Publications by authors named "Artem S Minin"

8 Publications

  • Page 1 of 1

Smart Design of a pH-Responsive System Based on pHLIP-Modified Magnetite Nanoparticles for Tumor MRI.

ACS Appl Mater Interfaces 2021 Aug 29;13(31):36800-36815. Epub 2021 Jul 29.

Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 620108 Yekaterinburg, Russia.

Magnetic FeO nanoparticles (MNPs) are often used to design agents enhancing contrast in magnetic resonance imaging (MRI) that can be considered as one of the efficient methods for cancer diagnostics. At present, increasing the specificity of the MRI contrast agent accumulation in tumor tissues remains an open question and attracts the attention of a wide range of researchers. One of the modern methods for enhancing the efficiency of contrast agents is the use of molecules for tumor acidic microenvironment targeting, for example, pH-low insertion peptide (pHLIP). We designed novel organosilicon MNPs covered with poly(ethylene glycol) (PEG) and covalently modified by pHLIP. To study the specific features of the binding of pHLIP-modified MNPs to cells, we also obtained nanoconjugates with Cy5 fluorescent dye embedded in the SiO shell. The nanoconjugates obtained were characterized by transmission electron microscopy (TEM), attenuated total reflection (ATR), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), dynamic light scattering (DLS), UV and fluorescence spectrometry, thermogravimetric analysis (TGA), CHN elemental analyses, and vibrating sample magnetometry. Low cytotoxicity and high specificity of cellular uptake of pHLIP-modified MNPs at pH 6.4 versus 7.4 (up to 23-fold) were demonstrated in vitro. The dynamics of the nanoconjugate accumulation in the 4T1 breast cancer orthotopically grown in BALB/c mice and MDA-MB231 xenografts was evaluated in MRI experiments. Biodistribution and biocompatibility studies of the obtained nanoconjugate showed no pathological change in organs and in the blood biochemical parameters of mice after MNP administration. A high accumulation rate of pHLIP-modified MNPs in tumor compared with PEGylated MNPs after their intravenous administration was demonstrated. Thus, we propose a promising approach to design an MRI agent with the tumor acidic microenvironment targeting ability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c07748DOI Listing
August 2021

Two Approaches for the Synthesis of Fused Dihydropyridines via a 1,6-Electrocyclic Reaction: Fluorescent Properties and Prospects for Application.

J Org Chem 2020 11 27;85(21):13837-13852. Epub 2020 Oct 27.

Ural Federal University, 19 Mira Street, Yekaterinburg 620002, Russian Federation.

Reactions of penta-2,4-dienethioamides with acetylenedicarboxylic acid, methyl and ethyl esters, and methyl propiolate were systematically studied, and a number of new 2,3-dihydro-5-thiazolo[3,2-]pyridines (DTPs) and 4,6-pyrido[2,1-][1,3]thiazines (PTZs) were prepared. A possible mechanism for a multistep domino transformation is suggested, and the key step is the 1,6-electrocyclic reaction. An additional alternative method for the synthesis of new heterocyclic systems was achieved. Evidence of the electrocyclic mechanism of a key step was collected from the analysis of the spatial structure of the synthesized bicyclic nonaromatic pyridines by X-ray diffraction and quantum chemical calculations, as well as from the thermodynamic quantities. DTPs exhibited yellow fluorescence in solution and yellow to red emissions in the solid state. Biological investigations demonstrated the ability of DTPs to penetrate living and fixed cells and presumably accumulate in lysosomes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.0c01934DOI Listing
November 2020

Variation in tumor pH affects pH-triggered delivery of peptide-modified magnetic nanoparticles.

Nanomedicine 2021 02 21;32:102317. Epub 2020 Oct 21.

Siberian State Medical University, Tomsk, Russia.

Acidification of the extracellular matrix, an intrinsic characteristic of many solid tumors, is widely exploited for physiologically triggered delivery of contrast agents, drugs, and nanoparticles to tumor. However, pH of tumor microenvironment shows intra- and inter-tumor variation. Herein, we investigate the impact of this variation on pH-triggered delivery of magnetic nanoparticles (MNPs) modified with pH-(low)-insertion peptide (pHLIP). Fluorescent flow cytometry, laser confocal scanning microscopy and transmission electron microscopy data proved that pHLIP-conjugated MNPs interacted with 4T1 cells in two-dimensional culture and in spheroids more effectively at pH 6.4 than at pH 7.2, and entered the cell via clathrin-independent endocytosis. The accumulation efficiency of pHLIP-conjugated MNPs in 4T1 tumors after their intravenous injection, monitored in vivo by magnetic resonance imaging, showed variation. Analysis of the tumor pH profiles recorded with implementation of original nanoprobe pH sensor, revealed obvious correlation between pH measured in the tumor with the amount of accumulated MNPs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nano.2020.102317DOI Listing
February 2021

L-Lysine-modified FeO nanoparticles for magnetic cell labeling.

Colloids Surf B Biointerfaces 2020 Jun 19;190:110879. Epub 2020 Feb 19.

Postovsky Institute of Organic Synthesis, Russian Academy of Sciences (Ural Branch), 22 S. Kovalevskoy St., Yekaterinburg, 620990, Russia; Institute of Chemical Engineering, Ural Federal University, 19 Mira St., Yekaterinburg, 620002, Russia.

The efficiency of magnetic labeling with L-Lys-modified FeO magnetic nanoparticles (MNPs) and the stability of magnetization of rat adipose-derived mesenchymal stem cells, lineage-negative (Lin(-)) hematopoietic progenitor cells from mouse bone marrow and human leukemia K562 cells were studied. For this purpose, covalent modification of MNPs with 3-aminopropylsilane and N-di-Fmoc-L-lysine followed by removal of N-protecting groups was carried out. Since the degree of hydroxylation of the surface of the starting nanoparticles plays a crucial role in the silanization reaction and the possibility of obtaining stable colloidal solutions. In present work we for the first time performed a comparative qualitative and quantitative evaluation of the number of adsorbed water molecules and hydroxyl groups on the surface of chemically and physically obtained FeO MNPs using comprehensive FTIR spectroscopy and thermogravimetric analysis. The results obtained can be further used for magnetic labeling of cells in experiments in vitro and in vivo.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2020.110879DOI Listing
June 2020

Supporting data and methods for the characterization of iron oxide nanoparticles conjugated with pH-(low)-insertion peptide, testing their cytotoxicity and analyses of biodistribution in SCID mice bearing MDA-MB231 tumor.

Data Brief 2020 Apr 31;29:105062. Epub 2019 Dec 31.

Postovsky Institute of Organic Synthesis UB RAS, 22, S. Kovalevskaya St., 620990, Yekaterinburg, Russia.

The method of FeO magnetic nanoparticle synthesis by co-precipitation, modification by 3-aminopropylsilane and conjugation with pH-(low)-insertion peptide (pHLIP) is reported. The characterization of nanoparticles by scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, elemental and thermogravimetric analyses as well as dynamic light scattering and z-potential measurements is provided. The effect of nanoparticles on the viability of mouse and human peripheral blood mononuclear cells is tested by flow cytometry. The experimental details of nanoparticle administration to tumor-bearing mice, magnetic resonance imaging scanning as well as subsequent tumor sample collection and their processing for transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, histological and immunohistochemical analyses are described. Biodistribution of the nanoparticles in mice and blood serum analysis data for experimental animals are given. The data are useful for an experiment workflow design and for the development of theranostic systems based on magnetic nanoparticles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dib.2019.105062DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6971337PMC
April 2020

Recruitment of macrophages and bone marrow stem cells to regenerating liver promoted by sodium phthalhydrazide in mice.

Biomed Pharmacother 2019 Feb 8;110:594-601. Epub 2018 Dec 8.

Institute of Immunopathology and Preventive Medicine, Povsetova ulica 29, 1000 Lublana, Slovenia. Electronic address:

Pharmacological interventions which could be hepatoprotective, depending on bioavailability, anti-inflammatory and macrophage-targeting potential of drugs, are still at early preclinical stages. Existing evidence from many animal models of liver injury, as well as from human data, indicate that pharmacological and/or phytochemical interventions have limited impact on liver recovery. Recent studies on stem cell therapies focused on different cell subsets involved in tissue repair, including monocytes/macrophages and bone marrow cells migrating to the injured liver. Partial hepatectomy (PH) resulted in a rapid increase of monocytes/macrophages in bone marrow and liver, which could be further enhanced by prior treatment of animals with sodium phthalhydrazide. Increased number of proliferating Ki67 hepatocytes, increased total protein and albumin content in regenerating liver, recruitment of CD172a macrophages and more differentiated CD45CD117 bone marrow cells, could be further promoted by the treatment of animals with 2 mg/kg b.w. phthalhydrazide, considered immunomodulatory, antioxidant and macrophage-silencing. Phenotypic polarization of macrophages can possibly explain the macrophage reparative capacities, protective against liver injury. Enhanced macrophage cell recruitment from bone marrow to regenerating liver can be possibly one of important events in hepatic recovery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.07.086DOI Listing
February 2019

Fluorescent boron complexes based on new N,O-chelates as promising candidates for flow cytometry.

Org Biomol Chem 2018 07;16(28):5150-5162

Ural Federal University, 19 Mira Str., Yekaterinburg, 620002, Russian Federation.

This study presents the synthesis and optical properties of a new class of bright green-yellow fluorescent dyes with potential applications in bioimaging. A facile synthetic route via the chelation of aryl(hetaryl)aminoacryloylthiophene scaffolds with a BF2 fragment is presented. The photophysical properties of the dyes are attributed to the nature and position of electron-donating and electron-withdrawing substituents. Upon coordination to a BF2 fragment, characteristic emission was observed, with λem ranging from 503 to 543 nm and quantum yields of 0.14-0.42. Compared with parent aryl(hetaryl)aminoacryloylthiophenes, a significant red shift in absorption (up to 480 nm in solution) and emission (up to 543 nm in solution and 610 nm in the solid state) and high chemical stability and photostability were observed. The electron-accepting character of the substituents on the terminal aromatic ring or replacing this fragment with pyridine or pyrazine moieties resulted in increased quantum yields. To gain insight into the electronic structures and optical properties, quantum mechanical calculations were performed. The results of (TD-)DFT calculations supported the structural and spectroscopic data and showed the features of electronic distribution in the frontier molecular orbitals and active electrophilic and nucleophilic sites in the compounds investigated. Synthesized BF2 complexes are promising dyes for cell imaging and flow cytometry owing to their ready penetration and accumulation in cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8ob00868jDOI Listing
July 2018

PMIDA-Modified FeO Magnetic Nanoparticles: Synthesis and Application for Liver MRI.

Langmuir 2018 03 6;34(11):3449-3458. Epub 2018 Mar 6.

Siberian State Medical University , 2 Moskovsky Trakt , 634050 Tomsk , Russia.

The surface modification of FeO-based magnetic nanoparticles (MNPs) with N-(phosphonomethyl)iminodiacetic acid (PMIDA) was studied, and the possibility of their use as magnetic resonance imaging contrast agents was shown. The effect of the added PMIDA amount, the reaction temperature and time on the degree of immobilization of this reagent on MNPs, and the hydrodynamic characteristics of their aqueous colloidal solutions have been systematically investigated for the first time. It has been shown that the optimum condition for the modification of MNPs is the reaction at 40 °C with an equimolar amount of PMIDA for 3.5 h. The modified MNPs were characterized by X-ray diffraction, transmission electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric, and CHN elemental analyses. The dependence of the hydrodynamic characteristics of the MNP colloidal solutions on the concentration and pH of the medium was studied by the dynamic light scattering method. On the basis of the obtained data, we can assume that the PMIDA molecules are fixed on the surface of the MNPs as a monomolecular layer. The modified MNPs had good colloidal stability and high magnetic properties. The calculated relaxivities r and r were 341 and 102 mmol s, respectively. The possibility of using colloidal solutions of PMIDA-modified MNPs as a T contrast agent for liver studies in vivo (at a dose of 0.6 mg kg) was demonstrated for the first time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.7b04023DOI Listing
March 2018
-->