Publications by authors named "Awis Sukarni Mohmad Sabere"

2 Publications

  • Page 1 of 1

Potential Applications of Conducting Polymers to Reduce Secondary Bacterial Infections among COVID-19 Patients: a Review.

Emergent Mater 2021 Feb 24:1-14. Epub 2021 Feb 24.

Bacteriology Unit, Infectious Disease Research Centre, Institute for Medical Research, National Institutes of Health, Setia Alam, 40170 Shah Alam, Selangor Malaysia.

The COVID-19 pandemic is a motivation for material scientists to search for functional materials with valuable properties to alleviate the risks associated with the coronavirus. The formulation of functional materials requires synergistic understanding on the properties of materials and mechanisms of virus transmission and disease progression, including secondary bacterial infections that are prevalent in COVID-19 patients. A viable candidate in the struggle against the pandemic is antimicrobial polymer, due to their favorable properties of flexibility, lightweight, and ease of synthesis. Polymers are the base material for personal protective equipment (PPE), such as gloves, face mask, face shield, and coverall suit for frontliners. Conducting polymers (CPs) are polymers with electrical properties due to the addition of dopant in the polymer structure. The conductivity of polymers augments their antiviral and antibacterial properties. This review discusses the types of CPs and how their properties could be exploited to ward off bacterial infections in hospital settings, specifically in cases involving COVID-19 patients. This review also covers common CPs fabrication techniques. The key components to produce CPs at several possibilities to fit the current needs in fighting secondary bacterial infections are also discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s42247-021-00188-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7903935PMC
February 2021

Medicinal Potential of Isoflavonoids: Polyphenols That May Cure Diabetes.

Molecules 2020 Nov 24;25(23). Epub 2020 Nov 24.

Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Usmanu Danfodiyo University, P M B: 2436 Sokoto, Nigeria.

In recent years, there is emerging evidence that isoflavonoids, either dietary or obtained from traditional medicinal plants, could play an important role as a supplementary drug in the management of type 2 diabetes mellitus (T2DM) due to their reported pronounced biological effects in relation to multiple metabolic factors associated with diabetes. Hence, in this regard, we have comprehensively reviewed the potential biological effects of isoflavonoids, particularly biochanin A, genistein, daidzein, glycitein, and formononetin on metabolic disorders and long-term complications induced by T2DM in order to understand whether they can be future candidates as a safe antidiabetic agent. Based on in-depth in vitro and in vivo studies evaluations, isoflavonoids have been found to activate gene expression through the stimulation of peroxisome proliferator-activated receptors (PPARs) (α, γ), modulate carbohydrate metabolism, regulate hyperglycemia, induce dyslipidemia, lessen insulin resistance, and modify adipocyte differentiation and tissue metabolism. Moreover, these natural compounds have also been found to attenuate oxidative stress through the oxidative signaling process and inflammatory mechanism. Hence, isoflavonoids have been envisioned to be able to prevent and slow down the progression of long-term diabetes complications including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Further thoroughgoing investigations in human clinical studies are strongly recommended to obtain the optimum and specific dose and regimen required for supplementation with isoflavonoids and derivatives in diabetic patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/molecules25235491DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7727648PMC
November 2020