Publications by authors named "Barbara Füzi"

2 Publications

  • Page 1 of 1

The RESOLUTE consortium: unlocking SLC transporters for drug discovery.

Authors:
Giulio Superti-Furga Daniel Lackner Tabea Wiedmer Alvaro Ingles-Prieto Barbara Barbosa Enrico Girardi Ulrich Goldmann Bettina Gürtl Kristaps Klavins Christoph Klimek Sabrina Lindinger Eva Liñeiro-Retes André C Müller Svenja Onstein Gregor Redinger Daniela Reil Vitaly Sedlyarov Gernot Wolf Matthew Crawford Robert Everley David Hepworth Shenping Liu Stephen Noell Mary Piotrowski Robert Stanton Hui Zhang Salvatore Corallino Andrea Faedo Maria Insidioso Giovanna Maresca Loredana Redaelli Francesca Sassone Lia Scarabottolo Michela Stucchi Paola Tarroni Sara Tremolada Helena Batoulis Andreas Becker Eckhard Bender Yung-Ning Chang Alexander Ehrmann Anke Müller-Fahrnow Vera Pütter Diana Zindel Bradford Hamilton Martin Lenter Diana Santacruz Coralie Viollet Charles Whitehurst Kai Johnsson Philipp Leippe Birgit Baumgarten Lena Chang Yvonne Ibig Martin Pfeifer Jürgen Reinhardt Julian Schönbett Paul Selzer Klaus Seuwen Charles Bettembourg Bruno Biton Jörg Czech Hélène de Foucauld Michel Didier Thomas Licher Vincent Mikol Antje Pommereau Frédéric Puech Veeranagouda Yaligara Aled Edwards Brandon J Bongers Laura H Heitman Ad P IJzerman Huub J Sijben Gerard J P van Westen Justine Grixti Douglas B Kell Farah Mughal Neil Swainston Marina Wright-Muelas Tina Bohstedt Nicola Burgess-Brown Liz Carpenter Katharina Dürr Jesper Hansen Andreea Scacioc Giulia Banci Claire Colas Daniela Digles Gerhard Ecker Barbara Füzi Viktoria Gamsjäger Melanie Grandits Riccardo Martini Florentina Troger Patrick Altermatt Cédric Doucerain Franz Dürrenberger Vania Manolova Anna-Lena Steck Hanna Sundström Maria Wilhelm Claire M Steppan

Nat Rev Drug Discov 2020 07;19(7):429-430

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/d41573-020-00056-6DOI Listing
July 2020

Using Machine Learning Methods and Structural Alerts for Prediction of Mitochondrial Toxicity.

Mol Inform 2020 05 23;39(5):e2000005. Epub 2020 Mar 23.

University of Vienna, Department of Pharmaceutical Chemistry, Althanstr. 14, 1090, Vienna, Austria.

Over the last few years more and more organ and idiosyncratic toxicities were linked to mitochondrial toxicity. Despite well-established assays, such as the seahorse and Glucose/Galactose assay, an in silico approach to mitochondrial toxicity is still feasible, particularly when it comes to the assessment of large compound libraries. Therefore, in silico approaches could be very beneficial to indicate hazards early in the drug development pipeline. By combining multiple endpoints, we derived the largest so far published dataset on mitochondrial toxicity. A thorough data analysis shows that molecules causing mitochondrial toxicity can be distinguished by physicochemical properties. Finally, the combination of machine learning and structural alerts highlights the suitability for in silico risk assessment of mitochondrial toxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/minf.202000005DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7317375PMC
May 2020