Publications by authors named "Audrey Y Chu"

77 Publications

Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits.

Nat Hum Behav 2021 Aug 23. Epub 2021 Aug 23.

Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.

Dietary intake is a major contributor to the global obesity epidemic and represents a complex behavioural phenotype that is partially affected by innate biological differences. Here, we present a multivariate genome-wide association analysis of overall variation in dietary intake to account for the correlation between dietary carbohydrate, fat and protein in 282,271 participants of European ancestry from the UK Biobank (n = 191,157) and Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (n = 91,114), and identify 26 distinct genome-wide significant loci. Dietary intake signals map exclusively to specific brain regions and are enriched for genes expressed in specialized subtypes of GABAergic, dopaminergic and glutamatergic neurons. We identified two main clusters of genetic variants for overall variation in dietary intake that were differently associated with obesity and coronary artery disease. These results enhance the biological understanding of interindividual differences in dietary intake by highlighting neural mechanisms, supporting functional follow-up experiments and possibly providing new avenues for the prevention and treatment of prevalent complex metabolic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-021-01182-wDOI Listing
August 2021

The trans-ancestral genomic architecture of glycemic traits.

Nat Genet 2021 06 31;53(6):840-860. Epub 2021 May 31.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.

Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 × 10), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00852-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610958PMC
June 2021

Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline.

Kidney Int 2021 04 31;99(4):926-939. Epub 2020 Oct 31.

Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA.

Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25% or more and eGFRcrea under 60 mL/min/1.73m at follow-up among those with eGFRcrea 60 mL/min/1.73m or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or LARP4B. Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.kint.2020.09.030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8010357PMC
April 2021

Target genes, variants, tissues and transcriptional pathways influencing human serum urate levels.

Nat Genet 2019 10 2;51(10):1459-1474. Epub 2019 Oct 2.

Department of Neurobiology, Care Sciences and Society, Division of Family Medicine and Primary Care, Karolinska Institutet, Stockholm, Sweden.

Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0504-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6858555PMC
October 2019

Genome-wide association meta-analyses and fine-mapping elucidate pathways influencing albuminuria.

Nat Commun 2019 09 11;10(1):4130. Epub 2019 Sep 11.

Department of Medicine, Division of Nephrology and Hypertension, University of Utah, Salt Lake City, UT, USA.

Increased levels of the urinary albumin-to-creatinine ratio (UACR) are associated with higher risk of kidney disease progression and cardiovascular events, but underlying mechanisms are incompletely understood. Here, we conduct trans-ethnic (n = 564,257) and European-ancestry specific meta-analyses of genome-wide association studies of UACR, including ancestry- and diabetes-specific analyses, and identify 68 UACR-associated loci. Genetic correlation analyses and risk score associations in an independent electronic medical records database (n = 192,868) reveal connections with proteinuria, hyperlipidemia, gout, and hypertension. Fine-mapping and trans-Omics analyses with gene expression in 47 tissues and plasma protein levels implicate genes potentially operating through differential expression in kidney (including TGFB1, MUC1, PRKCI, and OAF), and allow coupling of UACR associations to altered plasma OAF concentrations. Knockdown of OAF and PRKCI orthologs in Drosophila nephrocytes reduces albumin endocytosis. Silencing fly PRKCI further impairs slit diaphragm formation. These results generate a priority list of genes and pathways for translational research to reduce albuminuria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-11576-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6739370PMC
September 2019

Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study.

Diabetes 2019 12 10;68(12):2315-2326. Epub 2019 Sep 10.

MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, U.K.

Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to , , and ). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at , with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db18-0290DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868468PMC
December 2019

Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis.

BMJ 2019 07 25;366:l4292. Epub 2019 Jul 25.

Objective: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.

Design: Individual participant data meta-analysis.

Data Sources: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.

Review Methods: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.

Results: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I=7.1%, τ=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I=18.0%, τ=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I=58.8%, τ=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I=25.9%, τ=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.

Conclusions: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.l4292DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652797PMC
July 2019

An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis.

Nat Commun 2019 06 13;10(1):2581. Epub 2019 Jun 13.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA.

Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-019-10487-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565679PMC
June 2019

A catalog of genetic loci associated with kidney function from analyses of a million individuals.

Nat Genet 2019 06 31;51(6):957-972. Epub 2019 May 31.

Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden.

Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0407-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6698888PMC
June 2019

Group IIA Secretory Phospholipase A, Vascular Inflammation, and Incident Cardiovascular Disease.

Arterioscler Thromb Vasc Biol 2019 06;39(6):1182-1190

From the Center for Lipid Metabolomics, Division of Preventive Medicine (A.O.A., P.R.L., R.J.G., P.M.R., D.I.C., S.M.), Department of Medicine, Brigham and Women's Hospital, Boston, MA.

Objective- Inflammation is a causal risk factor for cardiovascular disease (CVD). sPLA-IIA (group IIA secretory phospholipase A) plays an integral role in regulating vascular inflammation. Although studies investigated sPLA-IIA in secondary prevention, we prospectively evaluated sPLA-IIA mass and genetic variants with CVD events in a primary prevention population with chronic inflammation. Approach and Results- The JUPITER trial (Justification for the Use of Statins in Prevention: An Intervention Trial Evaluating Rosuvastatin) randomized participants with LDL (low-density lipoprotein) <130 mg/dL and hsCRP (high-sensitivity C-reactive protein) ≥2 mg/L to high-intensity rosuvastatin versus placebo. Baseline and 1-year plasma sPLA-IIA mass was measured (N=11 269 baseline; N=9620 1 year). We also identified genetic variants influencing sPLA-IIA using genome-wide association and examined them with CVD. Three hundred thirteen incident CVD events occurred during follow-up. Baseline sPLA-IIA mass (median, 25th-75th percentile: 3.81, 2.49-6.03 ng/mL) was associated with increased risk of CVD: risk factor-adjusted hazard ratio (95% CI; P) per SD increment: 1.22 (1.08-1.38; P=0.002). This remained significant (1.18; 1.04-1.35; P=0.01) after incrementally adjusting for hsCRP. Similar estimates were observed in rosuvastatin and placebo groups ( P treatment interaction>0.05). The rs11573156C variant in PLA2G2A (encoding sPLA-IIA) had the strongest effect on sPLA-II: median (25th-75th percentile, ng/mL) for CC and GG genotypes: 2.79 (1.97-4.01) and 7.38 (5.38-10.19), respectively; and had nonsignificant trend for higher CVD risk (hazard ratio, 1.11; 95% CI, 0.89-1.38; P=0.34). Conclusions- In the JUPITER population recruited on chronic inflammation, sPLA-IIA mass was associated with CVD risk relating to vascular inflammation not fully reflected by hsCRP. Additional studies, including larger functional genetic and clinical studies, are needed to determine whether sPLA-IIA may be a potential pharmacological target for primary prevention of CVD. Clinical Trial Registration- URL: http://www.clinicaltrials.gov . Unique identifier: NCT00239681.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.118.311894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6534275PMC
June 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.

Am J Hum Genet 2019 01 27;104(1):112-138. Epub 2018 Dec 27.

School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323610PMC
January 2019

Large-scale whole-exome sequencing association studies identify rare functional variants influencing serum urate levels.

Nat Commun 2018 10 12;9(1):4228. Epub 2018 Oct 12.

UTHealth School of Public Health, Houston, Texas, 77030, USA.

Elevated serum urate levels can cause gout, an excruciating disease with suboptimal treatment. Previous GWAS identified common variants with modest effects on serum urate. Here we report large-scale whole-exome sequencing association studies of serum urate and kidney function among ≤19,517 European ancestry and African-American individuals. We identify aggregate associations of low-frequency damaging variants in the urate transporters SLC22A12 (URAT1; p = 1.3 × 10) and SLC2A9 (p = 4.5 × 10). Gout risk in rare SLC22A12 variant carriers is halved (OR = 0.5, p = 4.9 × 10). Selected rare variants in SLC22A12 are validated in transport studies, confirming three as loss-of-function (R325W, R405C, and T467M) and illustrating the therapeutic potential of the new URAT1-blocker lesinurad. In SLC2A9, mapping of rare variants of large effects onto the predicted protein structure reveals new residues that may affect urate binding. These findings provide new insights into the genetic architecture of serum urate, and highlight molecular targets in SLC22A12 and SLC2A9 for lowering serum urate and preventing gout.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-018-06620-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6185909PMC
October 2018

Integrating genetic, transcriptional, and biological information provides insights into obesity.

Int J Obes (Lond) 2019 03 19;43(3):457-467. Epub 2018 Sep 19.

Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA.

Objective: Indices of body fat distribution are heritable, but few genetic signals have been reported from genome-wide association studies (GWAS) of computed tomography (CT) imaging measurements of body fat distribution. We aimed to identify genes associated with adiposity traits and the key drivers that are central to adipose regulatory networks.

Subjects: We analyzed gene transcript expression data in blood from participants in the Framingham Heart Study, a large community-based cohort (n up to 4303), as well as implemented an integrative analysis of these data and existing biological information.

Results: Our association analyses identified unique and common gene expression signatures across several adiposity traits, including body mass index, waist-hip ratio, waist circumference, and CT-measured indices, including volume and quality of visceral and subcutaneous adipose tissues. We identified six enriched KEGG pathways and two co-expression modules for further exploration of adipose regulatory networks. The integrative analysis revealed four gene sets (Apoptosis, p53 signaling pathway, Proteasome, Ubiquitin-mediated proteolysis) and two co-expression modules with significant genetic variants and 94 key drivers/genes whose local networks were enriched with adiposity-associated genes, suggesting that these enriched pathways or modules have genetic effects on adiposity. Most identified key driver genes are involved in essential biological processes such as controlling cell cycle, DNA repair, and degradation of regulatory proteins are cancer related.

Conclusions: Our integrative analysis of genetic, transcriptional, and biological information provides a list of compelling candidates for further follow-up functional studies to uncover the biological mechanisms underlying obesity. These candidates highlight the value of examining CT-derived and central adiposity traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41366-018-0190-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6405310PMC
March 2019

Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium.

Mol Psychiatry 2019 12 9;24(12):1920-1932. Epub 2018 Jul 9.

Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0079-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896PMC
December 2019

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Nat Genet 2018 04 9;50(4):559-571. Epub 2018 Apr 9.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0084-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898373PMC
April 2018

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018

Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 01 22;50(1):26-41. Epub 2017 Dec 22.

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-017-0011-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945951PMC
January 2018

Genome-wide association meta-analysis of fish and EPA+DHA consumption in 17 US and European cohorts.

PLoS One 2017 13;12(12):e0186456. Epub 2017 Dec 13.

Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States of America.

Background: Regular fish and omega-3 consumption may have several health benefits and are recommended by major dietary guidelines. Yet, their intakes remain remarkably variable both within and across populations, which could partly owe to genetic influences.

Objective: To identify common genetic variants that influence fish and dietary eicosapentaenoic acid plus docosahexaenoic acid (EPA+DHA) consumption.

Design: We conducted genome-wide association (GWA) meta-analysis of fish (n = 86,467) and EPA+DHA (n = 62,265) consumption in 17 cohorts of European descent from the CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) Consortium Nutrition Working Group. Results from cohort-specific GWA analyses (additive model) for fish and EPA+DHA consumption were adjusted for age, sex, energy intake, and population stratification, and meta-analyzed separately using fixed-effect meta-analysis with inverse variance weights (METAL software). Additionally, heritability was estimated in 2 cohorts.

Results: Heritability estimates for fish and EPA+DHA consumption ranged from 0.13-0.24 and 0.12-0.22, respectively. A significant GWA for fish intake was observed for rs9502823 on chromosome 6: each copy of the minor allele (FreqA = 0.015) was associated with 0.029 servings/day (~1 serving/month) lower fish consumption (P = 1.96x10-8). No significant association was observed for EPA+DHA, although rs7206790 in the obesity-associated FTO gene was among top hits (P = 8.18x10-7). Post-hoc calculations demonstrated 95% statistical power to detect a genetic variant associated with effect size of 0.05% for fish and 0.08% for EPA+DHA.

Conclusions: These novel findings suggest that non-genetic personal and environmental factors are principal determinants of the remarkable variation in fish consumption, representing modifiable targets for increasing intakes among all individuals. Genes underlying the signal at rs72838923 and mechanisms for the association warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186456PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5728559PMC
January 2018

Epigenome-wide association studies identify DNA methylation associated with kidney function.

Nat Commun 2017 11 3;8(1):1286. Epub 2017 Nov 3.

Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.

Chronic kidney disease (CKD) is defined by reduced estimated glomerular filtration rate (eGFR). Previous genetic studies have implicated regulatory mechanisms contributing to CKD. Here we present epigenome-wide association studies of eGFR and CKD using whole-blood DNA methylation of 2264 ARIC Study and 2595 Framingham Heart Study participants to identify epigenetic signatures of kidney function. Of 19 CpG sites significantly associated (P < 1e-07) with eGFR/CKD and replicated, five also associate with renal fibrosis in biopsies from CKD patients and show concordant DNA methylation changes in kidney cortex. Lead CpGs at PTPN6/PHB2, ANKRD11, and TNRC18 map to active enhancers in kidney cortex. At PTPN6/PHB2 cg19942083, methylation in kidney cortex associates with lower renal PTPN6 expression, higher eGFR, and less renal fibrosis. The regions containing the 243 eGFR-associated (P < 1e-05) CpGs are significantly enriched for transcription factor binding sites of EBF1, EP300, and CEBPB (P < 5e-6). Our findings highlight kidney function associated epigenetic variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-01297-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5668367PMC
November 2017

Exome-wide association study of plasma lipids in >300,000 individuals.

Nat Genet 2017 Dec 30;49(12):1758-1766. Epub 2017 Oct 30.

Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.

We screened variants on an exome-focused genotyping array in >300,000 participants (replication in >280,000 participants) and identified 444 independent variants in 250 loci significantly associated with total cholesterol (TC), high-density-lipoprotein cholesterol (HDL-C), low-density-lipoprotein cholesterol (LDL-C), and/or triglycerides (TG). At two loci (JAK2 and A1CF), experimental analysis in mice showed lipid changes consistent with the human data. We also found that: (i) beta-thalassemia trait carriers displayed lower TC and were protected from coronary artery disease (CAD); (ii) excluding the CETP locus, there was not a predictable relationship between plasma HDL-C and risk for age-related macular degeneration; (iii) only some mechanisms of lowering LDL-C appeared to increase risk for type 2 diabetes (T2D); and (iv) TG-lowering alleles involved in hepatic production of TG-rich lipoproteins (TM6SF2 and PNPLA3) tracked with higher liver fat, higher risk for T2D, and lower risk for CAD, whereas TG-lowering alleles involved in peripheral lipolysis (LPL and ANGPTL4) had no effect on liver fat but decreased risks for both T2D and CAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3977DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5709146PMC
December 2017

Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis.

PLoS Med 2017 Sep 12;14(9):e1002383. Epub 2017 Sep 12.

William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.

Background: Glycated hemoglobin (HbA1c) is used to diagnose type 2 diabetes (T2D) and assess glycemic control in patients with diabetes. Previous genome-wide association studies (GWAS) have identified 18 HbA1c-associated genetic variants. These variants proved to be classifiable by their likely biological action as erythrocytic (also associated with erythrocyte traits) or glycemic (associated with other glucose-related traits). In this study, we tested the hypotheses that, in a very large scale GWAS, we would identify more genetic variants associated with HbA1c and that HbA1c variants implicated in erythrocytic biology would affect the diagnostic accuracy of HbA1c. We therefore expanded the number of HbA1c-associated loci and tested the effect of genetic risk-scores comprised of erythrocytic or glycemic variants on incident diabetes prediction and on prevalent diabetes screening performance. Throughout this multiancestry study, we kept a focus on interancestry differences in HbA1c genetics performance that might influence race-ancestry differences in health outcomes.

Methods & Findings: Using genome-wide association meta-analyses in up to 159,940 individuals from 82 cohorts of European, African, East Asian, and South Asian ancestry, we identified 60 common genetic variants associated with HbA1c. We classified variants as implicated in glycemic, erythrocytic, or unclassified biology and tested whether additive genetic scores of erythrocytic variants (GS-E) or glycemic variants (GS-G) were associated with higher T2D incidence in multiethnic longitudinal cohorts (N = 33,241). Nineteen glycemic and 22 erythrocytic variants were associated with HbA1c at genome-wide significance. GS-G was associated with higher T2D risk (incidence OR = 1.05, 95% CI 1.04-1.06, per HbA1c-raising allele, p = 3 × 10-29); whereas GS-E was not (OR = 1.00, 95% CI 0.99-1.01, p = 0.60). In Europeans and Asians, erythrocytic variants in aggregate had only modest effects on the diagnostic accuracy of HbA1c. Yet, in African Americans, the X-linked G6PD G202A variant (T-allele frequency 11%) was associated with an absolute decrease in HbA1c of 0.81%-units (95% CI 0.66-0.96) per allele in hemizygous men, and 0.68%-units (95% CI 0.38-0.97) in homozygous women. The G6PD variant may cause approximately 2% (N = 0.65 million, 95% CI 0.55-0.74) of African American adults with T2D to remain undiagnosed when screened with HbA1c. Limitations include the smaller sample sizes for non-European ancestries and the inability to classify approximately one-third of the variants. Further studies in large multiethnic cohorts with HbA1c, glycemic, and erythrocytic traits are required to better determine the biological action of the unclassified variants.

Conclusions: As G6PD deficiency can be clinically silent until illness strikes, we recommend investigation of the possible benefits of screening for the G6PD genotype along with using HbA1c to diagnose T2D in populations of African ancestry or groups where G6PD deficiency is common. Screening with direct glucose measurements, or genetically-informed HbA1c diagnostic thresholds in people with G6PD deficiency, may be required to avoid missed or delayed diagnoses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1002383DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5595282PMC
September 2017

Atherogenic Lipoprotein Determinants of Cardiovascular Disease and Residual Risk Among Individuals With Low Low-Density Lipoprotein Cholesterol.

J Am Heart Assoc 2017 Jul 21;6(7). Epub 2017 Jul 21.

Center for Lipid Metabolomics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

Background: Levels of LDL (low-density lipoprotein) cholesterol in the population are declining, and increasing attention is being focused on residual lipid-related pathways of atherosclerotic cardiovascular disease risk beyond LDL cholesterol. Among individuals with low (<130 mg/dL) LDL cholesterol, we undertook detailed profiling of circulating atherogenic lipoproteins in relation to incident cardiovascular disease in 2 populations.

Methods And Results: We performed proton nuclear magnetic resonance spectroscopy to quantify concentrations of LDL and VLDL (very low-density lipoprotein) particle subclasses in 11 984 JUPITER trial participants (NCT00239681). Adjusted Cox models examined cardiovascular disease risk associated with lipoprotein measures according to treatment allocation. Risk (adjusted hazard ratio [95%CI] per SD increment) among placebo-allocated participants was associated with total LDL particles (1.19 [1.02, 1.38]) and total VLDL particles (1.21 [1.04, 1.41]), as well as apolipoprotein B, non-high-density lipoprotein cholesterol, and triglycerides, but not LDL-c. Rosuvastatin reduced LDL measures but had variable effects on triglyceride and VLDL measures. On-statin levels of the smallest VLDL particle subclass were associated with a 68% per-SD (adjusted hazard ratio 1.68 [1.28, 2.22]) increase in residual risk-this risk was related to VLDL cholesterol and not triglyceride or larger VLDL particles. There was evidence that residual risk prediction during statin therapy could be significantly improved through the inclusion of key VLDL measures (Harrell C-index 0.780 versus 0.712; <0.0001). In an independent, prospective cohort of 4721 individuals referred for cardiac catheterization (CATHGEN), similar patterns of lipoprotein-related risk were observed.

Conclusions: Atherogenic lipoprotein particle concentrations were associated with cardiovascular disease risk when LDL cholesterol was low. VLDL lipoproteins, particularly the smallest remnant subclass, may represent unused targets for risk prediction and potential therapeutic intervention for reducing residual risk.

Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT00239681.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/JAHA.117.005549DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5586287PMC
July 2017

Ranking and characterization of established BMI and lipid associated loci as candidates for gene-environment interactions.

PLoS Genet 2017 Jun 14;13(6):e1006812. Epub 2017 Jun 14.

Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada.

Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman's ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman's ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann-Whitney = 1.46×10-5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10-9 and 8.52×10-7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006812DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5489225PMC
June 2017

1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function.

Sci Rep 2017 04 28;7:45040. Epub 2017 Apr 28.

Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.

HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep45040DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408227PMC
April 2017

Genome-wide physical activity interactions in adiposity - A meta-analysis of 200,452 adults.

PLoS Genet 2017 Apr 27;13(4):e1006528. Epub 2017 Apr 27.

Estonian Genome Center, University of Tartu, Tartu, Estonia.

Physical activity (PA) may modify the genetic effects that give rise to increased risk of obesity. To identify adiposity loci whose effects are modified by PA, we performed genome-wide interaction meta-analyses of BMI and BMI-adjusted waist circumference and waist-hip ratio from up to 200,452 adults of European (n = 180,423) or other ancestry (n = 20,029). We standardized PA by categorizing it into a dichotomous variable where, on average, 23% of participants were categorized as inactive and 77% as physically active. While we replicate the interaction with PA for the strongest known obesity-risk locus in the FTO gene, of which the effect is attenuated by ~30% in physically active individuals compared to inactive individuals, we do not identify additional loci that are sensitive to PA. In additional genome-wide meta-analyses adjusting for PA and interaction with PA, we identify 11 novel adiposity loci, suggesting that accounting for PA or other environmental factors that contribute to variation in adiposity may facilitate gene discovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006528DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5407576PMC
April 2017
-->