Publications by authors named "Azhar A Rahman"

2 Publications

  • Page 1 of 1

Cotton Wastes Functionalized Biomaterials from Micro to Nano: A Cleaner Approach for a Sustainable Environmental Application.

Polymers (Basel) 2021 Mar 24;13(7). Epub 2021 Mar 24.

School of Physics, Universiti Sains Malaysia (USM), Penang 11800, Malaysia.

The exponential increase in textile cotton wastes generation and the ineffective processing mechanism to mitigate its environmental impact by developing functional materials with unique properties for geotechnical applications, wastewater, packaging, and biomedical engineering have become emerging global concerns among researchers. A comprehensive study of a processed cotton fibres isolation technique and their applications are highlighted in this review. Surface modification of cotton wastes fibre increases the adsorption of dyes and heavy metals removal from wastewater. Cotton wastes fibres have demonstrated high adsorption capacity for the removal of recalcitrant pollutants in wastewater. Cotton wastes fibres have found remarkable application in slope amendments, reinforcement of expansive soils and building materials, and a proven source for isolation of cellulose nanocrystals (CNCs). Several research work on the use of cotton waste for functional application rather than disposal has been done. However, no review study has discussed the potentials of cotton wastes from source (Micro-Nano) to application. This review critically analyses novel isolation techniques of CNC from cotton wastes with an in-depth study of a parameter variation effect on their yield. Different pretreatment techniques and efficiency were discussed. From the analysis, chemical pretreatment is considered the most efficient extraction of CNCs from cotton wastes. The pretreatment strategies can suffer variation in process conditions, resulting in distortion in the extracted cellulose's crystallinity. Acid hydrolysis using sulfuric acid is the most used extraction process for cotton wastes-based CNC. A combined pretreatment process, such as sonication and hydrolysis, increases the crystallinity of cotton-based CNCs. The improvement of the reinforced matrix interface of textile fibres is required for improved packaging and biomedical applications for the sustainability of cotton-based CNCs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/polym13071006DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8037842PMC
March 2021

Redetermination of hydronium perchlorate at 193 and 293 K.

Acta Crystallogr C 2003 Sep 9;59(Pt 9):i92-4. Epub 2003 Aug 9.

X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia.

A sample of hydronium perchlorate, H(3)O(+) x ClO(4)(-), crystallized from ethanol at ambient temperature, was found to be orthorhombic (space group Pnma) at both 193 and 293 K, with no phase transition observed in this temperature range. This contrasts with the earlier observation [Nordman (1962). Acta Cryst. 15, 18-23] of a monoclinic phase (space group P2(1)/n) at 193 K for crystals grown at that temperature from perchloric acid. The hydronium and perchlorate ions lie across a mirror plane but it is not possible to define at either temperature a simple description of the H-atom positions due to the three-dimensional tumbling of the hydronium cation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1107/s0108270103010461DOI Listing
September 2003
-->