Publications by authors named "Bastien Morlet"

4 Publications

  • Page 1 of 1

Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: the polyG diseases.

Neuron 2021 Apr 13. Epub 2021 Apr 13.

Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France. Electronic address:

Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5' UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuron.2021.03.038DOI Listing
April 2021

Bariatric surgery induces a new gastric mucosa phenotype with increased functional glucagon-like peptide-1 expressing cells.

Nat Commun 2021 01 4;12(1):110. Epub 2021 Jan 4.

Université de Paris, Inserm U1149, Centre de Recherche sur l'inflammation, Paris, France.

Glucagon-Like Peptide-1 (GLP-1) undergoes rapid inactivation by dipeptidyl peptidase-4 (DPP4) suggesting that target receptors may be activated by locally produced GLP-1. Here we describe GLP-1 positive cells in the rat and human stomach and found these cells co-expressing ghrelin or somatostatin and able to secrete active GLP-1 in the rats. In lean rats, a gastric load of glucose induces a rapid and parallel rise in GLP-1 levels in both the gastric and the portal veins. This rise in portal GLP-1 levels was abrogated in HFD obese rats but restored after vertical sleeve gastrectomy (VSG) surgery. Finally, obese rats and individuals operated on Roux-en-Y gastric bypass and SG display a new gastric mucosa phenotype with hyperplasia of the mucus neck cells concomitant with increased density of GLP-1 positive cells. This report brings to light the contribution of gastric GLP-1 expressing cells that undergo plasticity changes after bariatric surgeries, to circulating GLP-1 levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-20301-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7782689PMC
January 2021

Novel Function of Bluetongue Virus NS3 Protein in Regulation of the MAPK/ERK Signaling Pathway.

J Virol 2019 08 30;93(16). Epub 2019 Jul 30.

UMR Virologie, INRA, École Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, Maisons-Alfort, France

Bluetongue virus (BTV) is an arbovirus transmitted by blood-feeding midges to a wide range of wild and domestic ruminants. In this report, we showed that BTV, through its nonstructural protein NS3 (BTV-NS3), is able to activate the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway, as assessed by phosphorylation levels of ERK1/2 and the translation initiation factor eukaryotic translation initiation factor 4E (eIF4E). By combining immunoprecipitation of BTV-NS3 and mass spectrometry analysis from both BTV-infected and NS3-transfected cells, we identified the serine/threonine-protein kinase B-Raf (BRAF), a crucial player in the MAPK/ERK pathway, as a new cellular interactor of BTV-NS3. BRAF silencing led to a significant decrease in the MAPK/ERK activation by BTV, supporting a model wherein BTV-NS3 interacts with BRAF to activate this signaling cascade. This positive regulation acts independently of the role of BTV-NS3 in counteracting the induction of the alpha/beta interferon response. Furthermore, the intrinsic ability of BTV-NS3 to bind BRAF and activate the MAPK/ERK pathway is conserved throughout multiple serotypes/strains but appears to be specific to BTV compared to other members of genus. Inhibition of MAPK/ERK pathway with U0126 reduced viral titers, suggesting that BTV manipulates this pathway for its own replication. Altogether, our data provide molecular mechanisms that unravel a new essential function of NS3 during BTV infection. Bluetongue virus (BTV) is responsible of the arthropod-borne disease bluetongue (BT) transmitted to ruminants by blood-feeding midges. In this report, we found that BTV, through its nonstructural protein NS3 (BTV-NS3), interacts with BRAF, a key component of the MAPK/ERK pathway. In response to growth factors, this pathway promotes cell survival and increases protein translation. We showed that BTV-NS3 enhances the MAPK/ERK pathway, and this activation is BRAF dependent. Treatment of MAPK/ERK pathway with the pharmacologic inhibitor U0126 impairs viral replication, suggesting that BTV manipulates this pathway for its own benefit. Our results illustrate, at the molecular level, how a single virulence factor has evolved to target a cellular function to increase its viral replication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00336-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6675888PMC
August 2019

Quantitative proteomics in Friedreich's ataxia B-lymphocytes: A valuable approach to decipher the biochemical events responsible for pathogenesis.

Biochim Biophys Acta Mol Basis Dis 2018 Apr 9;1864(4 Pt A):997-1009. Epub 2018 Jan 9.

Université Paris Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75013 Paris, France; Université Paris Diderot, Sorbonne Paris Cité, UFR Sciences du Vivant, 75013 Paris, France. Electronic address:

Friedreich's ataxia (FRDA) represents the most frequent type of autosomal-recessively inherited ataxia and is caused by the deficiency of frataxin, a mitochondrial protein. It is known that frataxin-deficiency leads to alterations in cellular and mitochondrial iron metabolism and impacts in the cell physiology at several levels. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. Currently, cellular antioxidant defense is dysregulated when frataxin is deficient, which exacerbates oxidative damage in FRDA. Moreover, alterations in lipid metabolism have been observed in several models of the disease. To better understand the biochemical sequelae of frataxin reduction, global protein expression analysis was performed using quantitative proteomic experiments in Friedreich's ataxia patient-derived B-lymphocytes as compared to controls. We were able to confirm a subset of changes in these cells and importantly, we observed previously unreported signatures of protein expression. Among the novel protein signatures that we have identified, the decrease in CHCHD4 might partly explain some aspects of the molecular pathogenesis of FRDA. The identification of a core set of proteins changing in the FRDA pathogenesis is a useful tool in trying to decipher the function(s) of frataxin in order to clarify the mitochondrial metabolic disease process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2018.01.010DOI Listing
April 2018