Publications by authors named "Basha Stankovich"

4 Publications

  • Page 1 of 1

Long-Acting IL-33 Mobilizes High-Quality Hematopoietic Stem and Progenitor Cells More Efficiently Than Granulocyte Colony-Stimulating Factor or AMD3100.

Biol Blood Marrow Transplant 2019 08 1;25(8):1475-1485. Epub 2019 Jun 1.

Bayer, San Francisco, California.

Mobilization of hematopoietic stem and progenitor cells (HSPCs) has become increasingly important for hematopoietic cell transplantation. Current mobilization approaches are insufficient because they fail to mobilize sufficient numbers of cells in a significant fraction of patients and are biased toward myeloid immune reconstitution. A novel, single drug mobilization agent that allows a more balanced (myeloid and lymphoid) reconstitution would therefore be highly favorable to improve transplantation outcome. In this present study, we tested commercially available IL-33 molecules and engineered novel variants of IL-33. These molecules were tested in cell-based assays in vitro and in mobilization models in vivo. We observed for the first time that IL-33 treatment in mice mobilized HSPCs and common myeloid progenitors more efficiently than clinical mobilizing agents granulocyte colony-stimulating factor (G-CSF) or AMD3100. We engineered several oxidation-resistant IL-33 variants with equal or better in vitro activity. In vivo, these variants mobilized HSPCs and, interestingly, also hematopoietic stem cells, common lymphoid progenitor cells, and endothelial progenitor cells more efficiently than wild-type IL-33 or G-CSF. We then engineered an IL-33-Fc fusion molecule, a single dose of which was sufficient to significantly increase the mobilization of HSPCs after 4 days. In conclusion, our findings suggest that long-acting, oxidation-resistant IL-33 may be a novel approach for HSPC transplantation. IL-33-mobilized HSPCs differ from cells mobilized with G-CSF and AMD3100, and it is possible that these differences may result in better transplantation outcomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbmt.2019.05.030DOI Listing
August 2019

Development of a robust flow cytometry-based pharmacodynamic assay to detect phospho-protein signals for phosphatidylinositol 3-kinase inhibitors in multiple myeloma.

J Transl Med 2013 Mar 23;11:76. Epub 2013 Mar 23.

Genentech Inc, South San Francisco, CA 94080, USA.

Background: The phosphatidylinositol 3-kinase (PI3K) pathway plays an important role in multiple myeloma (MM), a blood cancer associated with uncontrolled proliferation of bone marrow plasma cells. This study aimed to develop a robust clinical pharmacodynamic (PD) assay to measure the on-target PD effects of the selective PI3K inhibitor GDC-0941 in MM patients.

Methods: We conducted an in vitro drug wash-out study to evaluate the feasibility of biochemical approaches in measuring the phosphorylation of S6 ribosomal protein (S6), one of the commonly used PD markers for PI3K pathway inhibition. We then developed a 7-color phospho-specific flow cytometry assay, or phospho flow assay, to measure the phosphorylation state of intracellular S6 in bone marrow aspirate (BMA) and peripheral blood (PB). Integrated mean fluorescence intensity (iMFI) was used to calculate fold changes of phosphorylation. Assay sensitivity was evaluated by comparing phospho flow with Meso Scale Discovery (MSD) and immunohistochemistry (IHC) assays. Finally, a sample handling method was developed to maintain the integrity of phospho signal during sample shipping and storage to ensure clinical application.

Results: The phospho flow assay provided single-cell PD monitoring of S6 phosphorylation in tumor and surrogate cells using fixed BMA and PB, assessing pathway modulation in response to GDC-0941 with sensitivity similar to that of MSD assay. The one-shot sample fixation and handling protocol herein demonstrated exceptional preservation of protein phosphorylation. In contrast, the IHC assay was less sensitive in terms of signal quantification while the biochemical approach (MSD) was less suitable to assess PD activities due to the undesirable impact associated with cell isolation on the protein phosphorylation in tumor cells.

Conclusions: We developed a robust PD biomarker assay for the clinical evaluation of PI3K inhibitors in MM, allowing one to decipher the PD response in a relevant cell population. To our knowledge, this is the first report of an easily implemented clinical PD assay that incorporates an unbiased one-shot sample handling protocol, all (staining)-in-one (tube) phospho flow staining protocol, and an integrated modified data analysis for PD monitoring of kinase inhibitors in relevant cell populations in BMA and PB. The methods described here ensure a real-time, reliable and reproducible PD readout, which can provide information for dose selection as well as help to identify optimal combinations of targeted agents in early clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1479-5876-11-76DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3623880PMC
March 2013

The specific role of pRb in p16 (INK4A) -mediated arrest of normal and malignant human breast cells.

Cell Cycle 2012 Mar 1;11(5):1008-13. Epub 2012 Mar 1.

Department of Medicine, University of California at San Francisco, San Francisco, CA, USA.

RB family proteins pRb, p107 and p130 have similar structures and overlapping functions, enabling cell cycle arrest and cellular senescence. pRb, but not p107 or p130, is frequently mutated in human malignancies. In human fibroblasts acutely exposed to oncogenic ras, pRb has a specific role in suppressing DNA replication, and p107 or p130 cannot compensate for the loss of this function; however, a second p53/p21-dependent checkpoint prevents escape from growth arrest. This model of oncogene-induced senescence requires the additional loss of p53/p21 to explain selection for preferential loss of pRb function in human malignancies. We asked whether similar rules apply to the role of pRb in growth arrest of human epithelial cells, the source of most cancers. In two malignant human breast cancer cell lines, we found that individual RB family proteins were sufficient for the establishment of p16-initiated senescence, and that growth arrest in G 1 was not dependent on the presence of functional pRb or p53. However, senescence induction by endogenous p16 was delayed in primary normal human mammary epithelial cells with reduced pRb but not with reduced p107 or p130. Thus, under these circumstances, despite the presence of functional p53, p107 and p130 were unable to completely compensate for pRb in mediating senescence induction. We propose that early inactivation of pRb in pre-malignant breast cells can, by itself, extend proliferative lifespan, allowing acquisition of additional changes necessary for malignant transformation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4161/cc.11.5.19492DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3323799PMC
March 2012

Differential adhesion molecule expression during murine embryonic stem cell commitment to the hematopoietic and endothelial lineages.

PLoS One 2011 6;6(9):e23810. Epub 2011 Sep 6.

School of Natural Sciences, University of California Merced, Merced, California, United States of America.

Mouse embryonic stem cells (ESC) make cell fate decisions based on intrinsic and extrinsic factors. The decision of ESC to differentiate to multiple lineages in vitro occurs during the formation of embryoid bodies (EB) and is influenced by cell-environment interactions. However, molecular mechanisms underlying cell-environmental modulation of ESC fate decisions are incompletely understood. Since adhesion molecules (AM) influence proliferation and differentiation in developing and adult tissues, we hypothesized that specific AM interactions influence ESC commitment toward hematopoietic and endothelial lineages. Expression of AM in the adherens, tight and gap junction pathways in ESC subpopulations were quantified. E-cadherin (E-cad), Claudin-4 (Cldn4), Connexin-43 (Cx43), Zona Occludens-1 (ZO-1) and Zona Occludens-2 (ZO-2) transcript levels were differentially expressed during early stages of hematopoietic/endothelial commitment. Stable ESC lines were generated with reduced expression of E-cad, Cldn4, Cx43, ZO-1 and ZO-2 using shRNA technology. Functional and phenotypic consequences of modulating AM expression were assessed using hematopoietic colony forming assays, endothelial sprouting assays and surface protein expression. A decrease in E-cad, Cldn4, Cx43 and ZO-1 expression was associated with less commitment to the hematopoietic lineage and increased endothelial differentiation as evidenced by functional and phenotypic analysis. A reduction in ZO-2 expression did not influence endothelial differentiation, but decreased hematopoietic commitment two-fold. These data indicate that a subset of AM influence ESC decisions to commit to endothelial and hematopoietic lineages. Furthermore, differentially expressed AM may provide novel markers to delineate early stages of ESC commitment to hematopoietic/endothelial lineages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0023810PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167810PMC
January 2012