Publications by authors named "Bart Buyck"

16 Publications

  • Page 1 of 1

New species from South Korea.

MycoKeys 2020 22;76:31-47. Epub 2020 Dec 22.

Department of Botany, Moravian Museum, Zelný trh 6, CZ-659 37, Brno, Czech Republic Moravian Museum Brno Czech Republic.

In this third contribution involving new species from South Korea, two new species are introduced. In addition, we document a first report of the recently described Japanese outside of Japan based on identical ITS sequence data. is introduced as a new member of subgenus Cinnabarini, to which the closely related Korean and Chinese also belong. is introduced as a new member of subgenus Parvocantharellus, in which the Korean was recently placed. The respective placements of the new taxa are significantly supported by a phylogenetic analysis of sequences from the transcription elongation factor (-1).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/mycokeys.76.58179DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772287PMC
December 2020

Taxonomic revision of Russula subsection Amoeninae from South Korea.

MycoKeys 2020 9;75:1-29. Epub 2020 Nov 9.

School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, South Korea Seoul National University Seoul South Korea.

Russula subsection Amoeninae is morphologically defined by a dry velvety pileus surface, a complete absence of cystidia with heteromorphous contents in all tissues, and spores without amyloid suprahilar spot. Thirty-four species within subsection Amoeninae have been published worldwide. Although most species in South Korea have been assigned European or North American names, recent molecular studies have shown that species from different continents are not conspecific. Therefore, the present study aims to: 1) define which species of Russula subsection Amoeninae occur on each continent using molecular phylogenetic analyses; 2) revise the taxonomy of Korean . The phylogenetic analyses using the internal transcribed spacer (ITS) and multilocus sequences showed that subsection Amoeninae is monophyletic within subgenus Heterophyllidiae section Heterophyllae. A total of 21 Russula subsection Amoeninae species were confirmed from Asia, Australia, Europe, North America, and Central America, and species from different continents formed separate clades. Three species were recognized from South Korea and were clearly separated from the European and North American species. These species are , also reported from Japan, a new species described herein, , and a new species undescribed due to insufficient material.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/mycokeys.75.53673DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7669817PMC
November 2020

Fungi of French Guiana gathered in a taxonomic, environmental and molecular dataset.

Sci Data 2019 10 16;6(1):206. Epub 2019 Oct 16.

INRA - UMR EcoFoG (AgroParisTech, CIRAD, CNRS, INRA, Université des Antilles, Université de Guyane), BP 316 - F-97379, Kourou cedex, France.

In Amazonia, the knowledge about Fungi remains patchy and biased towards accessible sites. This is particularly the case in French Guiana where the existing collections have been confined to few coastal localities. Here, we aimed at filling the gaps of knowledge in undersampled areas of this region, particularly focusing on the Basidiomycota. From 2011, we comprehensively collected fruiting-bodies with a stratified and reproducible sampling scheme in 126 plots. Sites of sampling reflected the main forest habitats of French Guiana in terms of soil fertility and topography. The dataset of 5219 specimens gathers 245 genera belonging to 75 families, 642 specimens are barcoded. The dataset is not a checklist as only 27% of the specimens are identified at the species level but 96% are identified at the genus level. We found an extraordinary diversity distributed across forest habitats. The dataset is an unprecedented and original collection of Basidiomycota for the region, making specimens available for taxonomists and ecologists. The database is publicly available in the GBIF repository ( https://doi.org/10.15468/ymvlrp ).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41597-019-0218-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6795802PMC
October 2019

Epitypification of the Central African and allows for the recognition of two additional species.

MycoKeys 2019 27;49:49-72. Epub 2019 Mar 27.

Department of Plant Protection, Agroscope Changins-Wädenswil Research Station ACW, Rte De Duiller, CH-1260 Nyon 1, Switzerland Wädenswil Research Station Nyon Switzerland.

and are epitypified on the basis of recently collected specimens from the Central African rain forest that correspond in every way to their respective original descriptions. Sequences obtained from these new collections demonstrate that both epitypes represent distinct species that belong in different subclades of Cantharellussubg.Rubrinus. Previously, the name has been consistently misapplied to more or less similar species from the African woodland area, including which is described here, In addition, , a rain forest species that is easily confused with , is described.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/mycokeys.49.32034DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6477822PMC
March 2019

Megaphylogeny resolves global patterns of mushroom evolution.

Nat Ecol Evol 2019 04 18;3(4):668-678. Epub 2019 Mar 18.

Synthetic and Systems Biology Unit, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.

Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41559-019-0834-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6443077PMC
April 2019

Phylogeny, biogeography and taxonomic re-assessment of Multifurca (Russulaceae, Russulales) using three-locus data.

PLoS One 2018 7;13(11):e0205840. Epub 2018 Nov 7.

Institut de Systématique, Ecologie, Biodiversité (ISYEB), Muséum national D'histoire naturelle, CNRS, Sorbonne Université, Paris, France.

Multifurca is a small genus newly established to accommodate lactarioid and russuloid species with some characters reminiscent of corticoid members of Russulaceae. It shows an amphi-pacific distribution with strong preference for the tropical zone of the Northern Hemisphere and thus has particular significance for biogeographical study. Using worldwide samples and three loci (ITS, 28S rDNA and rpb2), we demonstrated that Multifurca is split into two highly supported major clades that are here recognized at the subgeneric level: subg. Furcata subg. nov. exclusively includes lactarioid species, while subg. Multifurca includes species with a russuloid habit. Using phylogenetic species recognition and comparison of genetic distances we recognize five new and six previously described species, almost double the known number of species before this study. Molecular dating using a Bayesian method suggested that Multifurca originated in early Paleocene and diversified in the Eocene. The most recent interspecific divergences occurred both in Asia and America, roughly at the same time around the Pliocene. Ancestral area reconstruction and comparisons of genetic distances and morphology suggested an early divergence within Australasia or tropical Asia. From the early Miocene to Pliocene, multiple dispersals/migrations to Australasia and North America by island hopping or land bridge likely happened. Vicariance at the late Tertiary might be the most likely mechanism accounting for the eastern Asia-southeastern North America and Australasia-tropical Asia disjunct distributions. The shared polymorphisms in the ITS alignment, numerous degenerated base pairs in the rpb2 sequences and weak conflict between the ITS and LSU genealogies of M. subg. Furcata suggest recent speciation. Host specificity of Multifurca species or species pairs is relatively low. Host shifts are believed to have aided establishment in new territories during the dispersals and migrations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0205840PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6221288PMC
April 2019

Considerations and consequences of allowing DNA sequence data as types of fungal taxa.

Authors:
Juan Carlos Zamora Måns Svensson Roland Kirschner Ibai Olariaga Svengunnar Ryman Luis Alberto Parra József Geml Anna Rosling Slavomír Adamčík Teuvo Ahti M Catherine Aime A Martyn Ainsworth László Albert Edgardo Albertó Alberto Altés García Dmitry Ageev Reinhard Agerer Begoña Aguirre-Hudson Joe Ammirati Harry Andersson Claudio Angelini Vladimír Antonín Takayuki Aoki André Aptroot Didier Argaud Blanca Imelda Arguello Sosa Arne Aronsen Ulf Arup Bita Asgari Boris Assyov Violeta Atienza Ditte Bandini João Luís Baptista-Ferreira Hans-Otto Baral Tim Baroni Robert Weingart Barreto Henry Beker Ann Bell Jean-Michel Bellanger Francesco Bellù Martin Bemmann Mika Bendiksby Egil Bendiksen Katriina Bendiksen Lajos Benedek Anna Bérešová-Guttová Franz Berger Reinhard Berndt Annarosa Bernicchia Alona Yu Biketova Enrico Bizio Curtis Bjork Teun Boekhout David Boertmann Tanja Böhning Florent Boittin Carlos G Boluda Menno W Boomsluiter Jan Borovička Tor Erik Brandrud Uwe Braun Irwin Brodo Tatiana Bulyonkova Harold H Burdsall Bart Buyck Ana Rosa Burgaz Vicent Calatayud Philippe Callac Emanuele Campo Massimo Candusso Brigitte Capoen Joaquim Carbó Matteo Carbone Rafael F Castañeda-Ruiz Michael A Castellano Jie Chen Philippe Clerc Giovanni Consiglio Gilles Corriol Régis Courtecuisse Ana Crespo Cathy Cripps Pedro W Crous Gladstone Alves da Silva Meiriele da Silva Marjo Dam Nico Dam Frank Dämmrich Kanad Das Linda Davies Eske De Crop Andre De Kesel Ruben De Lange Bárbara De Madrignac Bonzi Thomas Edison E Dela Cruz Lynn Delgat Vincent Demoulin Dennis E Desjardin Paul Diederich Bálint Dima Maria Martha Dios Pradeep Kumar Divakar Clovis Douanla-Meli Brian Douglas Elisandro Ricardo Drechsler-Santos Paul S Dyer Ursula Eberhardt Damien Ertz Fernando Esteve-Raventós Javier Angel Etayo Salazar Vera Evenson Guillaume Eyssartier Edit Farkas Alain Favre Anna G Fedosova Mario Filippa Péter Finy Adam Flakus Simón Fos Jacques Fournier André Fraiture Paolo Franchi Ana Esperanza Franco Molano Gernot Friebes Andreas Frisch Alan Fryday Giuliana Furci Ricardo Galán Márquez Matteo Garbelotto Joaquina María García-Martín Mónica A García Otálora Dania García Sánchez Alain Gardiennet Sigisfredo Garnica Isaac Garrido Benavent Genevieve Gates Alice da Cruz Lima Gerlach Masoomeh Ghobad-Nejhad Tatiana B Gibertoni Tine Grebenc Irmgard Greilhuber Bella Grishkan Johannes Z Groenewald Martin Grube Gérald Gruhn Cécile Gueidan Gro Gulden Luis Fp Gusmão Josef Hafellner Michel Hairaud Marek Halama Nils Hallenberg Roy E Halling Karen Hansen Christoffer Bugge Harder Jacob Heilmann-Clausen Stip Helleman Alain Henriot Margarita Hernandez-Restrepo Raphaël Herve Caroline Hobart Mascha Hoffmeister Klaus Høiland Jan Holec Håkon Holien Karen Hughes Vit Hubka Seppo Huhtinen Boris Ivančević Marian Jagers Walter Jaklitsch AnnaElise Jansen Ruvishika S Jayawardena Thomas Stjernegaard Jeppesen Mikael Jeppson Peter Johnston Per Magnus Jørgensen Ingvar Kärnefelt Liudmila B Kalinina Gintaras Kantvilas Mitko Karadelev Taiga Kasuya Ivona Kautmanová Richard W Kerrigan Martin Kirchmair Anna Kiyashko Dániel G Knapp Henning Knudsen Kerry Knudsen Tommy Knutsson Miroslav Kolařík Urmas Kõljalg Alica Košuthová Attila Koszka Heikki Kotiranta Vera Kotkova Ondřej Koukol Jiří Kout Gábor M Kovács Martin Kříž Åsa Kruys Viktor Kučera Linas Kudzma Francisco Kuhar Martin Kukwa T K Arun Kumar Vladimír Kunca Ivana Kušan Thomas W Kuyper Carlos Lado Thomas Læssøe Patrice Lainé Ewald Langer Ellen Larsson Karl-Henrik Larsson Gary Laursen Christian Lechat Serena Lee James C Lendemer Laura Levin Uwe Lindemann Håkan Lindström Xingzhong Liu Regulo Carlos Llarena Hernandez Esteve Llop Csaba Locsmándi Deborah Jean Lodge Michael Loizides László Lőkös Jennifer Luangsa-Ard Matthias Lüderitz Thorsten Lumbsch Matthias Lutz Dan Mahoney Ekaterina Malysheva Vera Malysheva Patinjareveettil Manimohan Yasmina Marin-Felix Guilhermina Marques Rubén Martínez-Gil Guy Marson Gerardo Mata P Brandon Matheny Geir Harald Mathiassen Neven Matočec Helmut Mayrhofer Mehdi Mehrabi Ireneia Melo Armin Mešić Andrew S Methven Otto Miettinen Ana M Millanes Romero Andrew N Miller James K Mitchell Roland Moberg Pierre-Arthur Moreau Gabriel Moreno Olga Morozova Asunción Morte Lucia Muggia Guillermo Muñoz González Leena Myllys István Nagy László G Nagy Maria Alice Neves Tuomo Niemelä Pier Luigi Nimis Nicolas Niveiro Machiel E Noordeloos Anders Nordin Sara Raouia Noumeur Yuri Novozhilov Jorinde Nuytinck Esteri Ohenoja Patricia Oliveira Fiuza Alan Orange Alexander Ordynets Beatriz Ortiz-Santana Leticia Pacheco Ferenc Pál-Fám Melissa Palacio Zdeněk Palice Viktor Papp Kadri Pärtel Julia Pawlowska Aurelia Paz Ursula Peintner Shaun Pennycook Olinto Liparini Pereira Pablo Pérez Daniëls Miquel À Pérez-De-Gregorio Capella Carlos Manuel Pérez Del Amo Sergio Pérez Gorjón Sergio Pérez-Ortega Israel Pérez-Vargas Brian A Perry Jens H Petersen Ronald H Petersen Donald H Pfister Chayanard Phukhamsakda Marcin Piątek Meike Piepenbring Raquel Pino-Bodas Juan Pablo Pinzón Esquivel Paul Pirot Eugene S Popov Orlando Popoff María Prieto Álvaro Christian Printzen Nadezhda Psurtseva Witoon Purahong Luis Quijada Gerhard Rambold Natalia A Ramírez Huzefa Raja Olivier Raspé Tania Raymundo Martina Réblová Yury A Rebriev Juan de Dios Reyes García Miguel Ángel Ribes Ripoll Franck Richard Mike J Richardson Víctor J Rico Gerardo Lucio Robledo Flavia Rodrigues Barbosa Cristina Rodriguez-Caycedo Pamela Rodriguez-Flakus Anna Ronikier Luis Rubio Casas Katerina Rusevska Günter Saar Irja Saar Isabel Salcedo Sergio M Salcedo Martínez Carlos A Salvador Montoya Santiago Sánchez-Ramírez J Vladimir Sandoval-Sierra Sergi Santamaria Josiane Santana Monteiro Hans Josef Schroers Barbara Schulz Geert Schmidt-Stohn Trond Schumacher Beatrice Senn-Irlet Hana Ševčíková Oleg Shchepin Takashi Shirouzu Anton Shiryaev Klaus Siepe Esteban B Sir Mohammad Sohrabi Karl Soop Viacheslav Spirin Toby Spribille Marc Stadler Joost Stalpers Soili Stenroos Ave Suija Stellan Sunhede Sten Svantesson Sigvard Svensson Tatyana Yu Svetasheva Krzysztof Świerkosz Heidi Tamm Hatira Taskin Adrien Taudière Jan-Olof Tedebrand Raúl Tena Lahoz Marina Temina Arne Thell Marco Thines Göran Thor Holger Thüs Leif Tibell Sanja Tibell Einar Timdal Zdenko Tkalčec Tor Tønsberg Gérard Trichies Dagmar Triebel Andrei Tsurykau Rodham E Tulloss Veera Tuovinen Miguel Ulloa Sosa Carlos Urcelay François Valade Ricardo Valenzuela Garza Pieter van den Boom Nicolas Van Vooren Aida M Vasco-Palacios Jukka Vauras Juan Manuel Velasco Santos Else Vellinga Annemieke Verbeken Per Vetlesen Alfredo Vizzini Hermann Voglmayr Sergey Volobuev Wolfgang von Brackel Elena Voronina Grit Walther Roy Watling Evi Weber Mats Wedin Øyvind Weholt Martin Westberg Eugene Yurchenko Petr Zehnálek Huang Zhang Mikhail P Zhurbenko Stefan Ekman

IMA Fungus 2018 Jun 24;9(1):167-175. Epub 2018 May 24.

Museum of Evolution, Uppsala University, Norbyvägen 16, 75236 Uppsala, Sweden.

Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11 International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5598/imafungus.2018.09.01.10DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048565PMC
June 2018

Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures.

Molecules 2016 Mar 18;21(3):370. Epub 2016 Mar 18.

School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.

The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules21030370DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6274276PMC
March 2016

Revisiting the morphology and phylogeny of Lactifluus with three new lineages from southern China.

Mycologia 2015 Sep-Oct;107(5):941-58. Epub 2015 Aug 3.

Department of Botany, Swedish Museum of Natural History, P.O. Box 50007, Svante Arrhenius väg 7, SE-104 05 Stockholm, Sweden.

As a recent group mainly defined by molecular data the genus Lactifluus is in need of further study to provide insight into the morphological and molecular variation within the genus, species limits and relationships. Phylogenetic analyses of nuc rDNA ITS1-5.8S-ITS2 (ITS), D1 and D2 domains of nuc 28S rDNA (28S), and part of the second largest subunit of the RNA polymerase II (rpb2) (6-7 region) sequences of 28 samples from southern China revealed three new lineages of Lactifluus. Two of them are nested in a major clade that includes the type of Lactifluus and here is treated as two new sections: L. sect. Ambicystidiati and L. sect. Tenuicystidiati. Lactifluus ambicystidiatus, described here as a new species (= sect. Ambicystidiati), has both lamprocystidia and macrocystidia in the hymenium, a unique combination of features within Russulaceae. Furthermore, only remnants of lactiferous hyphae are present in L. ambicystidiatus and our results suggest that the ability to form a lactiferous system has been lost in this lineage. Lactifluus sect. Tenuicystidiati forms a strongly supported monophyletic group as a sister lineage to L. sect. Lactifluus. We recognize it based on the thin-walled macrocystidia and smaller ellipsoid spores with an incomplete reticulum compared with L. sect. Lactifluus. The former placement of L. tenuicystidiatus in the African L. sect. Pseudogymnocarpi is not supported. Using genealogical concordance we recognize five phylogenetic species within L. sect. Tenuicystidiati and describe two of these as new, L. subpruinosus and L. tropicosinicus. The third lineage, represented by L. leoninus, forms a sister group to L. subg. Lactariopsis sensu stricto. The three lineages provide further evidence for morphological features in Lactifluus being homoplasious. Some sections and species complexes are likely to be composed of more species and merit further investigations. Subtropical-tropical Asia is likely a key region for additional sampling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3852/13-393DOI Listing
November 2015

Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi.

Authors:
Conrad L Schoch Barbara Robbertse Vincent Robert Duong Vu Gianluigi Cardinali Laszlo Irinyi Wieland Meyer R Henrik Nilsson Karen Hughes Andrew N Miller Paul M Kirk Kessy Abarenkov M Catherine Aime Hiran A Ariyawansa Martin Bidartondo Teun Boekhout Bart Buyck Qing Cai Jie Chen Ana Crespo Pedro W Crous Ulrike Damm Z Wilhelm De Beer Bryn T M Dentinger Pradeep K Divakar Margarita Dueñas Nicolas Feau Katerina Fliegerova Miguel A García Zai-Wei Ge Gareth W Griffith Johannes Z Groenewald Marizeth Groenewald Martin Grube Marieka Gryzenhout Cécile Gueidan Liangdong Guo Sarah Hambleton Richard Hamelin Karen Hansen Valérie Hofstetter Seung-Beom Hong Jos Houbraken Kevin D Hyde Patrik Inderbitzin Peter R Johnston Samantha C Karunarathna Urmas Kõljalg Gábor M Kovács Ekaphan Kraichak Krisztina Krizsan Cletus P Kurtzman Karl-Henrik Larsson Steven Leavitt Peter M Letcher Kare Liimatainen Jian-Kui Liu D Jean Lodge Janet Jennifer Luangsa-ard H Thorsten Lumbsch Sajeewa S N Maharachchikumbura Dimuthu Manamgoda María P Martín Andrew M Minnis Jean-Marc Moncalvo Giuseppina Mulè Karen K Nakasone Tuula Niskanen Ibai Olariaga Tamás Papp Tamás Petkovits Raquel Pino-Bodas Martha J Powell Huzefa A Raja Dirk Redecker J M Sarmiento-Ramirez Keith A Seifert Bhushan Shrestha Soili Stenroos Benjamin Stielow Sung-Oui Suh Kazuaki Tanaka Leho Tedersoo M Teresa Telleria Dhanushka Udayanga Wendy A Untereiner Javier Diéguez Uribeondo Krishna V Subbarao Csaba Vágvölgyi Cobus Visagie Kerstin Voigt Donald M Walker Bevan S Weir Michael Weiß Nalin N Wijayawardene Michael J Wingfield J P Xu Zhu L Yang Ning Zhang Wen-Ying Zhuang Scott Federhen

Database (Oxford) 2014 30;2014. Epub 2014 Jun 30.

National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands, Department of Pharmaceutical Sciences - Microbiology, Università degli Studi di Perugia, Perugia, Italy, Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, Sydney Medical School-Westmead Hospital, The University of Sydney, Westmead Millennium Institute, Westmead, Australia, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden, Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37920, USA, Illinois Natural History Survey, University of Illinois, 1816 South Oak Street, Champaign, IL 61820, USA, Mycology Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK, Natural History Museum, University of Tartu, 46 Vanemuise, 51014 Tartu, Estonia, Purdue University, Department of Botany and Plant Pathology, 915 W. State Street, West Lafayette, IN 47907, USA, Institute of Excellence in Fungal Research, and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand, Imperial College London, Royal Botanic Gardens, Kew TW9 3DS, England, UK, Muséum National d'Histoire Naturelle, Dépt. Systématique et Evolution CP39, UMR7205, 12 Rue Buffon, F-75005 Paris, France, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, P. R. China, Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid 28040, Spain, Senckenberg Museum of Natural History Görlitz, PF 300 154, 02806 Görlitz, Germany, Department of Microbiology and Plant Pathology, Forestry Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0001, South Africa, Real Jardín Botánico, RJB-CSIC,

DNA phylogenetic comparisons have shown that morphology-based species recognition often underestimates fungal diversity. Therefore, the need for accurate DNA sequence data, tied to both correct taxonomic names and clearly annotated specimen data, has never been greater. Furthermore, the growing number of molecular ecology and microbiome projects using high-throughput sequencing require fast and effective methods for en masse species assignments. In this article, we focus on selecting and re-annotating a set of marker reference sequences that represent each currently accepted order of Fungi. The particular focus is on sequences from the internal transcribed spacer region in the nuclear ribosomal cistron, derived from type specimens and/or ex-type cultures. Re-annotated and verified sequences were deposited in a curated public database at the National Center for Biotechnology Information (NCBI), namely the RefSeq Targeted Loci (RTL) database, and will be visible during routine sequence similarity searches with NR_prefixed accession numbers. A set of standards and protocols is proposed to improve the data quality of new sequences, and we suggest how type and other reference sequences can be used to improve identification of Fungi. Database URL: http://www.ncbi.nlm.nih.gov/bioproject/PRJNA177353.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/database/bau061DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4075928PMC
February 2015

The genus Setulipes (Marasmiaceae) in Madagascar and the Mascarenes, including a key to other African taxa.

Mycol Res 2007 Aug 29;111(Pt 8):919-25. Epub 2007 Jun 29.

Moravian Museum, Dept. of Botany, Zelný trh 6, CZ-659 37 Brno, Czech Republic.

The authors report first records for the genus Setulipes in Madagascar, with the presence of Setulipes cf. hakgalensis and two new species, Setulipes funaliformis and S. moreaui, as well as a new species from Mauritius: S. mauritiensis. A key to these taxa, as well as to other African species, is supplied.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mycres.2007.06.002DOI Listing
August 2007

The genus Lactarius in Madagascar.

Mycol Res 2007 Jul 29;111(Pt 7):787-98. Epub 2007 Apr 29.

Muséum National d'Histoire Naturelle, Département de Systématique et évolution, USM602, F-75005 Paris, France.

This paper provides the first modern descriptions of Lactarius spp. from Madagascar since Heim's revision in 1938. Seven taxa are discussed in detail: In three cases (L. annulatoangustifolius, L. phlebophyllus, L. rubroviolascens), additional records were obtained for species described and last collected by Heim. For two species (L. aurantiifolius, L. pelliculatus) the first Malagasy records are reported of Lactarius spp. described from the African continent. Two new and possibly endemic species are described, L. madagascariensis and L. nodosicystidiosus spp. nov. ITS data are consistent with modern classification of the genus Lactarius at the subgeneric level and add support to the proposed conspecificity of Malagasy and continental African taxa in those cases where sequence data were available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mycres.2007.04.006DOI Listing
July 2007

Genetic diversity of ectomycorrhizal Basidiomycetes from African and Indian tropical rain forests.

Mycorrhiza 2007 Jul 3;17(5):415-428. Epub 2007 Mar 3.

UMR 113, Symbioses Tropicales et Méditerranéennes (LSTM), 34998, Montferrier-sur-Lez, France.

Ectomycorrhizal (ECM) fungi have a worldwide distribution. However, the ecology of tropical ECM fungi is poorly documented, limiting our understanding of the symbiotic associations between tropical plants and fungi. ECM Basidiomycete diversity was investigated for the first time in two tropical rain forests in Africa (Western Upper Guinea) and in Asia (Western Ghats, India), using a fragment of the mitochondrial large subunit rRNA gene to type 140 sporocarps and 54 ectomycorrhizas. To evaluate taxonomic diversity, phylogenetic analyses were performed, and 40 sequences included from identified European specimens were used as taxonomic benchmarks. Five clades were recovered corresponding to six taxonomic groups: boletoids, sclerodermatoids, russuloids, thelephoroids, and a clade grouping the Amanitaceae and Tricholomataceae families. Our results revealed that the Russulaceae species display a great diversity with several putative new species, especially in Guinea. Other taxonomic issues at family/section levels are also briefly discussed. This study provides preliminary insights into taxonomic diversity, ECM status, and biogeographic patterns of ECM fungi in tropical two rain forest ecosystems, which appear to be as diverse as in temperate and boreal forests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00572-007-0117-6DOI Listing
July 2007

Russula parvovirescens sp. nov., a common but ignored species in the eastern United States.

Mycologia 2006 Jul-Aug;98(4):612-5

Muséum national d'histoire naturelle, Systematics and Evolution Department, UMS 602-Post Box 39, 75231 Paris, France.

Russula parvovirescens sp. nov. is described from the eastern United States. It is a rather common species that previously was mistaken for a small R. virescens or a green form of R. crustosa. The large and characteristic extremities that compose the pileipellis allow easy identification with the microscope or even with a good hand lens. The new species is described here, illustrated in detail and compared with R. virescens and R. crustosa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3852/mycologia.98.4.612DOI Listing
December 2006

New and interesting Russula species from Panama.

Mycologia 2002 Sep-Oct;94(5):888-901

Muséum National d'Histoire Naturelle, Laboratoire de Cryptogamie, 12 Rue Buffon, F-75005 Paris, France.

Detailed illustrated descriptions are given for Russula panamae sp.nov, Russula aucarum, R. puiggarii and R. venezueliana, all of which are reported for the first time from Panamá. For Russula venezueliana and R. aucarum, it is also the first record since their original description. Taxonomy, systematic position, and related species are discussed for each species. Russula ochrostraminea is probably a synonym of R. venezueliana and section Delicoarchaeae is considered a possible synonym of subsection Lactarioideae or of section Metachromaticae.
View Article and Find Full Text PDF

Download full-text PDF

Source
October 2012