Publications by authors named "Aya Hirose"

13 Publications

  • Page 1 of 1

Intramammary infection caused by Staphylococcus aureus increases IgA antibodies to iron-regulated surface determinant-A, -B, and -H in bovine milk.

Vet Immunol Immunopathol 2021 May 31;235:110235. Epub 2021 Mar 31.

Dairy Hygiene Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan. Electronic address:

The aim of this study was to identify virulence factors that have high immunogenicity. An in vivo-expressed Staphylococcus aureus antigen was identified by probing bacteriophage expression libraries of S. aureus with antibodies in bovine mastitis milk. Eighteen clones were isolated, and their proteins were identified as 5 characterised proteins (IsdA, Protein A, IsdB, autolysin, and imidazole glycerol phosphate dehydratase) and 13 hypothetical proteins. We focused on IsdA, IsdB, and IsdH as virulence factors that have a high immunogenicity and are capable of inducing a specific humoral immune response in S. aureus-infected quarters. The optical density (OD) values of IsdA and IsdB IgA and IgG antibodies in milk affected by naturally occurring mastitis caused by S. aureus increased significantly compared to those in healthy milk. In the experimental infection study, the OD values of IsdA- and B-specific IgA and IgG antibodies were significantly increased from 2 to 4 weeks after S. aureus infection compared to day 0 (P < 0.05). On the other hand, we demonstrated that milk from natural and experimental intramammary infections caused by S. aureus are associated with significantly higher IgA levels against IsdH (P < 0.05), but no significant change in IgG levels. Our findings facilitated our understanding of the pathogenicity of S. aureus in bovine mastitis, as well as the mechanisms by which specific humoral immune responses to S. aureus infection are induced. In addition, the results obtained could provide insight into how bovine mastitis can be controlled, for example, through vaccination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetimm.2021.110235DOI Listing
May 2021

Site-directed mutagenesis by biolistic transformation efficiently generates inheritable mutations in a targeted locus in soybean somatic embryos and transgene-free descendants in the T generation.

Transgenic Res 2021 Feb 1;30(1):77-89. Epub 2021 Jan 1.

Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.

The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is being rapidly developed for mutagenesis in higher plants. Ideally, foreign DNA introduced by this system is removed in the breeding of edible crops and vegetables. Here, we report an efficient generation of Cas9-free mutants lacking an allergenic gene, Gly m Bd 30K, using biolistic transformation and the CRISPR/Cas9 system. Five transgenic embryo lines were selected on the basis of hygromycin resistance. Cleaved amplified polymorphic sequence analysis detected only two different mutations in e all of the lines. These results indicate that mutations were induced in the target gene immediately after the delivery of the exogenous gene into the embryo cells. Soybean plantlets (T plants) were regenerated from two of the transgenic embryo lines. The segregation pattern of the Cas9 gene in the T generation, which included Cas9-free plants, revealed that a single copy number of transgene was integrated in both lines. Immunoblot analysis demonstrated that no Gly m Bd 30K protein accumulated in the Cas9-free plants. Gene expression analysis indicated that nonsense mRNA decay might have occurred in mature mutant seeds. Due to the efficient induction of inheritable mutations and the low integrated transgene copy number in the T plants, we could remove foreign DNA easily by genetic segregation in the T generation. Our results demonstrate that biolistic transformation of soybean embryos is useful for CRISPR/Cas9-mediated site-directed mutagenesis of soybean for human consumption.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11248-020-00229-4DOI Listing
February 2021

Simultaneous induction of mutant alleles of two allergenic genes in soybean by using site-directed mutagenesis.

BMC Plant Biol 2020 Nov 11;20(1):513. Epub 2020 Nov 11.

Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.

Background: Soybean (Glycine max) is a major protein crop, because soybean protein has an amino acid score comparable to that of beef and egg white. However, many allergens have been identified among soybean proteins. A decrease in allergenic protein levels would be useful for expanding the market for soybean proteins and processed foods. Recently, the CRISPR/Cas9 system has been adopted as a powerful tool for the site-directed mutagenesis in higher plants. This system is expected to generate hypoallergenic soybean varieties.

Results: We used two guide RNAs (gRNAs) and Agrobacterium-mediated transformation for simultaneous site-directed mutagenesis of two genes encoding the major allergens Gly m Bd 28 K and Gly m Bd 30 K in two Japanese soybean varieties, Enrei and Kariyutaka. We obtained two independent T Enrei plants and nine T Kariyutaka plants. Cleaved amplified polymorphic sequence (CAPS) analysis revealed that mutations were induced in both targeted loci of both soybean varieties. Sequencing analysis showed that deletions were the predominant mutation type in the targeted loci. The Cas9-free plants carrying the mutant alleles of the targeted loci with the transgenes excluded by genetic segregation were obtained in the T and T generations. Variable mutational spectra were observed in the targeted loci even in T and T progenies of the same T plant. Induction of multiple mutant alleles resulted in six haplotypes in the Cas9-free mutants derived from one T plant. Immunoblot analysis revealed that no Gly m Bd 28 K or Gly m Bd 30 K protein accumulated in the seeds of the Cas9-free plants. Whole-genome sequencing confirmed that a Cas9-free mutant had also no the other foreign DNA from the binary vector. Our results demonstrate the applicability of the CRISPR/Cas9 system for the production of hypoallergenic soybean plants.

Conclusions: Simultaneous site-directed mutagenesis by the CRISPR/Cas9 system removed two major allergenic proteins from mature soybean seeds. This system enables rapid and efficient modification of seed components in soybean varieties.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12870-020-02708-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7656749PMC
November 2020

Staphylococcus aureus-specific IgA antibody in milk suppresses the multiplication of S. aureus in infected bovine udder.

BMC Vet Res 2019 Aug 9;15(1):286. Epub 2019 Aug 9.

Dairy Hygiene Unit, Division of Pathology and Pathophysiology, Hokkaido Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, 4 Hitsujigaoka, Toyohira, Sapporo, Hokkaido, 062-0045, Japan.

Background: Bovine mastitis caused by Staphylococcus aureus (S. aureus) is extremely difficult to control and new methods for its prevention and management are required. Nasal vaccines may prevent initial bovine mastitis infection caused by S. aureus. However, limited information is available regarding induction of mucosal immune response through nasal immunization with antigen and its suppression of S. aureus multiplication during bovine mastitis. This study sought to investigate whether induction of immunoglobulin A (IgA) in milk by nasal immunization could suppress multiplication of S. aureus in the bovine udder.

Results: Nasal immunization with formalin-killed S. aureus conjugated with a cationic cholesteryl-group-bearing pullulan-nanogel was performed. Anti-S. aureus-specific IgA antibodies were significantly more abundant in the milk of immunized cows than in non-immunized animals (P < 0.05). S. aureus counts in the quarter were negative in both non-immunized and nasal-immunized cows 1 week after mock infusion. In S. aureus-infused quarters, S. aureus multiplication was significantly suppressed in immunized compared with non-immunized cows (P < 0.05). Furthermore, a significant negative correlation was found between S. aureus-specific IgA antibodies and S. aureus counts in infused quarters of both non-immunized and nasal-immunized cows (r = - 0.811, P < 0.01).

Conclusion: In conclusion, the present study demonstrates that S. aureus-specific IgA antibodies in milk successfully suppressed the multiplication of S. aureus in infected bovine udders. Although the exact mechanism explaining such suppressive effect remains to be elucidated, nasal vaccines that can induce humoral immunity may help prevent initial infection with S. aureus and the onset of bovine mastitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12917-019-2025-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6688226PMC
August 2019

Simultaneous site-directed mutagenesis of duplicated loci in soybean using a single guide RNA.

Plant Cell Rep 2018 Mar 15;37(3):553-563. Epub 2018 Jan 15.

Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.

Key Message: Using a gRNA and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two GmPPD loci in soybean. Mutations in GmPPD loci were confirmed in at least 33% of T seeds. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated endonuclease 9 (Cas9) system is a powerful tool for site-directed mutagenesis in crops. Using a single guide RNA (gRNA) and Agrobacterium-mediated transformation, we performed simultaneous site-directed mutagenesis of two homoeologous loci in soybean (Glycine max), GmPPD1 and GmPPD2, which encode the orthologs of Arabidopsis thaliana PEAPOD (PPD). Most of the T plants had heterozygous and/or chimeric mutations for the targeted loci. The sequencing analysis of T and T generations indicates that putative mutation induced in the T plant is transmitted to the T generation. The inheritable mutation induced in the T plant was also detected. This result indicates that continuous induction of mutations during T plant development increases the occurrence of mutations in germ cells, which ensures the transmission of mutations to the next generation. Simultaneous site-directed mutagenesis in both GmPPD loci was confirmed in at least 33% of T seeds examined. Approximately 19% of double mutants did not contain the Cas9/gRNA expression construct. Double mutants with frameshift mutations in both GmPPD1 and GmPPD2 had dome-shaped trifoliate leaves, extremely twisted pods, and produced few seeds. Taken together, our data indicate that continuous induction of mutations in the whole plant and advancing generations of transgenic plants enable efficient simultaneous site-directed mutagenesis in duplicated loci in soybean.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-018-2251-3DOI Listing
March 2018

Molecular basis of a shattering resistance boosting global dissemination of soybean.

Proc Natl Acad Sci U S A 2014 Dec 2;111(50):17797-802. Epub 2014 Dec 2.

Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;

Pod dehiscence (shattering) is essential for the propagation of wild plant species bearing seeds in pods but is a major cause of yield loss in legume and crucifer crops. Although natural genetic variation in pod dehiscence has been, and will be, useful for plant breeding, little is known about the molecular genetic basis of shattering resistance in crops. Therefore, we performed map-based cloning to unveil a major quantitative trait locus (QTL) controlling pod dehiscence in soybean. Fine mapping and complementation testing revealed that the QTL encodes a dirigent-like protein, designated as Pdh1. The gene for the shattering-resistant genotype, pdh1, was defective, having a premature stop codon. The functional gene, Pdh1, was highly expressed in the lignin-rich inner sclerenchyma of pod walls, especially at the stage of initiation in lignin deposition. Comparisons of near-isogenic lines indicated that Pdh1 promotes pod dehiscence by increasing the torsion of dried pod walls, which serves as a driving force for pod dehiscence under low humidity. A survey of soybean germplasm revealed that pdh1 was frequently detected in landraces from semiarid regions and has been extensively used for breeding in North America, the world's leading soybean producer. These findings point to a new mechanism for pod dehiscence involving the dirigent protein family and suggest that pdh1 has played a crucial role in the global expansion of soybean cultivation. Furthermore, the orthologs of pdh1, or genes with the same role, will possibly be useful for crop improvement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.1417282111DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4273335PMC
December 2014

The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves.

Plant Cell Physiol 2014 Dec 4;55(12):2102-11. Epub 2014 Oct 4.

Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601 Japan Ryukoku University, Fushimi-ku, Kyoto, 612-8577 Japan

GmPT7 was originally identified as an arbuscular mycorrhiza-inducible gene of soybean that encodes a member of subfamily I in the PHOSPHATE TRANSPORTER 1 family. In the present study, we established conditions under which a number of dwarf soybean plants complete their life cycles in a growth chamber. Using this system, we grew transgenic soybean with a GmPT7 promoter-β-glucuronidase fusion gene and evaluated GmPT7 expression in detail. GmPT7 was highly expressed in mature, but not in collapsed, arbuscule-containing cortical cells, suggesting its importance in the absorption of fungus-derived phosphate and/or arbuscule development. GmPT7 was also expressed in the columella cells of root caps and in the lateral root primordia of non-mycorrhizal roots. The expression of GmPT7 occurred only in the late stage of phosphorus translocation from leaves to seeds, after water evaporation from the leaves ceased, and later than the expression of GmUPS1-2, GmNRT1.7a and GmNRT1.7b, which are possibly involved in nitrogen export. GmPT7 expression was localized in a pair of tracheid elements at the tips of vein endings of senescent leaves. Transmission electron microscopy revealed that the tip tracheid elements in yellow leaves were still viable and had intact plasma membranes. Thus, we think that GmPT7 on the plasma membranes transports phosphate from the apoplast into the tip elements. GmPT7 knockdown resulted in no significant effects, the function of GmPT7 remaining to be clarified. We propose a working model in which phosphate incorporated in vein endings moves to seeds via xylem to phloem transfer.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/pcp/pcu138DOI Listing
December 2014

Seed coat pigmentation in transgenic soybean expressing the silencing suppressor 2b gene of Cucumber mosaic virus.

Plant Cell Rep 2013 Dec;32(12):1903-12

Key Message: Soybean expressing the Cucumber mosaic virus 2b gene manifests seed coat pigmentation due to suppression of endogenous RNA silencing but no other morphological abnormality. This gene may help prevent transgene silencing. RNA silencing is an important mechanism for gene regulation and antiviral defense in plants. It is also responsible for transgene silencing, however, and thus hinders the establishment of transgenic plants. The 2b protein of Cucumber mosaic virus (CMV) functions as a suppressor of RNA silencing and therefore might prove beneficial for stabilization of transgene expression. We have now generated transgenic soybean that harbors the 2b gene of a CMV-soybean strain under the control of a constitutive promoter to investigate the effects of 2b expression. No growth abnormality was apparent in 2b transgenic plants, although the seed coat was pigmented in several of the transgenic lines. Genes for chalcone synthase (CHS), a key enzyme of the flavonoid pathway, are posttranscriptionally silenced by the inhibitor (I) locus in nonpigmented (yellow) soybean seeds. The levels of CHS mRNA and CHS small interfering RNA in strongly pigmented 2b transgenic seed coats were higher and lower, respectively, than those in the seed coat of a control transgenic line. The expression level of 2b also correlated with the extent of seed coat pigmentation. On the other hand, introduction of the 2b gene together with the DsRed2 gene into somatic embryos prevented the time-dependent decrease in transient DsRed2 expression. Our results indicate that the 2b gene alone is able to suppress RNA silencing of endogenous CHS genes regulated by the I locus, and that 2b is of potential utility for stabilization of transgene expression in soybean without detrimental effects other than seed coat pigmentation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-013-1502-6DOI Listing
December 2013

The Sg-1 glycosyltransferase locus regulates structural diversity of triterpenoid saponins of soybean.

Plant Cell 2012 May 18;24(5):2123-38. Epub 2012 May 18.

National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan.

Triterpene saponins are a diverse group of biologically functional products in plants. Saponins usually are glycosylated, which gives rise to a wide diversity of structures and functions. In the group A saponins of soybean (Glycine max), differences in the terminal sugar species located on the C-22 sugar chain of an aglycone core, soyasapogenol A, were observed to be under genetic control. Further genetic analyses and mapping revealed that the structural diversity of glycosylation was determined by multiple alleles of a single locus, Sg-1, and led to identification of a UDP-sugar-dependent glycosyltransferase gene (Glyma07g38460). Although their sequences are highly similar and both glycosylate the nonacetylated saponin A0-αg, the Sg-1(a) allele encodes the xylosyltransferase UGT73F4, whereas Sg-1(b) encodes the glucosyltransferase UGT73F2. Homology models and site-directed mutagenesis analyses showed that Ser-138 in Sg-1(a) and Gly-138 in Sg-1(b) proteins are crucial residues for their respective sugar donor specificities. Transgenic complementation tests followed by recombinant enzyme assays in vitro demonstrated that sg-1(0) is a loss-of-function allele of Sg-1. Considering that the terminal sugar species in the group A saponins are responsible for the strong bitterness and astringent aftertastes of soybean seeds, our findings herein provide useful tools to improve commercial properties of soybean products.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1105/tpc.111.095174DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442591PMC
May 2012

Manipulation of saponin biosynthesis by RNA interference-mediated silencing of β-amyrin synthase gene expression in soybean.

Plant Cell Rep 2011 Oct 1;30(10):1835-46. Epub 2011 Jun 1.

National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8602, Japan.

Soybean seeds contain substantial amount of diverse triterpenoid saponins that influence the seed quality, although little is known about the physiologic functions of saponins in plants. We now describe the modification of saponin biosynthesis by RNA interference (RNAi)-mediated gene silencing targeted to β-amyrin synthase, a key enzyme in the synthesis of a common aglycon of soybean saponins. We identified two putative β-amyrin synthase genes in soybean that manifested distinct expression patterns with regard to developmental stage and tissue specificity. Given that one of these genes, GmBAS1, was expressed at a much higher level than the other (GmBAS2) in various tissues including the developing seeds, we constructed two RNAi vectors that encode self-complementary hairpin RNAs corresponding to the distinct regions of GmBAS1 under the control of a seed-specific promoter derived from the soybean gene for the α' subunit of the seed storage protein β-conglycinin. These vectors were introduced independently into soybean. Six independent transgenic lines exhibited a stable reduction in seed saponin content, with the extent of saponin deficiency correlating with the β-amyrin synthase mRNA depletion. Although some transgenic lines produced seeds almost devoid of saponins, no abnormality in their growth was apparent and the antioxidant activity of their seeds was similar to that of control seeds. These results suggest that saponins are not required for seed development and survival, and that soybean seeds may therefore be amenable to the modification of triterpenoid saponin content and composition through molecular biologic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-011-1091-1DOI Listing
October 2011

The influence of active hexose correlated compound (AHCC) on cisplatin-evoked chemotherapeutic and side effects in tumor-bearing mice.

Toxicol Appl Pharmacol 2007 Jul 20;222(2):152-8. Epub 2007 Apr 20.

Amino Up Chemical Company, 363-32 Shin-ei, Kiyota-ku, Sapporo 004-0839, Japan.

Cisplatin (cis-diaminedichloroplatinum (II) or CDDP) (a widely used platinum-containing anticancer drug) is nephrotoxic and has a low percentage of tolerance in patients during chemotherapy. The active hexose correlated compound (AHCC) is an extract of Basidiomycotina marketed as a supplement for cancer patients due to its nutrients and fibre content and its ability to strengthen and optimize the capacity of the immune system. The possibility that AHCC could reduce the side effects of cisplatin was assessed in the tumor-bearing BALB/cA mice on the basis of the ability to ameliorate the cisplatin-induced body weight loss, anorexia, nephrotoxicity and hematopoietic toxicity. Although cisplatin (8 mg/kg body weight) reduced the size and weight of the solid tumors, supplementation with AHCC significantly enhanced cisplatin-induced antitumor effect in both the size (p<0.05) and weight (p<0.05). Food intake in the cisplatin-treated mice were decreased following commencement of treatment and this remained low compared with the cisplatin-untreated group (control) throughout the experiment period. Supplementation with AHCC increased the food intake in the cisplatin-treated mice. The blood urea nitrogen and serum creatinine concentrations, and the ratio of blood urea nitrogen to serum creatinine were significantly increased in the cisplatin alone treated group compared to the control group. Their increased levels were mitigated by supplementation with AHCC (100 mg/kg body weight) in the cisplatin-treated group. AHCC was also able to modulate the suppression of bone marrow due to cisplatin and the improvement was statistically significant. The histopathological examination of the kidney revealed the presence of cisplatin-induced damage and this was modulated by AHCC treatment. The potential for AHCC to ameliorate the cisplatin-evoked toxicity as well as the chemotherapeutic effect could have beneficial economic implications for patients undergoing chemotherapy with cisplatin.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2007.03.031DOI Listing
July 2007

Preparation, characterization, and antioxidative effects of oligomeric proanthocyanidin-L-cysteine complexes.

J Agric Food Chem 2007 Feb 25;55(4):1525-31. Epub 2007 Jan 25.

Amino Up Chemical Company Ltd., High Tech Hill Shin-ei, 363-32 Kiyota, Sapporo 004-0839, Japan.

Controlled acid-catalyzed degradation of proanthocyanidin polymers in grape seeds together with L-cysteine led to oligomeric proanthocyanidin-L-cysteine complexes along with monomeric flavan-3-ol derivatives being isolated, and their structures were confirmed on the basis of spectroscopic data and by chemical means. In addition, comparative studies on the antioxidative and survival effects of oligomeric proanthocyanidin-L-cysteine complexes and proanthocyanidin polymers were performed. The oligomeric proanthocyanidin-L-cysteine complexes showed higher bioavailability and antioxidant capacity and enhanced survival time in the animal test groups. In addition, it is suggested that the oligomeric complexes may help to prevent oxidative stress and may reduce free radical production.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf062819nDOI Listing
February 2007

Evaluation of the safety and toxicity of the oligomerized polyphenol Oligonol.

Food Chem Toxicol 2007 Mar 16;45(3):378-87. Epub 2006 Sep 16.

Amino Up Chemical Company, 363-32 Shin-Ei, Sapporo, Japan.

Oligonol((R)) is an optimised phenolic product containing catechin-type monomers and lower oligomers of proanthocyanidin that emanate from a technology process which converts polyphenol polymers into oligomers. In a single dose toxicity study administration of Oligonol (2000mg/kg bw) by gavage for 4 weeks was found to be safe with no side effects (such as abnormal behavior and alopecia). Body weight gain and food consumption were within normal range. Oligonol had no observed toxicity at the dose (1/25 of LD(50)) administered for 6 months. This suggests that Oligonol is safe at repeated human intakes of Oligonol in doses lower than 200mg/day. The highest dose used in this study is equal to 12g daily for an adult man with 60kg body weight. The LD(50) was calculated to be 5.0g/kg body weight (95% confidence limit: 3.5-6.4g/kg). Studies conducted on 30 healthy volunteers consuming Oligonol at doses of 100mg/day and 200mg/day for 92 days showed good bioavailability. The biochemical parameters attesting to liver and kidney functions as well as the hematological parameters were within the normal ranges. The potential of Oligonol to induce gene mutation (a reverse mutation test) was tested using Salmonella typhimurium TA98, TA100, TA104, TA1535, TA153 and Escherichia coli WP2uvrA. Oligonol was not mutagenic to the tester strains. The lack of toxicity supports the potential use of Oligonol as a food or dietary supplement and for use as an additive in pharmaceutical and cosmetological applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fct.2006.08.026DOI Listing
March 2007