test ordering; interpretation and application of test results, and patient education. We present clinical factors to consider, test-ordering processes and resources, and provide guidance to apply test results and counsel patients. Practice-based resources such as this stepwise approach to clinical decision-making are important resources to equip primary care providers to use pharmacogenetic testing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/pgs-2019-0053DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6854439PMC
October 2019

Multi-site investigation of strategies for the clinical implementation of CYP2D6 genotyping to guide drug prescribing.

Genet Med 2019 10 21;21(10):2255-2263. Epub 2019 Mar 21.

Department of Medicine, Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.

Purpose: A number of institutions have clinically implemented CYP2D6 genotyping to guide drug prescribing. We compared implementation strategies of early adopters of CYP2D6 testing, barriers faced by both early adopters and institutions in the process of implementing CYP2D6 testing, and approaches taken to overcome these barriers.

Methods: We surveyed eight early adopters of CYP2D6 genotyping and eight institutions in the process of adoption. Data were collected on testing approaches, return of results procedures, applications of genotype results, challenges faced, and lessons learned.

Results: Among early adopters, CYP2D6 testing was most commonly ordered to assist with opioid and antidepressant prescribing. Key differences among programs included test ordering and genotyping approaches, result reporting, and clinical decision support. However, all sites tested for copy-number variation and nine common variants, and reported results in the medical record. Most sites provided automatic consultation and had designated personnel to assist with genotype-informed therapy recommendations. Primary challenges were related to stakeholder support, CYP2D6 gene complexity, phenotype assignment, and sustainability.

Conclusion: There are specific challenges unique to CYP2D6 testing given the complexity of the gene and its relevance to multiple medications. Consensus lessons learned may guide those interested in pursuing similar clinical pharmacogenetic programs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0484-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754805PMC
October 2019

CYP2D6-guided opioid therapy improves pain control in CYP2D6 intermediate and poor metabolizers: a pragmatic clinical trial.

Genet Med 2019 08 23;21(8):1842-1850. Epub 2019 Jan 23.

Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.

Purpose: CYP2D6 bioactivates codeine and tramadol, with intermediate and poor metabolizers (IMs and PMs) expected to have impaired analgesia. This pragmatic proof-of-concept trial tested the effects of CYP2D6-guided opioid prescribing on pain control.

Methods: Participants with chronic pain (94% on an opioid) from seven clinics were enrolled into CYP2D6-guided (n = 235) or usual care (n = 135) arms using a cluster design. CYP2D6 phenotypes were assigned based on genotype and CYP2D6 inhibitor use, with recommendations for opioid prescribing made in the CYP2D6-guided arm. Pain was assessed at baseline and 3 months using PROMIS measures.

Results: On stepwise multiple linear regression, the primary outcome of composite pain intensity (composite of current pain and worst and average pain in the past week) among IM/PMs initially prescribed tramadol/codeine (n = 45) had greater improvement in the CYP2D6-guided versus usual care arm (-1.01 ± 1.59 vs. -0.40 ± 1.20; adj P = 0.016); 24% of CYP2D6-guided versus 0% of usual care participants reported ≥30% (clinically meaningful) reduction in the composite outcome. In contrast, among normal metabolizers prescribed tramadol or codeine at baseline, there was no difference in the change in composite pain intensity at 3 months between CYP2D6-guided (-0.61 ± 1.39) and usual care (-0.54 ± 1.69) groups (adj P = 0.540).

Conclusion: These data support the potential benefits of CYP2D6-guided pain management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0431-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6650382PMC
August 2019

Implementation of Standardized Clinical Processes for TPMT Testing in a Diverse Multidisciplinary Population: Challenges and Lessons Learned.

Clin Transl Sci 2018 03 19;11(2):175-181. Epub 2018 Jan 19.

University of Florida Health Personalized Medicine Program, Gainesville, Florida, USA.

Although thiopurine S-methyltransferase (TPMT) genotyping to guide thiopurine dosing is common in the pediatric cancer population, limited data exist on TPMT testing implementation in diverse, multidisciplinary settings. We established TPMT testing (genotype and enzyme) with clinical decision support, provider/patient education, and pharmacist consultations in a tertiary medical center and collected data over 3 years. During this time, 834 patients underwent 873 TPMT tests (147 (17%) genotype, 726 (83%) enzyme). TPMT tests were most commonly ordered for gastroenterology, rheumatology, dermatology, and hematology/oncology patients (661 of 834 patients (79.2%); 580 outpatient vs. 293 inpatient; P < 0.0001). Thirty-nine patients had both genotype and enzyme tests (n = 2 discordant results). We observed significant differences between TPMT test use and characteristics in a diverse, multispecialty environment vs. a pediatric cancer setting, which led to unique implementation needs. As pharmacogenetic implementations expand, disseminating lessons learned in diverse, real-world environments will be important to support routine adoption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/cts.12533DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5867028PMC
March 2018

Phenazine antibiotic inspired discovery of potent bromophenazine antibacterial agents against Staphylococcus aureus and Staphylococcus epidermidis.

Org Biomol Chem 2014 Feb;12(6):881-6

University of Florida, Gainesville, Florida 32610, USA.

Nearly all clinically used antibiotics have been (1) discovered from microorganisms (2) using phenotype screens to identify inhibitors of bacterial growth. The effectiveness of these antibiotics is attributed to their endogenous roles as bacterial warfare agents against competing microorganisms. Unfortunately, every class of clinically used antibiotic has been met with drug resistant bacteria. In fact, the emergence of resistant bacterial infections coupled to the dismal pipeline of new antibacterial agents has resulted in a global health care crisis. There is an urgent need for innovative antibacterial strategies and treatment options to effectively combat drug resistant bacterial pathogens. Here, we describe the implementation of a Pseudomonas competition strategy, using redox-active phenazines, to identify novel antibacterial leads against Staphylococcus aureus and Staphylococcus epidermidis. In this report, we describe the chemical synthesis and evaluation of a diverse 27-membered phenazine library. Using this microbial warfare inspired approach, we have identified several bromophenazines with potent antibacterial activities against S. aureus and S. epidermidis. The most potent bromophenazine analogue from this focused library demonstrated a minimum inhibitory concentration (MIC) of 0.78-1.56 μM, or 0.31-0.62 μg mL(-1), against S. aureus and S. epidermidis and proved to be 32- to 64-fold more potent than the phenazine antibiotic pyocyanin in head-to-head MIC experiments. In addition to the discovery of potent antibacterial agents against S. aureus and S. epidermidis, we also report a detailed structure-activity relationship for this class of bromophenazine small molecules.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3ob42416bDOI Listing
February 2014
-->