Publications by authors named "Aurélie Caye"

16 Publications

  • Page 1 of 1

Ikaros deficiency is associated with aggressive BCR-ABL1 B cell precursor acute lymphoblastic leukemia independent of the lineage and developmental origin.

Haematologica 2021 Sep 30. Epub 2021 Sep 30.

Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Illkirch, France; Centre National de la Recherche Scientifique (CNRS), UMR7104, Illkirch, France; Université de Strasbourg, Illkirch.

Not available.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2021.279125DOI Listing
September 2021

Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia.

Sci Rep 2021 02 2;11(1):2801. Epub 2021 Feb 2.

Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium.

Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50-60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (lnc-THADA-4, lnc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as lnc-THADA-4, lnc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-82509-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7854679PMC
February 2021

Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment.

Leukemia 2020 06 27;34(6):1658-1668. Epub 2019 Nov 27.

Francis Crick Institute, London, UK.

Juvenile myelomonocytic leukemia (JMML) is a rare aggressive myelodysplastic/myeloproliferative neoplasm of early childhood, initiated by RAS-activating mutations. Genomic analyses have recently described JMML mutational landscape; however, the nature of JMML-propagating cells (JMML-PCs) and the clonal architecture of the disease remained until now elusive. Combining genomic (exome, RNA-seq), Colony forming assay and xenograft studies, we detect the presence of JMML-PCs that faithfully reproduce JMML features including the complex/nonlinear organization of dominant/minor clones, both at diagnosis and relapse. Further integrated analysis also reveals that although the mutations are acquired in hematopoietic stem cells, JMML-PCs are not always restricted to this compartment, highlighting the heterogeneity of the disease during the initiation steps. We show that the hematopoietic stem/progenitor cell phenotype is globally maintained in JMML despite overexpression of CD90/THY-1 in a subset of patients. This study shed new lights into the ontogeny of JMML, and the identity of JMML-PCs, and provides robust models to monitor the disease and test novel therapeutic approaches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41375-019-0662-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266742PMC
June 2020

Natural history of GATA2 deficiency in a survey of 79 French and Belgian patients.

Haematologica 2018 08 3;103(8):1278-1287. Epub 2018 May 3.

Genetic Laboratory, AP-HP Robert Debré Hospital, Paris, France.

Heterozygous germline mutations strongly predispose to leukemia, immunodeficiency, and/or lymphoedema. We describe a series of 79 patients (53 families) diagnosed since 2011, made up of all patients in France and Belgium, with a follow up of 2249 patients/years. Median age at first clinical symptoms was 18.6 years (range, 0-61 years). Severe infectious diseases (mycobacteria, fungus, and human papilloma virus) and hematologic malignancies were the most common first manifestations. The probability of remaining symptom-free was 8% at 40 years old. Among the 53 probands, 24 had missense mutations including 4 recurrent alleles, 21 had nonsense or frameshift mutations, 4 had a whole-gene deletion, 2 had splice defects, and 2 patients had complex mutations. There were significantly more cases of leukemia in patients with missense mutations (n=14 of 34) than in patients with nonsense or frameshift mutations (n=2 of 28). We also identify new features of the disease: acute lymphoblastic leukemia, juvenile myelomonocytic leukemia, fatal progressive multifocal leukoencephalopathy related to the JC virus, and immune/inflammatory diseases. A revised International Prognostic Scoring System (IPSS) score allowed a distinction to be made between a stable disease and hematologic transformation. Chemotherapy is of limited efficacy, and has a high toxicity with severe infectious complications. As the mortality rate is high in our cohort (up to 35% at the age of 40), hematopoietic stem cell transplantation (HSCT) remains the best choice of treatment to avoid severe infectious and/or hematologic complications. The timing of HSCT remains difficult to determine, but the earlier it is performed, the better the outcome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2017.181909DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068047PMC
August 2018

Speed of leukemia development and genetic diversity in xenograft models of T cell acute lymphoblastic leukemia.

Oncotarget 2016 Jul;7(27):41599-41611

Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), DSV-IRCM-SCSR-LSHL, UMR 967, Fontenay-aux-Roses, France.

T cell acute lymphoblastic leukemia (T-ALL) develops through accumulation of multiple genomic alterations within T-cell progenitors resulting in clonal heterogeneity among leukemic cells. Human T-ALL xeno-transplantation in immunodeficient mice is a gold standard approach to study leukemia biology and we recently uncovered that the leukemia development is more or less rapid depending on T-ALL sample. The resulting human leukemia may arise through genetic selection and we previously showed that human T-ALL development in immune-deficient mice is significantly enhanced upon CD7+/CD34+ leukemic cell transplantations. Here we investigated the genetic characteristics of CD7+/CD34+ and CD7+/CD34- cells from newly diagnosed human T-ALL and correlated it to the speed of leukemia development. We observed that CD7+/CD34+ or CD7+/CD34- T-ALL cells that promote leukemia within a short-time period are genetically similar, as well as xenograft-derived leukemia resulting from both cell fractions. In the case of delayed T-ALL growth CD7+/CD34+ or CD7+/CD34- cells were either genetically diverse, the resulting xenograft leukemia arising from different but branched subclones present in the original sample, or similar, indicating decreased fitness to mouse micro-environment. Altogether, our work provides new information relating the speed of leukemia development in xenografts to the genetic diversity of T-ALL cell compartments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.9313DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5173081PMC
July 2016

Acute lymphoblastic leukemia in the context of RASopathies.

Eur J Med Genet 2016 Mar 5;59(3):173-8. Epub 2016 Feb 5.

Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, Paris, France; INSERM UMR 1141, Université Paris Diderot, Sorbonne-Paris-Cité, Paris, France.

Noonan syndrome is associated with a range of malignancies including acute lymphoblastic leukemia (ALL). However, little information is available regarding the frequency, natural history, characteristics and prognosis of ALL in Noonan syndrome or RASopathies in general. Cross-referencing data from a large prospective cohort of 1176 patients having a molecularly confirmed RASopathy with data from the French childhood cancer registry allowed us to identify ALL in 6 (0.5%) patients including 4/778 (0.5%) with a germline PTPN11 mutation and 2/94 (2.1%) with a germline SOS1 mutation. None of the patients of our series with CFC syndrome (with germline BRAF or MAP2K1/MAP2K2 mutation - n = 121) or Costello syndrome (with HRAS mutation - n = 35) had an ALL. A total of 19 Noonan-ALL were gathered by adding our patients to those of the International Berlin-Munster-Frankfurt (I-BFM) study group and previously reported patients. Strikingly, all Noonan-associated ALL were B-cell precursor ALL, and high hyperdiploidy with more than 50 chromosomes was found in the leukemia cells of 13/17 (76%) patients with available genetics data. Our data suggest that children with Noonan syndrome are at higher risk to develop ALL. Like what is observed for somatic PTPN11 mutations, NS is preferentially associated with the development of hyperdiploid ALL that will usually respond well to chemotherapy. However, Noonan syndrome patients seem to have a propensity to develop post therapy myelodysplasia that can eventually be fatal. Hence, one should be particularly cautious when treating these patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2016.01.003DOI Listing
March 2016

Mutations in RIT1 cause Noonan syndrome with possible juvenile myelomonocytic leukemia but are not involved in acute lymphoblastic leukemia.

Eur J Hum Genet 2016 08 13;24(8):1124-31. Epub 2016 Jan 13.

Department of Genetics, Jeanne de Flandre University Hospital, Lille, France.

Noonan syndrome is a heterogeneous autosomal dominant disorder caused by mutations in at least eight genes involved in the RAS/MAPK signaling pathway. Recently, RIT1 (Ras-like without CAAX 1) has been shown to be involved in the pathogenesis of some patients. We report a series of 44 patients from 30 pedigrees (including nine multiplex families) with mutations in RIT1. These patients display a typical Noonan gestalt and facial phenotype. Among the probands, 8.7% showed postnatal growth retardation, 90% had congenital heart defects, 36% had hypertrophic cardiomyopathy (a lower incidence compared with previous report), 50% displayed speech delay and 52% had learning difficulties, but only 22% required special education. None had major skin anomalies. One child died perinatally of juvenile myelomonocytic leukemia. Compared with the canonical Noonan phenotype linked to PTPN11 mutations, patients with RIT1 mutations appear to be less severely growth retarded and more frequently affected by cardiomyopathy. Based on our experience, we estimate that RIT1 could be the cause of 5% of Noonan syndrome patients. Because mutations found constitutionally in Noonan syndrome are also found in several tumors in adulthood, we evaluated the potential contribution of RIT1 to leukemogenesis in Noonan syndrome. We screened 192 pediatric cases of acute lymphoblastic leukemias (96 B-ALL and 96 T-ALL) and 110 cases of juvenile myelomonocytic leukemias (JMML), but detected no variation in these tumoral samples, suggesting that Noonan patients with germline RIT1 mutations are not at high risk to developing JMML or ALL, and that RIT1 has at most a marginal role in these sporadic malignancies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2015.273DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4970687PMC
August 2016

LIN28B overexpression defines a novel fetal-like subgroup of juvenile myelomonocytic leukemia.

Blood 2016 Mar 28;127(9):1163-72. Epub 2015 Dec 28.

Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium;

Juvenile myelomonocytic leukemia (JMML) is a rare and aggressive stem cell disease of early childhood. RAS activation constitutes the core component of oncogenic signaling. In addition, leukemic blasts in one-fourth of JMML patients present with monosomy 7, and more than half of patients show elevated age-adjusted fetal hemoglobin (HbF) levels. Hematopoietic stem cell transplantation is the current standard of care and results in an event-free survival rate of 50% to 60%, indicating that novel molecular-driven therapeutic options are urgently needed. Using gene expression profiling in a series of 82 patient samples, we aimed at understanding the molecular biology behind JMML and identified a previously unrecognized molecular subgroup characterized by high LIN28B expression. LIN28B overexpression was significantly correlated with higher HbF levels, whereas patients with monosomy 7 seldom showed enhanced LIN28B expression. This finding gives a biological explanation of why patients with monosomy 7 are rarely diagnosed with high age-adjusted HbF levels. In addition, this new fetal-like JMML subgroup presented with reduced levels of most members of the let-7 microRNA family and showed characteristic overexpression of genes involved in fetal hematopoiesis and stem cell self-renewal. Lastly, high LIN28B expression was associated with poor clinical outcome in our JMML patient series but was not independent from other prognostic factors such as age and age-adjusted HbF levels. In conclusion, we identified elevated LIN28B expression as a hallmark of a novel fetal-like subgroup in JMML.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2015-09-667808DOI Listing
March 2016

Juvenile myelomonocytic leukemia displays mutations in components of the RAS pathway and the PRC2 network.

Nat Genet 2015 Nov 12;47(11):1334-40. Epub 2015 Oct 12.

Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.

Juvenile myelomonocytic leukemia (JMML) is a rare and severe myelodysplastic and myeloproliferative neoplasm of early childhood initiated by germline or somatic RAS-activating mutations. Genetic profiling and whole-exome sequencing of a large JMML cohort (118 and 30 cases, respectively) uncovered additional genetic abnormalities in 56 cases (47%). Somatic events were rare (0.38 events/Mb/case) and restricted to sporadic (49/78; 63%) or neurofibromatosis type 1 (NF1)-associated (8/8; 100%) JMML cases. Multiple concomitant genetic hits targeting the RAS pathway were identified in 13 of 78 cases (17%), disproving the concept of mutually exclusive RAS pathway mutations and defining new pathways activated in JMML involving phosphoinositide 3-kinase (PI3K) and the mTORC2 complex through RAC2 mutation. Furthermore, this study highlights PRC2 loss (26/78; 33% of sporadic JMML cases) that switches the methylation/acetylation status of lysine 27 of histone H3 in JMML cases with altered RAS and PRC2 pathways. Finally, the association between JMML outcome and mutational profile suggests a dose-dependent effect for RAS pathway activation, distinguishing very aggressive JMML rapidly progressing to acute myeloid leukemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3420DOI Listing
November 2015

Myeloid Dysregulation in a Human Induced Pluripotent Stem Cell Model of PTPN11-Associated Juvenile Myelomonocytic Leukemia.

Cell Rep 2015 Oct 8;13(3):504-515. Epub 2015 Oct 8.

The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Somatic PTPN11 mutations cause juvenile myelomonocytic leukemia (JMML). Germline PTPN11 defects cause Noonan syndrome (NS), and specific inherited mutations cause NS/JMML. Here, we report that hematopoietic cells differentiated from human induced pluripotent stem cells (hiPSCs) harboring NS/JMML-causing PTPN11 mutations recapitulated JMML features. hiPSC-derived NS/JMML myeloid cells exhibited increased signaling through STAT5 and upregulation of miR-223 and miR-15a. Similarly, miR-223 and miR-15a were upregulated in 11/19 JMML bone marrow mononuclear cells harboring PTPN11 mutations, but not those without PTPN11 defects. Reducing miR-223's function in NS/JMML hiPSCs normalized myelogenesis. MicroRNA target gene expression levels were reduced in hiPSC-derived myeloid cells as well as in JMML cells with PTPN11 mutations. Thus, studying an inherited human cancer syndrome with hiPSCs illuminated early oncogenesis prior to the accumulation of secondary genomic alterations, enabling us to discover microRNA dysregulation, establishing a genotype-phenotype association for JMML and providing therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2015.09.019DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618050PMC
October 2015

CD200/BTLA deletions in pediatric precursor B-cell acute lymphoblastic leukemia treated according to the EORTC-CLG 58951 protocol.

Haematologica 2015 Oct 2;100(10):1311-9. Epub 2015 Jul 2.

Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, Belgium

DNA copy number analysis has been instrumental for the identification of genetic alterations in B-cell precursor acute lymphoblastic leukemia. Notably, some of these genetic defects have been associated with poor treatment outcome and might be relevant for future risk stratification. In this study, we characterized recurrent deletions of CD200 and BTLA genes, mediated by recombination-activating genes, and used breakpoint-specific polymerase chain reaction assay to screen a cohort of 1154 cases of B-cell precursor acute lymphoblastic leukemia uniformly treated according to the EORTC-CLG 58951 protocol. CD200/BTLA deletions were identified in 56 of the patients (4.8%) and were associated with an inferior 8-year event free survival in this treatment protocol [70.2% ± 1.2% for patients with deletions versus 83.5% ± 6.4% for non-deleted cases (hazard ratio 2.02; 95% confidence interval 1.23-3.32; P=0.005)]. Genetically, CD200/BTLA deletions were strongly associated with ETV6-RUNX1-positive leukemias (P<0.0001), but were also identified in patients who did not have any genetic abnormality that is currently used for risk stratification. Within the latter population of patients, the presence of CD200/BTLA deletions was associated with inferior event-free survival and overall survival. Moreover, the multivariate Cox model indicated that these deletions had independent prognostic impact on event-free survival when adjusting for conventional risk criteria. All together, these findings further underscore the rationale for copy number profiling as an important tool for risk stratification in human B-cell precursor acute lymphoblastic leukemia. This trial was registered at www.ClinicalTrials.gov as #NCT00003728.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2015.126953DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4591763PMC
October 2015

Juvenile myelomonocytic leukaemia and Noonan syndrome.

J Med Genet 2014 Oct 5;51(10):689-97. Epub 2014 Aug 5.

INSERM UMR_S1131, Institut Universitaire d'Hématologie, Université Paris Diderot, Paris-Sorbonne-Cité, Paris, France Département de Génétique, Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Paris, France.

Background: Infants with Noonan syndrome (NS) are predisposed to developing juvenile myelomonocytic leukaemia (JMML) or JMML-like myeloproliferative disorders (MPD). Whereas sporadic JMML is known to be aggressive, JMML occurring in patients with NS is often considered as benign and transitory. However, little information is available regarding the occurrence and characteristics of JMML in NS.

Methods And Results: Within a large prospective cohort of 641 patients with a germline PTPN11 mutation, we identified MPD features in 36 (5.6%) patients, including 20 patients (3%) who fully met the consensus diagnostic criteria for JMML. Sixty percent of the latter (12/20) had severe neonatal manifestations, and 10/20 died in the first month of life. Almost all (11/12) patients with severe neonatal JMML were males. Two females who survived MPD/JMML subsequently developed another malignancy during childhood. Although the risk of developing MPD/JMML could not be fully predicted by the underlying PTPN11 mutation, some germline PTPN11 mutations were preferentially associated with myeloproliferation: 10/48 patients with NS (20.8%) with a mutation in codon Asp61 developed MPD/JMML in infancy. Patients with a p.Thr73Ile mutation also had more chances of developing MPD/JMML but with a milder clinical course. SNP array and whole exome sequencing in paired tumoral and constitutional samples identified no second acquired somatic mutation to explain the occurrence of myeloproliferation.

Conclusions: JMML represents the first cause of death in PTPN11-associated NS. Few patients have been reported so far, suggesting that JMML may sometimes be overlooked due to early death, comorbidities or lack of confirmatory tests.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2014-102611DOI Listing
October 2014

Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis.

Hum Mol Genet 2014 Aug 4;23(16):4315-27. Epub 2014 Apr 4.

Genetica Clinica Pediatrica, Clinica Pediatrica Università Milano Bicocca, Fondazione MBBM, A.O. S. Gerardo, Monza 20900, Italy.

RASopathies, a family of disorders characterized by cardiac defects, defective growth, facial dysmorphism, variable cognitive deficits and predisposition to certain malignancies, are caused by constitutional dysregulation of RAS signalling predominantly through the RAF/MEK/ERK (MAPK) cascade. We report on two germline mutations (p.Gly39dup and p.Val55Met) in RRAS, a gene encoding a small monomeric GTPase controlling cell adhesion, spreading and migration, underlying a rare (2 subjects among 504 individuals analysed) and variable phenotype with features partially overlapping Noonan syndrome, the most common RASopathy. We also identified somatic RRAS mutations (p.Gly39dup and p.Gln87Leu) in 2 of 110 cases of non-syndromic juvenile myelomonocytic leukaemia, a childhood myeloproliferative/myelodysplastic disease caused by upregulated RAS signalling, defining an atypical form of this haematological disorder rapidly progressing to acute myeloid leukaemia. Two of the three identified mutations affected known oncogenic hotspots of RAS genes and conferred variably enhanced RRAS function and stimulus-dependent MAPK activation. Expression of an RRAS mutant homolog in Caenorhabditis elegans enhanced RAS signalling and engendered protruding vulva, a phenotype previously linked to the RASopathy-causing SHOC2(S2G) mutant. Overall, these findings provide evidence of a functional link between RRAS and MAPK signalling and reveal an unpredicted role of enhanced RRAS function in human disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddu148DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103678PMC
August 2014

Breakpoint-specific multiplex polymerase chain reaction allows the detection of IKZF1 intragenic deletions and minimal residual disease monitoring in B-cell precursor acute lymphoblastic leukemia.

Haematologica 2013 Apr 12;98(4):597-601. Epub 2012 Oct 12.

Département de Génétique, UF de Génétique Moléculaire, Hôpital Robert Debré, APHP, Paris, France.

Deletion of the Ikaros (IKZF1) gene is an oncogenic lesion frequently associated with BCR-ABL1-positive acute lymphoblastic leukemias. It is also found in a fraction of BCR-ABL1-negative B-cell precursor acute lymphoblastic leukemias, and early studies showed it was associated with a higher risk of relapse. Therefore, screening tools are needed for evaluation in treatment protocols and possible inclusion in risk stratification. Besides monosomy 7 and large 7p abnormalities encompassing IKZF1, most IKZF1 alterations are short, intragenic deletions. Based on cohorts of patients, we mapped the microdeletion breakpoints and developed a breakpoint-specific fluorescent multiplex polymerase chain reaction that allows detection of recurrent intragenic deletions. This sensitive test could also detect IKZF1 subclonal deletions, whose prognostic significance should be evaluated. Moreover, we show that consensus breakpoint sequences can be used as clonal markers to monitor minimal residual disease. This paper could be useful for translational studies and in clinical management of BCP-ALL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3324/haematol.2012.073965DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659991PMC
April 2013
-->