Publications by authors named "Benjamin H Duncan"

2 Publications

  • Page 1 of 1

High-resolution image-guided WEB aneurysm embolization by high-frequency optical coherence tomography.

J Neurointerv Surg 2021 Jul 28;13(7):669-673. Epub 2020 Sep 28.

Department of Radiology, New England Center for Stroke Research, University of Massachusetts Medical School, Worcester, Massachusetts, USA.

Background: High-frequency optical coherence tomography (HF-OCT) is an intra-vascular imaging technique capable of assessing device-vessel interactions at spatial resolution approaching 10 µm. We tested the hypothesis that adequately deployed Woven EndoBridge (WEB) devices as visualized by HF-OCT lead to higher aneurysm occlusion rates.

Methods: In a leporine model, elastase-induced aneurysms (n=24) were treated with the WEB device. HF-OCT and digital subtraction angiography (DSA) were performed following WEB deployment and repeated at 4, 8, and 12 weeks. Protrusion (0-present, 1-absent) and malapposition (0-malapposed, 1-neck apposition >50%) were binary coded. A device was considered 'adequately deployed' by HF-OCT and DSA if apposed and non-protruding. Aneurysm healing on DSA was reported using the 4-point WEB occlusion score: A or B grades were considered positive outcome. Neointimal coverage was quantified on HF-OCT images at 12 weeks and compared with scanning electron microscopy (SEM).

Results: Adequate deployment on HF-OCT correlated with positive outcome (P=0.007), but no statistically significant relationship was found between good outcome and adequate deployment on DSA (P=0.289). Absence of protrusion on HF-OCT correlated with a positive outcome (P=0.006); however, malapposition alone had no significant relationship (P=0.19). HF-OCT showed a strong correlation with SEM for the assessment of areas of neointimal tissue (R²=0.96; P<0.001). More neointimal coverage of 78%±32% was found on 'adequate deployment' cases versus 31%±24% for the 'inadequate deployment' cases (P=0.001).

Conclusion: HF-OCT visualizes features that can determine adequate device deployment to prognosticate early aneurysm occlusion following WEB implantation and can be used to longitudinally monitor aneurysm healing progression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/neurintsurg-2020-016447DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8205185PMC
July 2021

A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy.

Nat Commun 2020 07 31;11(1):3851. Epub 2020 Jul 31.

New England Center for Stroke Research, Department of Radiology, University of Massachusetts Medical School, Worcester, MA, USA.

Intravascular imaging has emerged as a valuable tool for the treatment of coronary and peripheral artery disease; however, no solution is available for safe and reliable use in the tortuous vascular anatomy of the brain. Endovascular treatment of stroke is delivered under image guidance with insufficient resolution to adequately assess underlying arterial pathology and therapeutic devices. High-resolution imaging, enabling surgeons to visualize cerebral arteries' microstructure and micron-level features of neurovascular devices, would have a profound impact in the research, diagnosis, and treatment of cerebrovascular diseases. Here, we present a neurovascular high-frequency optical coherence tomography (HF-OCT) system, including an imaging console and an endoscopic probe designed to rapidly acquire volumetric microscopy data at a resolution approaching 10 microns in tortuous cerebrovascular anatomies. Using a combination of in vitro, ex vivo, and in vivo models, the feasibility of HF-OCT for cerebrovascular imaging was demonstrated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-17702-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395105PMC
July 2020
-->