Publications by authors named "Arushi Biswas"

2 Publications

  • Page 1 of 1

An Accessible Laparoscope for Surgery in Low- and Middle- Income Countries.

Ann Biomed Eng 2021 Jul 8;49(7):1657-1669. Epub 2021 Mar 8.

Duke Global Health Institute, Durham, NC, USA.

Laparoscopic surgery is the standard of care in high-income countries for many procedures in the chest and abdomen. It avoids large incisions by using a tiny camera and fine instruments manipulated through keyhole incisions, but it is generally unavailable in low- and middle-income countries (LMICs) due to the high cost of installment, lack of qualified maintenance personnel, unreliable electricity, and shortage of consumable items. Patients in LMICs would benefit from laparoscopic surgery, as advantages include decreased pain, improved recovery time, fewer wound infections, and shorter hospital stays. To address this need, we developed an accessible laparoscopic system, called the ReadyView laparoscope for use in LMICs. The device includes an integrated camera and LED light source that can be displayed on any monitor. The ReadyView laparoscope was evaluated with standard optical imaging targets to determine its performance against a state-of-the-art commercial laparoscope. The ReadyView laparoscope has a comparable resolving power, lens distortion, field of view, depth of field, and color reproduction accuracy to a commercially available endoscope, particularly at shorter, commonly-used working distances (3-5 cm). Additionally, the ReadyView has a cooler temperature profile, decreasing the risk for tissue injury and operating room fires. The ReadyView features a waterproof design, enabling sterilization by submersion, as commonly performed in LMICs. A custom desktop software was developed to view the video on a laptop computer with a frame rate greater than 30 frames per second and to white balance the image, which is critical for clinical use. The ReadyView laparoscope is capable of providing the image quality and overall performance needed for laparoscopic surgery. This portable low-cost system is well suited to increase access to laparoscopic surgery in LMICs.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
July 2021

Multidisciplinary Development of a Low-Cost Gastroschisis Silo for Use in Sub-Saharan Africa.

J Surg Res 2020 11 6;255:565-574. Epub 2020 Jul 6.

Department of Surgery, Duke University, Durham, North Carolina; Duke Global Health Institute, Duke University, Durham, North Carolina. Electronic address:

Background: Gastroschisis silos are often unavailable in sub-Saharan Africa (SSA), contributing to high mortality. We describe a collaboration between engineers and surgeons in the United States and Uganda to develop a silo from locally available materials.

Methods: Design criteria included the following: < $5 cost, 5 ± 0.25 cm opening diameter, deformability of the opening construct, ≥ 500 mL volume, ≥ 30 N tensile strength, no statistical difference in the leakage rate between the low-cost silo and preformed silo, ease of manufacturing, and reusability. Pugh scoring matrices were used to assess designs. Materials considered included the following: urine collection bags, intravenous bags, or zipper storage bags for the silo and female condom rings or O-rings for the silo opening construct. Silos were assembled with clothing irons and sewn with thread. Colleagues in Uganda, Malawi, Tanzania, and Kenya investigated material cost and availability.

Results: Urine collection bags and female condom rings were chosen as the most accessible materials. Silos were estimated to cost < $1 in SSA. Silos yielded a diameter of 5.01 ± 0.11 cm and a volume of 675 ± 7 mL. The iron + sewn seal, sewn seal, and ironed seal on the silos yielded tensile strengths of 31.1 ± 5.3 N, 30.1 ± 2.9 N, and 14.7 ± 2.4 N, respectively, compared with the seal of the current standard-of-care silo of 41.8 ± 6.1 N. The low-cost silos had comparable leakage rates along the opening and along the seal with the spring-loaded preformed silo. The silos were easily constructed by biomedical engineering students within 15 min. All silos were able to be sterilized by submersion.

Conclusions: A low-cost gastroschisis silo was constructed from materials locally available in SSA. Further in vivo and clinical studies are needed to determine if mortality can be improved with this design.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2020