Publications by authors named "Arden Moscati"

33 Publications

The Genetic Architecture of Depression in Individuals of East Asian Ancestry: A Genome-Wide Association Study.

JAMA Psychiatry 2021 Sep 29. Epub 2021 Sep 29.

23andme, Inc, Sunnyvale, California.

Importance: Most previous genome-wide association studies (GWAS) of depression have used data from individuals of European descent. This limits the understanding of the underlying biology of depression and raises questions about the transferability of findings between populations.

Objective: To investigate the genetics of depression among individuals of East Asian and European descent living in different geographic locations, and with different outcome definitions for depression.

Design, Setting, And Participants: Genome-wide association analyses followed by meta-analysis, which included data from 9 cohort and case-control data sets comprising individuals with depression and control individuals of East Asian descent. This study was conducted between January 2019 and May 2021.

Exposures: Associations of genetic variants with depression risk were assessed using generalized linear mixed models and logistic regression. The results were combined across studies using fixed-effects meta-analyses. These were subsequently also meta-analyzed with the largest published GWAS for depression among individuals of European descent. Additional meta-analyses were carried out separately by outcome definition (clinical depression vs symptom-based depression) and region (East Asian countries vs Western countries) for East Asian ancestry cohorts.

Main Outcomes And Measures: Depression status was defined based on health records and self-report questionnaires.

Results: There were a total of 194 548 study participants (approximate mean age, 51.3 years; 62.8% women). Participants included 15 771 individuals with depression and 178 777 control individuals of East Asian descent. Five novel associations were identified, including 1 in the meta-analysis for broad depression among those of East Asian descent: rs4656484 (β = -0.018, SE = 0.003, P = 4.43x10-8) at 1q24.1. Another locus at 7p21.2 was associated in a meta-analysis restricted to geographically East Asian studies (β = 0.028, SE = 0.005, P = 6.48x10-9 for rs10240457). The lead variants of these 2 novel loci were not associated with depression risk in European ancestry cohorts (β = -0.003, SE = 0.005, P = .53 for rs4656484 and β = -0.005, SE = 0.004, P = .28 for rs10240457). Only 11% of depression loci previously identified in individuals of European descent reached nominal significance levels in the individuals of East Asian descent. The transancestry genetic correlation between cohorts of East Asian and European descent for clinical depression was r = 0.413 (SE = 0.159). Clinical depression risk was negatively genetically correlated with body mass index in individuals of East Asian descent (r = -0.212, SE = 0.084), contrary to findings for individuals of European descent.

Conclusions And Relevance: These results support caution against generalizing findings about depression risk factors across populations and highlight the need to increase the ancestral and geographic diversity of samples with consistent phenotyping.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2021.2099DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8482304PMC
September 2021

Myopathic Cardiac Genotypes Increase Risk for Myocarditis.

JACC Basic Transl Sci 2021 Jul 26;6(7):584-592. Epub 2021 Jul 26.

The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Impairments in certain cardiac genes confer risk for myocarditis in children. To determine the extent of this association, we performed genomic sequencing in predominantly adult patients with acute myocarditis and matched control subjects. Putatively deleterious variants in a broad set of cardiac genes were found in 19 of 117 acute myocarditis cases vs 34 of 468 control subjects 0.003). Thirteen genes classically associated with cardiomyopathy or neuromuscular disorders with cardiac involvement were implicated, including >1 associated damaging variant in , and . Phenotypes of subjects who have acute myocarditis with or without deleterious variants were similar, indicating that genetic testing is necessary to differentiate them.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jacbts.2021.06.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326270PMC
July 2021

Rare Coding Variants Associated With Electrocardiographic Intervals Identify Monogenic Arrhythmia Susceptibility Genes: A Multi-Ancestry Analysis.

Circ Genom Precis Med 2021 Aug 28;14(4):e003300. Epub 2021 Jul 28.

Regeneron Genetics Center, Tarrytown, NY. Departments of Medicine, Brigham and Women's Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (S.R.).

Background: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood.

Methods: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval).

Results: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes (, , and ), a controversial monogenic SCD gene (), and novel genes ( and ) involved in cardiac conduction. Loss-of-function and pathogenic variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block (=8.4×10). Similar variants in and (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation (=4×10), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals.

Conclusions: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003300DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373440PMC
August 2021

Burden of Cardiomyopathic Genetic Variation in Lethal Pediatric Myocarditis.

Circ Genom Precis Med 2021 Aug 6;14(4):e003426. Epub 2021 Jul 6.

The Mindich Child Health and Development Institute (A.R.K., N.P., M.S., Y.I., B.D.G.), Icahn School of Medicine at Mount Sinai, New York.

Background: Acute myocarditis (AM) is a well-known cause of sudden death and heart failure, often caused by prevalent viruses. We previously showed that some pediatric AM correlates with putatively damaging variants in genes related to cardiomyocyte structure and function. We sought to evaluate whether deleterious cardiomyopathic variants were enriched among fatal pediatric AM cases in New York City compared with ancestry-matched controls.

Methods: Twenty-four children (aged 3 weeks to 20 years) with death due to AM were identified through autopsy records; histologies were reviewed to confirm that all cases met Dallas criteria for AM and targeted panel sequencing of 57 cardiomyopathic genes was performed. Controls without cardiovascular disease were identified from a pediatric database and matched by genetic ancestry to cases using principal components from exome sequencing. Rates of putative deleterious variations (DV) were compared between cases and controls. Where available, AM tissues underwent viral analysis by polymerase chain reaction.

Results: DV were identified in 4 of 24 AM cases (16.7%), compared with 2 of 96 age and ancestry-matched controls (2.1%, =0.014). Viral causes were proven for 6 of 8 AM cases (75%), including the one DV+ case where tissue was available for testing. DV+ cases were more likely to be female, have no evidence of chronic inflammation, and associate with sudden cardiac death than DV- cases.

Conclusions: Deleterious variants in genes related to cardiomyocyte integrity are more common in children with fatal AM than controls, likely conferring susceptibility. Additionally, genetically mediated AM may progress more rapidly and be more severe.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.121.003426DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373803PMC
August 2021

Toward a fine-scale population health monitoring system.

Cell 2021 04;184(8):2068-2083.e11

Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA. Electronic address:

Understanding population health disparities is an essential component of equitable precision health efforts. Epidemiology research often relies on definitions of race and ethnicity, but these population labels may not adequately capture disease burdens and environmental factors impacting specific sub-populations. Here, we propose a framework for repurposing data from electronic health records (EHRs) in concert with genomic data to explore the demographic ties that can impact disease burdens. Using data from a diverse biobank in New York City, we identified 17 communities sharing recent genetic ancestry. We observed 1,177 health outcomes that were statistically associated with a specific group and demonstrated significant differences in the segregation of genetic variants contributing to Mendelian diseases. We also demonstrated that fine-scale population structure can impact the prediction of complex disease risk within groups. This work reinforces the utility of linking genomic data to EHRs and provides a framework toward fine-scale monitoring of population health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.03.034DOI Listing
April 2021

Chromosome Xq23 is associated with lower atherogenic lipid concentrations and favorable cardiometabolic indices.

Nat Commun 2021 04 12;12(1):2182. Epub 2021 Apr 12.

Division of Cardiology, George Washington University School of Medicine and Healthcare Sciences, Washington, DC, USA.

Autosomal genetic analyses of blood lipids have yielded key insights for coronary heart disease (CHD). However, X chromosome genetic variation is understudied for blood lipids in large sample sizes. We now analyze genetic and blood lipid data in a high-coverage whole X chromosome sequencing study of 65,322 multi-ancestry participants and perform replication among 456,893 European participants. Common alleles on chromosome Xq23 are strongly associated with reduced total cholesterol, LDL cholesterol, and triglycerides (min P = 8.5 × 10), with similar effects for males and females. Chromosome Xq23 lipid-lowering alleles are associated with reduced odds for CHD among 42,545 cases and 591,247 controls (P = 1.7 × 10), and reduced odds for diabetes mellitus type 2 among 54,095 cases and 573,885 controls (P = 1.4 × 10). Although we observe an association with increased BMI, waist-to-hip ratio adjusted for BMI is reduced, bioimpedance analyses indicate increased gluteofemoral fat, and abdominal MRI analyses indicate reduced visceral adiposity. Co-localization analyses strongly correlate increased CHRDL1 gene expression, particularly in adipose tissue, with reduced concentrations of blood lipids.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22339-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8042019PMC
April 2021

Implementing genomic screening in diverse populations.

Genome Med 2021 02 5;13(1):17. Epub 2021 Feb 5.

The Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Population-based genomic screening has the predicted ability to reduce morbidity and mortality associated with medically actionable conditions. However, much research is needed to develop standards for genomic screening and to understand the perspectives of people offered this new testing modality. This is particularly true for non-European ancestry populations who are vastly underrepresented in genomic medicine research. Therefore, we implemented a pilot genomic screening program in the BioMe Biobank in New York City, where the majority of participants are of non-European ancestry.

Methods: We initiated genomic screening for well-established genes associated with hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (LS), and familial hypercholesterolemia (FH). We evaluated and included an additional gene (TTR) associated with hereditary transthyretin amyloidosis (hATTR), which has a common founder variant in African ancestry populations. We evaluated the characteristics of 74 participants who received results associated with these conditions. We also assessed the preferences of 7461 newly enrolled BioMe participants to receive genomic results.

Results: In the pilot genomic screening program, 74 consented participants received results related to HBOC (N = 26), LS (N = 6), FH (N = 8), and hATTR (N = 34). Thirty-three of 34 (97.1%) participants who received a result related to hATTR were self-reported African American/African (AA) or Hispanic/Latinx (HL), compared to 14 of 40 (35.0%) participants who received a result related to HBOC, LS, or FH. Among the 7461 participants enrolled after the BioMe protocol modification to allow the return of genomic results, 93.4% indicated that they would want to receive results. Younger participants, women, and HL participants were more likely to opt to receive results.

Conclusions: The addition of TTR to a pilot genomic screening program meant that we returned results to a higher proportion of AA and HL participants, in comparison with genes traditionally included in genomic screening programs in the USA. We found that the majority of participants in a multi-ethnic biobank are interested in receiving genomic results for medically actionable conditions. These findings increase knowledge about the perspectives of diverse research participants on receiving genomic results and inform the broader implementation of genomic medicine in underrepresented patient populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-021-00832-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7863616PMC
February 2021

Inflamed Ulcerative Colitis Regions Associated With MRGPRX2-Mediated Mast Cell Degranulation and Cell Activation Modules, Defining a New Therapeutic Target.

Gastroenterology 2021 04 6;160(5):1709-1724. Epub 2021 Jan 6.

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York. Electronic address:

Background & Aims: Recent literature has implicated a key role for mast cells in murine models of colonic inflammation, but their role in human ulcerative colitis (UC) is not well established. A major advance has been the identification of mrgprb2 (human orthologue, MRGPX2) as mediating IgE-independent mast cell activation. We sought to define mechanisms of mast cell activation and MRGPRX2 in human UC.

Methods: Colon tissues were collected from patients with UC for bulk RNA sequencing and lamina propria cells were isolated for MRGPRX2 activation studies and single-cell RNA sequencing. Genetic association of all protein-altering G-protein coupled receptor single-nucleotide polymorphism was performed in an Ashkenazi Jewish UC case-control cohort. Variants of MRGPRX2 were transfected into Chinese hamster ovary (CHO) and human mast cell (HMC) 1.1 cells to detect genotype-dependent effects on β-arrestin recruitment, IP-1 accumulation, and phosphorylated extracellular signal-regulated kinase.

Results: Mast cell-specific mediators and adrenomedullin (proteolytic precursor of PAMP-12, an MRGPRX2 agonist) are up-regulated in inflamed compared to uninflamed UC. MRGPRX2 stimulation induces carboxypeptidase secretion from inflamed UC. Of all protein-altering GPCR alleles, a unique variant of MRGPRX2, Asn62Ser, was most associated with and was bioinformatically predicted to alter arrestin recruitment. We validated that the UC protective serine allele enhances β-arrestin recruitment, decreases IP-1, and increases phosphorylated extracellular signal-regulated kinase with MRGPRX2 agonists. Single-cell RNA sequencing defines that adrenomedullin is expressed by activated fibroblasts and epithelial cells and that interferon gamma is a key upstream regulator of mast cell gene expression.

Conclusion: Inflamed UC regions are distinguished by MRGPRX2-mediated activation of mast cells, with decreased activation observed with a UC-protective genetic variant. These results define cell modules of UC activation and a new therapeutic target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.12.076DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8494017PMC
April 2021

Common and Rare Variant Prediction and Penetrance of IBD in a Large, Multi-ethnic, Health System-based Biobank Cohort.

Gastroenterology 2021 04 24;160(5):1546-1557. Epub 2020 Dec 24.

Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York. Electronic address:

Background And Aims: Polygenic risk scores (PRS) may soon be used to predict inflammatory bowel disease (IBD) risk in prevention efforts. We leveraged exome-sequence and single nucleotide polymorphism (SNP) array data from 29,358 individuals in the multiethnic, randomly ascertained health system-based BioMe biobank to define effects of common and rare IBD variants on disease prediction and pathophysiology.

Methods: PRS were calculated from European, African American, and Ashkenazi Jewish (AJ) reference case-control studies, and a meta-GWAS run using all three association datasets. PRS were then combined using regression to assess which combination of scores best predicted IBD status in European, AJ, Hispanic, and African American cohorts in BioMe. Additionally, rare variants were assessed in genes associated with very early-onset IBD (VEO-IBD), by estimating genetic penetrance in each BioMe population.

Results: Combining risk scores based on association data from distinct ancestral populations improved IBD prediction for every population in BioMe and significantly improved prediction among European ancestry UK Biobank individuals. Lower predictive power for non-Europeans was observed, reflecting in part substantially lower African IBD case-control reference sizes. We replicated associations for two VEO-IBD genes, ADAM17 and LRBA, with high dominant model penetrance in BioMe. Autosomal recessive LRBA risk alleles are associated with severe, early-onset autoimmunity; we show that heterozygous carriage of an African-predominant LRBA protein-altering allele is associated with significantly decreased LRBA and CTLA-4 expression with T-cell activation.

Conclusions: Greater genetic diversity in African populations improves prediction across populations, and generalizes some VEO-IBD genes. Increasing African American IBD case-collections should be prioritized to reduce health disparities and enhance pathophysiological insight.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1053/j.gastro.2020.12.034DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8237248PMC
April 2021

Inherited causes of clonal haematopoiesis in 97,691 whole genomes.

Nature 2020 10 14;586(7831):763-768. Epub 2020 Oct 14.

Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.

Age is the dominant risk factor for most chronic human diseases, but the mechanisms through which ageing confers this risk are largely unknown. The age-related acquisition of somatic mutations that lead to clonal expansion in regenerating haematopoietic stem cell populations has recently been associated with both haematological cancer and coronary heart disease-this phenomenon is termed clonal haematopoiesis of indeterminate potential (CHIP). Simultaneous analyses of germline and somatic whole-genome sequences provide the opportunity to identify root causes of CHIP. Here we analyse high-coverage whole-genome sequences from 97,691 participants of diverse ancestries in the National Heart, Lung, and Blood Institute Trans-omics for Precision Medicine (TOPMed) programme, and identify 4,229 individuals with CHIP. We identify associations with blood cell, lipid and inflammatory traits that are specific to different CHIP driver genes. Association of a genome-wide set of germline genetic variants enabled the identification of three genetic loci associated with CHIP status, including one locus at TET2 that was specific to individuals of African ancestry. In silico-informed in vitro evaluation of the TET2 germline locus enabled the identification of a causal variant that disrupts a TET2 distal enhancer, resulting in increased self-renewal of haematopoietic stem cells. Overall, we observe that germline genetic variation shapes haematopoietic stem cell function, leading to CHIP through mechanisms that are specific to clonal haematopoiesis as well as shared mechanisms that lead to somatic mutations across tissues.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-2819-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7944936PMC
October 2020

A genotype-first approach to exploring Mendelian cardiovascular traits with clear external manifestations.

Genet Med 2021 01 29;23(1):94-102. Epub 2020 Sep 29.

Mindich Child Health and Development Institute, Icahn School of Medicine, New York, NY, USA.

Purpose: The purpose of this study is to use a genotype-first approach to explore highly penetrant, autosomal dominant cardiovascular diseases with external features, the RASopathies and Marfan syndrome (MFS), using biobank data.

Methods: This study uses exome sequencing and corresponding phenotypic data from Mount Sinai's BioMe (n = 32,344) and the United Kingdom Biobank (UKBB; n = 49,960). Variant curation identified pathogenic/likely pathogenic (P/LP) variants in RASopathy genes and FBN1.

Results: Twenty-one subjects harbored P/LP RASopathy variants; three (14%) were diagnosed, and another 46% had ≥1 classic Noonan syndrome (NS) feature. Major NS features (short stature [9.5% p = 7e-5] and heart anomalies [19%, p < 1e-5]) were less frequent than expected. Prevalence of hypothyroidism/autoimmune disorders was enriched compared with biobank populations (p = 0.007). For subjects with FBN1 P/LP variants, 14/41 (34%) had a MFS diagnosis or highly suggestive features. Five of 15 participants (33%) with echocardiographic data had aortic dilation, fewer than expected (p = 8e-6). Ectopia lentis affected only 15% (p < 1e-5).

Conclusions: Substantial fractions of individuals harboring P/LP variants with partial or full phenotypic matches to a RASopathy or MFS remain undiagnosed, some not meeting diagnostic criteria. Routine population genotyping would enable multidisciplinary care and avoid life-threatening events.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-00973-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7796917PMC
January 2021

The Polygenic and Monogenic Basis of Blood Traits and Diseases.

Cell 2020 09;182(5):1214-1231.e11

Laboratory of Epidemiology and Population Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA.

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.08.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7482360PMC
September 2020

Trans-ethnic and Ancestry-Specific Blood-Cell Genetics in 746,667 Individuals from 5 Global Populations.

Cell 2020 09;182(5):1198-1213.e14

Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA 02130, USA; Department of Medicine, Division on Aging, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.

Most loci identified by GWASs have been found in populations of European ancestry (EUR). In trans-ethnic meta-analyses for 15 hematological traits in 746,667 participants, including 184,535 non-EUR individuals, we identified 5,552 trait-variant associations at p < 5 × 10, including 71 novel associations not found in EUR populations. We also identified 28 additional novel variants in ancestry-specific, non-EUR meta-analyses, including an IL7 missense variant in South Asians associated with lymphocyte count in vivo and IL-7 secretion levels in vitro. Fine-mapping prioritized variants annotated as functional and generated 95% credible sets that were 30% smaller when using the trans-ethnic as opposed to the EUR-only results. We explored the clinical significance and predictive value of trans-ethnic variants in multiple populations and compared genetic architecture and the effect of natural selection on these blood phenotypes between populations. Altogether, our results for hematological traits highlight the value of a more global representation of populations in genetic studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.06.045DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7480402PMC
September 2020

The role of polygenic susceptibility to obesity among carriers of pathogenic mutations in MC4R in the UK Biobank population.

PLoS Med 2020 07 21;17(7):e1003196. Epub 2020 Jul 21.

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America.

Background: Melanocortin 4 receptor (MC4R) deficiency, caused by mutations in MC4R, is the most common cause of monogenic forms of obesity. However, these mutations have often been identified in small-scale, case-focused studies. Here, we assess the penetrance of previously reported MC4R mutations at a population level. Furthermore, we examine why some carriers of pathogenic mutations remain of normal weight, to gain insight into the mechanisms that control body weight.

Methods And Findings: We identified 59 known obesity-increasing mutations in MC4R from the Human Gene Mutation Database (HGMD) and Clinvar. We assessed their penetrance and effect on obesity (body mass index [BMI] ≥ 30 kg/m2) in >450,000 individuals (age 40-69 years) of the UK Biobank, a population-based cohort study. Of these 59 mutations, only 11 had moderate-to-high penetrance and increased the odds of obesity by more than 2-fold. We subsequently focused on these 11 mutations and examined differences between carriers of normal weight and carriers with obesity. Twenty-eight of the 182 carriers of these 11 mutations were of normal weight. Body composition of carriers of normal weight was similar to noncarriers of normal weight, whereas among individuals with obesity, carriers had a somewhat higher BMI than noncarriers (1.44 ± 0.07 standard deviation scores [SDSs] ± standard error [SE] versus 1.29 ± 0.001, P = 0.03), because of greater lean mass (1.44 ± 0.09 versus 1.15 ± 0.002, P = 0.002). Carriers of normal weight more often reported that, already at age 10 years, their body size was below average or average (72%) compared with carriers with obesity (48%) (P = 0.01). To assess the polygenic contribution to body weight in carriers of normal weight and carriers with obesity, we calculated a genome-wide polygenic risk score for BMI (PRSBMI). The PRSBMI of carriers of normal weight (PRSBMI = -0.64 ± 0.18) was significantly lower than of carriers with obesity (0.40 ± 0.11; P = 1.7 × 10-6), and tended to be lower than that of noncarriers of normal weight (-0.29 ± 0.003; P = 0.05). Among carriers, those with a low PRSBMI (bottom quartile) have an approximately 5-kg/m2 lower BMI (approximately 14 kg of body weight for a 1.7-m-tall person) than those with a high PRS (top quartile). Because the UK Biobank population is healthier than the general population in the United Kingdom, penetrance may have been somewhat underestimated.

Conclusions: We showed that large-scale data are needed to validate the impact of mutations observed in small-scale and case-focused studies. Furthermore, we observed that despite the key role of MC4R in obesity, the effects of pathogenic MC4R mutations may be countered, at least in part, by a low polygenic risk potentially representing other innate mechanisms implicated in body weight regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pmed.1003196DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7373259PMC
July 2020

A common variant in PNPLA3 is associated with age at diagnosis of NAFLD in patients from a multi-ethnic biobank.

J Hepatol 2020 06 5;72(6):1070-1081. Epub 2020 Mar 5.

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Mindich Child Health Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Background & Aims: The Ile138Met variant (rs738409) in the PNPLA3 gene has the largest effect on non-alcoholic fatty liver disease (NAFLD), increasing the risk of progression to severe forms of liver disease. It remains unknown if the variant plays a role in age of NAFLD onset. We aimed to determine if rs738409 impacts on the age of NAFLD diagnosis.

Methods: We applied a novel natural language processing (NLP) algorithm to a longitudinal electronic health records (EHR) dataset of >27,000 individuals with genetic data from a multi-ethnic biobank, defining NAFLD cases (n = 1,703) and confirming controls (n = 8,119). We conducted i) a survival analysis to determine if age at diagnosis differed by rs738409 genotype, ii) a receiver operating characteristics analysis to assess the utility of the rs738409 genotype in discriminating NAFLD cases from controls, and iii) a phenome-wide association study (PheWAS) between rs738409 and 10,095 EHR-derived disease diagnoses.

Results: The PNPLA3 G risk allele was associated with: i) earlier age of NAFLD diagnosis, with the strongest effect in Hispanics (hazard ratio 1.33; 95% CI 1.15-1.53; p <0.0001) among whom a NAFLD diagnosis was 15% more likely in risk allele carriers vs. non-carriers; ii) increased NAFLD risk (odds ratio 1.61; 95% CI 1.349-1.73; p <0.0001), with the strongest effect among Hispanics (odds ratio 1.43; 95% CI 1.28-1.59; p <0.0001); iii) additional liver diseases in a PheWAS (p <4.95 × 10) where the risk variant also associated with earlier age of diagnosis.

Conclusion: Given the role of the rs738409 in NAFLD diagnosis age, our results suggest that stratifying risk within populations known to have an enhanced risk of liver disease, such as Hispanic carriers of the rs738409 variant, would be effective in earlier identification of those who would benefit most from early NAFLD prevention and treatment strategies.

Lay Summary: Despite clear associations between the PNPLA3 rs738409 variant and elevated risk of progression from non-alcoholic fatty liver disease (NAFLD) to more severe forms of liver disease, it remains unknown if PNPLA3 rs738409 plays a role in the age of NAFLD onset. Herein, we found that this risk variant is associated with an earlier age of NAFLD and other liver disease diagnoses; an observation most pronounced in Hispanic Americans. We conclude that PNPLA3 rs738409 could be used to better understand liver disease risk within vulnerable populations and identify patients that may benefit from early prevention strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2020.01.029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840172PMC
June 2020

Exome sequencing reveals a high prevalence of BRCA1 and BRCA2 founder variants in a diverse population-based biobank.

Genome Med 2019 12 31;12(1). Epub 2019 Dec 31.

The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Pathogenic variants in BRCA1 and BRCA2 (BRCA1/2) lead to increased risk of breast, ovarian, and other cancers, but most variant-positive individuals in the general population are unaware of their risk, and little is known about prevalence in non-European populations. We investigated BRCA1/2 prevalence and impact in the electronic health record (EHR)-linked BioMe Biobank in New York City.

Methods: Exome sequence data from 30,223 adult BioMe participants were evaluated for pathogenic variants in BRCA1/2. Prevalence estimates were made in population groups defined by genetic ancestry and self-report. EHR data were used to evaluate clinical characteristics of variant-positive individuals.

Results: There were 218 (0.7%) individuals harboring expected pathogenic variants, resulting in an overall prevalence of 1 in 139. The highest prevalence was in individuals with Ashkenazi Jewish (AJ; 1 in 49), Filipino and other Southeast Asian (1 in 81), and non-AJ European (1 in 103) ancestry. Among 218 variant-positive individuals, 112 (51.4%) harbored known founder variants: 80 had AJ founder variants (BRCA1 c.5266dupC and c.68_69delAG, and BRCA2 c.5946delT), 8 had a Puerto Rican founder variant (BRCA2 c.3922G>T), and 24 had one of 19 other founder variants. Non-European populations were more likely to harbor BRCA1/2 variants that were not classified in ClinVar or that had uncertain or conflicting evidence for pathogenicity (uncertain/conflicting). Within mixed ancestry populations, such as Hispanic/Latinos with genetic ancestry from Africa, Europe, and the Americas, there was a strong correlation between the proportion of African genetic ancestry and the likelihood of harboring an uncertain/conflicting variant. Approximately 28% of variant-positive individuals had a personal history, and 45% had a personal or family history of BRCA1/2-associated cancers. Approximately 27% of variant-positive individuals had prior clinical genetic testing for BRCA1/2. However, individuals with AJ founder variants were twice as likely to have had a clinical test (39%) than those with other pathogenic variants (20%).

Conclusions: These findings deepen our knowledge about BRCA1/2 variants and associated cancer risk in diverse populations, indicate a gap in knowledge about potential cancer-related variants in non-European populations, and suggest that genomic screening in diverse patient populations may be an effective tool to identify at-risk individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-019-0691-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6938627PMC
December 2019

Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems.

Am J Psychiatry 2019 10 16;176(10):846-855. Epub 2019 Aug 16.

Psychiatric and Neurodevelopmental Genetics Unit (Zheutlin, Chen, Ge, Smoller) and Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston (Chen); Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Mass. (Zheutlin, Chen, Stahl, Smoller); Division of Genetic Medicine, Department of Medicine (Dennis, Straub, Ruderfer, Davis), Vanderbilt Genetics Institute (Dennis, Straub, Ruderfer, Davis), and Department of Biomedical Informatics (Ruderfer), Vanderbilt University Medical Center, Nashville; Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam (Karlsson Linnér); Autism and Developmental Medicine Institute, Geisinger, Lewisburg, Pa. (Karlsson Linnér, Chabris); Charles Bronfman Institute for Personalized Medicine (Moscati), Pamela Sklar Division of Psychiatric Genomics (Huckins, Charney, Stahl), and Department of Genetics and Genomic Sciences (Huckins, Charney, Stahl, ), Icahn School of Medicine at Mount Sinai, New York; Department of Biomedical and Translational Informatics, Geisinger, Rockville, Md. (Restrepo, Kirchner); Research Information Science and Computing, Partners HealthCare, Somerville, Mass. (Castro).

Objective: Individuals at high risk for schizophrenia may benefit from early intervention, but few validated risk predictors are available. Genetic profiling is one approach to risk stratification that has been extensively validated in research cohorts. The authors sought to test the utility of this approach in clinical settings and to evaluate the broader health consequences of high genetic risk for schizophrenia.

Methods: The authors used electronic health records for 106,160 patients from four health care systems to evaluate the penetrance and pleiotropy of genetic risk for schizophrenia. Polygenic risk scores (PRSs) for schizophrenia were calculated from summary statistics and tested for association with 1,359 disease categories, including schizophrenia and psychosis, in phenome-wide association studies. Effects were combined through meta-analysis across sites.

Results: PRSs were robustly associated with schizophrenia (odds ratio per standard deviation increase in PRS, 1.55; 95% CI=1.4, 1.7), and patients in the highest risk decile of the PRS distribution had up to 4.6-fold higher odds of schizophrenia compared with those in the bottom decile (95% CI=2.9, 7.3). PRSs were also positively associated with other phenotypes, including anxiety, mood, substance use, neurological, and personality disorders, as well as suicidal behavior, memory loss, and urinary syndromes; they were inversely related to obesity.

Conclusions: The study demonstrates that an available measure of genetic risk for schizophrenia is robustly associated with schizophrenia in health care settings and has pleiotropic effects on related psychiatric disorders as well as other medical syndromes. The results provide an initial indication of the opportunities and limitations that may arise with the future application of PRS testing in health care systems.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1176/appi.ajp.2019.18091085DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6961974PMC
October 2019

Pharmacy students' attitudes and perceptions toward pharmacogenomics education.

Am J Health Syst Pharm 2019 05;76(11):836-845

The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.

Purpose: To evaluate final-year pharmacy students' perceptions toward pharmacogenomics education, their attitudes on its clinical relevance, and their readiness to use such knowledge in practice.

Methods: A 19-question survey was developed and modified from prior studies and was pretested on a small group of pharmacogenomics faculty and pharmacy students. The final survey was administered to 978 final-year pharmacy students in 8 school/colleges of pharmacy in New York and New Jersey between January and May 2017. The survey targeted 3 main themes: perceptions toward pharmacogenomics education, attitudes toward the clinical relevance of this education, and the students' readiness to use knowledge of pharmacogenomics in practice.

Results: With a 35% response rate, the majority (81%) of the 339 student participants believed that pharmacogenomics was a useful clinical tool for pharmacists, yet only 40% felt that it had been a relevant part of their training. Almost half (46%) received only 1-3 lectures on pharmacogenomics and the majority were not ready to use it in practice. Survey results pointed toward practice-based trainings such as pharmacogenomics rotations as the most helpful in preparing students for practice.

Conclusions: Final-year student pharmacists reported varying exposure to pharmacogenomics content in their pharmacy training and had positive attitudes toward the clinical relevance of the discipline, yet they expressed low confidence in their readiness to use this information in practice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajhp/zxz060DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6523044PMC
May 2019

Pathway-based polygene risk for severe depression implicates drug metabolism in CONVERGE.

Psychol Med 2020 04 2;50(5):793-798. Epub 2019 Apr 2.

Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.

Background: The Psychiatric Genomics Consortium (PGC) has made major advances in the molecular etiology of MDD, confirming that MDD is highly polygenic. Pathway enrichment results from PGC meta-analyses can also be used to help inform molecular drug targets. Prior to any knowledge of molecular biomarkers for MDD, drugs targeting molecular pathways (MPs) proved successful in treating MDD. It is possible that examining polygenicity within specific MPs implicated in MDD can further refine molecular drug targets.

Methods: Using a large case-control GWAS based on low-coverage whole genome sequencing (N = 10 640) in Han Chinese women, we derived polygenic risk scores (PRS) for MDD and for MDD specific to each of over 300 MPs previously shown to be relevant to psychiatric diagnoses. We then identified sets of PRSs, accounting for critical covariates, significantly predictive of case status.

Results: Over and above global MDD polygenic risk, polygenic risk within the GO: 0017144 drug metabolism pathway significantly predicted recurrent depression after multiple testing correction. Secondary transcriptomic analysis suggests that among genes in this pathway, CYP2C19 (family of Cytochrome P450) and CBR1 (Carbonyl Reductase 1) might be most relevant to MDD. Within the cases, pathway-based risk was additionally associated with age at onset of MDD.

Conclusions: Results indicate that pathway-based risk might inform etiology of recurrent major depression. Future research should examine whether polygenicity of the drug metabolism gene pathway has any association with clinical presentation or treatment response. We discuss limitations to the generalizability of these preliminary findings, and urge replication in future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291719000618DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6774907PMC
April 2020

Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity.

Nat Med 2019 03 6;25(3):507-516. Epub 2019 Mar 6.

Laboratory of Molecular Genetics, The Rockefeller University, New York, NY, USA.

Quantitative changes in leptin concentration lead to alterations in food intake and body weight, but the regulatory mechanisms that control leptin gene expression are poorly understood. Here we report that fat-specific and quantitative leptin expression is controlled by redundant cis elements and trans factors interacting with the proximal promoter together with a long noncoding RNA (lncOb). Diet-induced obese mice lacking lncOb show increased fat mass with reduced plasma leptin levels and lose weight after leptin treatment, whereas control mice do not. Consistent with this finding, large-scale genetic studies of humans reveal a significant association of single-nucleotide polymorphisms (SNPs) in the region of human lncOb with lower plasma leptin levels and obesity. These results show that reduced leptin gene expression can lead to a hypoleptinemic, leptin-responsive form of obesity and provide a framework for elucidating the pathogenic mechanism in the subset of obese patients with low endogenous leptin levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-019-0370-1DOI Listing
March 2019

Patient Adipose Stem Cell-Derived Adipocytes Reveal Genetic Variation that Predicts Antidiabetic Drug Response.

Cell Stem Cell 2019 02 10;24(2):299-308.e6. Epub 2019 Jan 10.

Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA. Electronic address:

Thiazolidinedione drugs (TZDs) target the transcriptional activity of peroxisome proliferator activated receptor γ (PPARγ) to reverse insulin resistance in type 2 diabetes, but side effects limit their clinical use. Here, using human adipose stem cell-derived adipocytes, we demonstrate that SNPs were enriched at sites of patient-specific PPARγ binding, which correlated with the individual-specific effects of the TZD rosiglitazone (rosi) on gene expression. Rosi induction of ABCA1, which regulates cholesterol metabolism, was dependent upon SNP rs4743771, which modulated PPARγ binding by influencing the genomic occupancy of its cooperating factor, NFIA. Conversion of rs4743771 from the inactive SNP allele to the active one by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated editing rescued PPARγ binding and rosi induction of ABCA1 expression. Moreover, rs4743771 is a major determinant of undesired serum cholesterol increases in rosi-treated diabetics. These data highlight human genetic variation that impacts PPARγ genomic occupancy and patient responses to antidiabetic drugs, with implications for developing personalized therapies for metabolic disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.stem.2018.11.018DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6368460PMC
February 2019

Whole genome sequence association with E-selectin levels reveals loss-of-function variant in African Americans.

Hum Mol Genet 2019 02;28(3):515-523

Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.

E-selectin mediates the rolling of circulating leukocytes during inflammatory processes. Previous genome-wide association studies in European and Asian individuals have identified the ABO locus associated with E-selectin levels. Using Trans-Omics for Precision Medicine whole genome sequencing data in 2249 African Americans (AAs) from the Jackson Heart Study, we examined genome-wide associations with soluble E-selectin levels. In addition to replicating known signals at ABO, we identified a novel association of a common loss-of-function, missense variant in Fucosyltransferase 6 (FUT6; rs17855739,p.Glu274Lys, P = 9.02 × 10-24) with higher soluble E-selectin levels. This variant is considerably more common in populations of African ancestry compared to non-African ancestry populations. We replicated the association of FUT6 p.Glu274Lys with higher soluble E-selectin in an independent population of 748 AAs from the Women's Health Initiative and identified an additional pleiotropic association with vitamin B12 levels. Despite the broad role of both selectins and fucosyltransferases in various inflammatory, immune and cancer-related processes, we were unable to identify any additional disease associations of the FUT6 p.Glu274Lys variant in an electronic medical record-based phenome-wide association scan of over 9000 AAs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy360DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6337694PMC
February 2019

Polygenic prediction of the phenome, across ancestry, in emerging adulthood.

Psychol Med 2018 08 27;48(11):1814-1823. Epub 2017 Nov 27.

Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.

Background: Identifying genetic relationships between complex traits in emerging adulthood can provide useful etiological insights into risk for psychopathology. College-age individuals are under-represented in genomic analyses thus far, and the majority of work has focused on the clinical disorder or cognitive abilities rather than normal-range behavioral outcomes.

Methods: This study examined a sample of emerging adults 18-22 years of age (N = 5947) to construct an atlas of polygenic risk for 33 traits predicting relevant phenotypic outcomes. Twenty-eight hypotheses were tested based on the previous literature on samples of European ancestry, and the availability of rich assessment data allowed for polygenic predictions across 55 psychological and medical phenotypes.

Results: Polygenic risk for schizophrenia (SZ) in emerging adults predicted anxiety, depression, nicotine use, trauma, and family history of psychological disorders. Polygenic risk for neuroticism predicted anxiety, depression, phobia, panic, neuroticism, and was correlated with polygenic risk for cardiovascular disease.

Conclusions: These results demonstrate the extensive impact of genetic risk for SZ, neuroticism, and major depression on a range of health outcomes in early adulthood. Minimal cross-ancestry replication of these phenomic patterns of polygenic influence underscores the need for more genome-wide association studies of non-European populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291717003312DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5971142PMC
August 2018

Cross-Lagged Analysis of Interplay Between Differential Traits in Sibling Pairs: Validation and Application to Parenting Behavior and ADHD Symptomatology.

Behav Genet 2018 01 17;48(1):22-33. Epub 2017 Nov 17.

Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA.

Understanding the factors that contribute to behavioral traits is a complex task, and partitioning variance into latent genetic and environmental components is a useful beginning, but it should not also be the end. Many constructs are influenced by their contextual milieu, and accounting for background effects (such as gene-environment correlation) is necessary to avoid bias. This study introduces a method for examining the interplay between traits, in a longitudinal design using differential items in sibling pairs. The model is validated via simulation and power analysis, and we conclude with an application to paternal praise and ADHD symptoms in a twin sample. The model can help identify what type of genetic and environmental interplay may contribute to the dynamic relationship between traits using a cross-lagged panel framework. Overall, it presents a way to estimate and explicate the developmental interplay between a set of traits, free from many common sources of bias.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10519-017-9882-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5846332PMC
January 2018

Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-Response Behaviors in Model Organisms.

Alcohol Clin Exp Res 2017 May 30;41(5):911-928. Epub 2017 Mar 30.

Privatklinik Meiringen, Meiringen, Switzerland.

Background: Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing risk remain largely unidentified.

Methods: We conducted a genomewide association study in 706 related AD cases and 1,748 unscreened population controls from Ireland. We sought replication in 15,496 samples of European descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-response behaviors. We tested 1 primate-specific gene for expression differences in case/control postmortem brain tissue.

Results: We detected significant association in COL6A3 and suggestive association in 2 previously implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive signal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensitivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the KLF12 ortholog in C. elegans impaired development of acute functional tolerance (AFT). Klf12 expression correlated with locomotor activation following EtOH injection in mice. Loss of function of the RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryanodine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated rs11726136 allele in nucleus accumbens (NAc).

Conclusions: We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975. Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating these genes in multiple brain functions and disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acer.13362DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5404949PMC
May 2017

Cross-Disorder Psychiatric Genomics.

Curr Behav Neurosci Rep 2016 Sep 2;3(3):256-263. Epub 2016 Jul 2.

Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA; Washington Veterans Affairs Healthcare System, Washington D.C., USA; Georgetown University School of Medicine, Washington D.C., USA.

Purpose Of Review: The following review provides some description of the movement in cross-disorder psychiatric genomics toward addressing both comorbidity and polygenicity.

Recent Findings: We attempt to show how dimensional approaches to the phenotype have led to further addressing the problem of comorbidity of psychiatric diagnoses. And we also attempt to show how a dimensional approach to the genome, with different statistical methods from traditional genome-wide association analyses, has begun to resolve the problem of massive polygenicity.

Summary: Cross-disorder research, of any area in psychiatry, arguably has the most potential to inform clinical diagnosis, early detection and prevention strategies, and pharmacological treatment research. Future research might leverage what we now know to inform developmental studies of risk and resilience.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s40473-016-0084-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5198908PMC
September 2016

Evaluating the dopamine hypothesis of schizophrenia in a large-scale genome-wide association study.

Schizophr Res 2016 10 20;176(2-3):136-140. Epub 2016 Jun 20.

Virginia Institute for Psychiatric and Behavioral Genetics, Department of Psychiatry, Virginia Commonwealth University, PO Box 980126, Richmond, VA 23298-0126, United States.

Background: The dopamine hypothesis, which posits that dysregulation of the dopaminergic system is etiologic for schizophrenia, is among the most enduring biological theories in psychiatry. Although variation within genes related to dopaminergic functioning has been associated with schizophrenia, an aggregate test of variation, using the largest publicly available schizophrenia dataset, has not previously been conducted.

Methods: We first identified a core set of 11 genes involved in the synthesis, metabolism, and neurotransmission of dopamine. We then extracted summary statistics of markers falling within, or flanking, these genes from the Psychiatric Genomics Consortium's most recent schizophrenia mega-analysis results. We conducted aggregate tests for enrichment of dopamine-related pathways for association with schizophrenia.

Results: We did not detect significant enrichment of signals across the core set of dopamine-related genes. However, we did observe modest to strong enrichment of genetic signals within the DRD2 locus.

Conclusions: Within the limits of available power, common sequence variation within core genes of the dopaminergic system is not related to risk of schizophrenia. This does not preclude a role of dopamine, or dopamine-related genes, in the clinical presentation of schizophrenia or in treatment response. However, it does suggest that the genetic risk for schizophrenia is not substantially affected by common variation in those genes which, collectively, critically impact dopaminergic functioning.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.schres.2016.06.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5026897PMC
October 2016

Personality, cognitive/psychological traits and psychiatric resilience: A multivariate twin study.

Pers Individ Dif 2016 Mar 4;91:74-79. Epub 2015 Dec 4.

Department of Psychiatry, Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.

The purpose of this paper is to determine the phenotypic relationships, and etiologic underpinnings, of cognitive/psychological traits with psychiatric resilience. Resilience was defined as the difference between the twins' total score on a broad measure of internalizing symptoms and their predicted score based on their cumulative exposure to stressful life events (SLEs). Cholesky decompositions were performed in a large twin sample (n=7,500 individuals) to quantify the overlap in genetic and environmental factors between resilience and six traits (neuroticism, optimism, self-esteem, mastery, interpersonal dependency, altruism) in bivariate analyses, and in a multivariate model. On a phenotypic level, each trait accounted for variance in resilience in univariate analyses. In the multivariate regression neuroticism accounted for the majority of the variance and attenuated the relationships between the other traits and resilience. The genetic factors that influence the traits account for between 7-60% of the heritability of resilience. In the multivariate genetic model neuroticism accounted for all of the genetic covariance between the traits and resilience; 40% of the genetic influence on resilience was independent. Neuroticism evidenced the largest phenotypic and genetic relationship with resilience, and accounted for nearly all of the phenotypic and genetic variance between resilience and the other traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.paid.2015.11.041DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5667653PMC
March 2016
-->