Publications by authors named "Ballang Uppapong"

4 Publications

  • Page 1 of 1

Genomic characterization of a novel G3P[10] rotavirus strain from a diarrheic child in Thailand: Evidence for bat-to-human zoonotic transmission.

Infect Genet Evol 2021 Jan 5;87:104667. Epub 2020 Dec 5.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan.

An unusual rotavirus strain with the G3P[10] genotype (RVA/Human-wt/THA/MS2015-1-0001/2015/G3P[10]) was identified in a stool sample from a hospitalized child aged 11 months with severe gastroenteritis in Thailand. In the current study, we sequenced and characterized the full genome of strain MS2015-1-0001. On full-genomic analysis, strain MS2015-1-0001 exhibited the following genotype configuration: G3-P[10]-I8-R3-C3-M3-A9-N3-T3-E3-H6, which is identical or closely related to those of bat and bat-like rotavirus strains (MYAS33-like). Furthermore, phylogenetic analysis revealed that all 11 genes of strain MS2015-1-0001 appeared to be of bat origin. Our findings provide evidence for bat-to-human interspecies transmission of rotaviruses and important insights into dynamic interactions between human and bat rotavirus strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2020.104667DOI Listing
January 2021

Identification of GII.14[P7] norovirus and its genomic mutations from a case of long-term infection in a post-symptomatic individual.

Infect Genet Evol 2020 12 1;86:104612. Epub 2020 Nov 1.

Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand. Electronic address:

Norovirus is a leading cause of acute gastroenteritis worldwide. Norovirus shedding typically lasts one week to one month after the onset of diarrhea in immunocompetent hosts. The occurrence of mutations in the genome during infection has contributed to the evolution of norovirus. It has been suggested that genomic mutations in the P2-domain of capsid protein VP1, the major antigenic site for virus clearance, are involved in the evasion of host immunity and prolonged shedding of norovirus. In our previous study, we found a case of long-term shedding of GII.14 norovirus in a post-symptomatic immunocompetent individual that lasted about three months. In this study, we characterized the genomic sequence of the GII.14 strain to gain insight into the context of long-term shedding. By sequencing a 4.8 kb region of the genome corresponding to half of ORF1 and the entire ORF2 and ORF3, which encode several non-structural proteins and the structural proteins VP1 and VP2, the GII.14 strain was found to be classified as recombinant GII.14[P7]. Six point-mutations occurred during the three-month period of infection in a time-dependent manner in the genomic regions encoding RNA-dependent RNA polymerase, VP1, and VP2. Three of the six mutations were sense mutations, but no amino acid substitution was identified in the P2-domain of VP1. These results suggest that there is a mechanism by which long-term shedding of norovirus occurs in immunocompetent individuals independent of P2-domain mutations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2020.104612DOI Listing
December 2020

Norovirus transmission mediated by asymptomatic family members in households.

PLoS One 2020 23;15(7):e0236502. Epub 2020 Jul 23.

Thailand-Japan Research Collaboration Center on Emerging and Re-emerging Infections, Nonthaburi, Thailand.

The transmission of human norovirus excreted from infected persons occasionally causes sporadic infections and outbreaks. Both symptomatic patients and asymptomatic carriers have been reported to contribute to norovirus transmission, but little is known about the magnitude of the contribution of asymptomatic carriers. We carried out a 1-year survey of residents of a district of Bangkok, Thailand to determine the percentage of norovirus transmissions originating from asymptomatic individuals. We screened 38 individuals recruited from 16 families from May 2018 to April 2019 for GI and GII genotypes. Norovirus was detected every month, and 101 of 716 stool samples (14.1%) from individuals with no symptoms of acute gastroenteritis were norovirus-positive. The average infection frequency was 2.4 times per person per year. Fourteen genotypes were identified from the positive samples, with GII.4 being detected most frequently. Notably, 89.1% of the norovirus-positive samples were provided by individuals with no diarrhea episode. Similar to cases of symptomatic infections in Thailand, asymptomatic infections were observed most frequently in December. We detected 4 cases of NV infection caused by household transmission, and 3 of the 4 transmissions originated from asymptomatic individuals. We also identified a case in which norovirus derived from an asymptomatic individual caused diarrhea in a family member. These results suggest that asymptomatic individuals play a substantial role in both the maintenance and spreading of norovirus in a community through household transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0236502PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7377487PMC
September 2020

Full genome characterization of novel DS-1-like G9P[8] rotavirus strains that have emerged in Thailand.

PLoS One 2020 22;15(4):e0231099. Epub 2020 Apr 22.

Department of Virology and Parasitology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.

The emergence and rapid spread of unusual DS-1-like intergenogroup reassortant rotaviruses having G1/3/8 genotypes have been recently reported from major parts of the world (Africa, Asia, Australia, Europe, and the Americas). During rotavirus surveillance in Thailand, three novel intergenogroup reassortant strains possessing the G9P[8] genotype (DBM2017-016, DBM2017-203, and DBM2018-291) were identified in three stool specimens from diarrheic children. In the present study, we determined and analyzed the full genomes of these three strains. On full-genomic analysis, all three strains were found to share a unique genotype constellation comprising both genogroup 1 and 2 genes: G9-P[8]-I2-R2-C2-M2-A2-N2-T2-E2-H2. Phylogenetic analysis demonstrated that each of the 11 genes of the three strains was closely related to that of emerging DS-1-like intergenogroup reassortant, human, and/or locally circulating human strains. Thus, the three strains were suggested to be multiple reassortants that had acquired the G9-VP7 genes from co-circulating Wa-like G9P[8] rotaviruses in the genetic background of DS-1-like intergenogroup reassortant (likely equine-like G3P[8]) strains. To our knowledge, this is the first description of emerging DS-1-like intergenogroup reassortant strains having the G9P[8] genotype. Our observations will add to the growing insights into the dynamic evolution of emerging DS-1-like intergenogroup reassortant rotaviruses through reassortment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0231099PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7176146PMC
July 2020