Publications by authors named "Ariel Raskin"

4 Publications

  • Page 1 of 1

Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron.

Nature 2021 Dec 31. Epub 2021 Dec 31.

Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY (ISMMS), New York City, NY, USA.

The Omicron (B.1.1.529) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initially identified in November of 2021 in South Africa and Botswana as well as in a sample from a traveler from South Africa in Hong Kong. Since then, B.1.1.529 has been detected globally. This variant seems to be at least equally infectious than B.1.617.2 (Delta), has already caused super spreader events and has outcompeted Delta within weeks in several countries and metropolitan areas. B.1.1.529 hosts an unprecedented number of mutations in its spike gene and early reports have provided evidence for extensive immune escape and reduced vaccine effectiveness. Here, we investigated the neutralizing and binding activity of sera from convalescent, mRNA double vaccinated, mRNA boosted, convalescent double vaccinated, and convalescent boosted individuals against wild type, B.1.351 and B.1.1.529 SARS-CoV-2 isolates. Neutralizing activity of sera from convalescent and double vaccinated participants was undetectable to very low against B.1.1.529 while neutralizing activity of sera from individuals who had been exposed to spike three or four times was maintained, albeit at significantly reduced levels. Binding to the B.1.1.529 receptor binding domain (RBD) and N-terminal domain (NTD) was reduced in convalescent not vaccinated individuals, but was mostly retained in vaccinated individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
December 2021

Safety and Immunogenicity Analysis of a Newcastle Disease Virus (NDV-HXP-S) Expressing the Spike Protein of SARS-CoV-2 in Sprague Dawley Rats.

Front Immunol 2021 18;12:791764. Epub 2021 Nov 18.

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.

Despite global vaccination efforts, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and spread globally. Relatively high vaccination rates have been achieved in most regions of the United States and several countries worldwide. However, access to vaccines in low- and mid-income countries (LMICs) is still suboptimal. Second generation vaccines that are universally affordable and induce systemic and mucosal immunity are needed. Here we performed an extended safety and immunogenicity analysis of a second-generation SARS-CoV-2 vaccine consisting of a live Newcastle disease virus vector expressing a pre-fusion stabilized version of the spike protein (NDV-HXP-S) administered intranasally (IN), intramuscularly (IM), or IN followed by IM in Sprague Dawley rats. Local reactogenicity, systemic toxicity, and post-mortem histopathology were assessed after the vaccine administration, with no indication of severe local or systemic reactions. Immunogenicity studies showed that the three vaccination regimens tested elicited high antibody titers against the wild type SARS-CoV-2 spike protein and the NDV vector. Moreover, high antibody titers were induced against the spike of B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants of concern (VOCs). Importantly, robust levels of serum antibodies with neutralizing activity against the authentic SARS-CoV-2 USA-WA1/2020 isolate were detected after the boost. Overall, our study expands the pre-clinical safety and immunogenicity characterization of NDV-HXP-S and reinforces previous findings in other animal models about its high immunogenicity. Clinical testing of this vaccination approach is ongoing in different countries including Thailand, Vietnam, Brazil and Mexico.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
January 2022

Evidence for retained spike-binding and neutralizing activity against emerging SARS-CoV-2 variants in serum of COVID-19 mRNA vaccine recipients.

EBioMedicine 2021 Nov 20;73:103626. Epub 2021 Oct 20.

Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pathology, Molecular and Cell Based Medicine Icahn School of Medicine at Mount Sinai, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; The Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA. Electronic address:

Background: Highly efficacious vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been developed. However, the emergence of viral variants that are more infectious than the earlier SARS-CoV-2 strains is concerning. Several of these viral variants have the potential to partially escape neutralizing antibody responses, warranting continued immune-monitoring.

Methods: We used a panel of 30 post-mRNA vaccination sera to determine neutralization and RBD and spike binding activity against a number of emerging viral variants. The virus neutralization was determined using authentic SARS-CoV-2 clinical isolates in an assay format that mimics physiological conditions.

Findings: We tested seven currently circulating viral variants of concern/interest, including the three Iota sublineages, Alpha (E484K), Beta, Delta and Lambda in neutralization assays. We found only small decreases in neutralization against Iota and Delta. The reduction was stronger against a sub-variant of Lambda, followed by Beta and Alpha (E484K). Lambda is currently circulating in parts of Latin America and was detected in Germany, the US and Israel. Of note, reduction in a receptor binding domain and spike binding assay that also included Gamma, Kappa and A.23.1 was negligible.

Interpretation: Taken together, these findings suggest that mRNA SARS-CoV-2 vaccines may remain effective against these viral variants of concern/interest and that spike binding antibody tests likely retain specificity in the face of evolving SARS-CoV-2 diversity.

Funding: This work is part of the PARIS/SPARTA studies funded by the NIAID Collaborative Influenza Vaccine Innovation Centers (CIVIC) contract 75N93019C00051. In addition, this work was also partially funded by the Centers of Excellence for Influenza Research and Surveillance (CEIRS, contract # HHSN272201400008C), the JPB Foundation, the Open Philanthropy Project (research grant 2020-215611 (5384), by anonymous donors and by the Serological Sciences Network (SeroNet) in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024, Task Order No. 75N91020F00003.
View Article and Find Full Text PDF

Download full-text PDF

Source Listing
November 2021