Publications by authors named "Aprile L Pilon"

16 Publications

  • Page 1 of 1

Secretoglobin 3A2 eliminates human cancer cells through pyroptosis.

Cell Death Discov 2021 Jan 15;7(1):12. Epub 2021 Jan 15.

Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

Non-canonical inflammasome activation that recognizes intracellular lipopolysaccharide (LPS) causes pyroptosis, the inflammatory death of innate immune cells. The role of pyroptosis in innate immune cells is to rapidly eliminate pathogen-infected cells and limit the replication niche in the host body. Whether this rapid cell elimination process of pyroptosis plays a role in elimination of cancer cells is largely unknown. Our earlier study demonstrated that a multi-functional secreted protein, secretoglobin (SCGB) 3A2, chaperones LPS to cytosol, and activates caspase-11 and the non-canonical inflammasome pathway, leading to pyroptosis. Here we show that SCGB3A2 exhibits marked anti-cancer activity against 5 out of 11 of human non-small cell lung cancer cell lines in mouse xenographs, while no effect was observed in 6 of 6 small cell lung cancer cell lines examined. All SCGB3A2-LPS-sensitive cells express syndecan 1 (SDC1), a SCGB3A2 cell surface receptor, and caspase-4 (CASP4), a critical component of the non-canonical inflammasome pathway. Two epithelial-derived colon cancer cell lines expressing SDC1 and CASP4 were also susceptible to SCGB3A2-LPS treatment. TCGA analysis revealed that lung adenocarcinoma patients with higher SCGB3A2 mRNA levels exhibited better survival. These data suggest that SCGB3A2 uses the machinery of pyroptosis for the elimination of human cancer cells via the non-canonical inflammasome pathway, and that SCGB3A2 may serve as a novel therapeutic to treat cancer, perhaps in combination with immuno and/or targeted therapies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41420-020-00385-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810848PMC
January 2021

CC16 Binding to α4β1 Integrin (VLA-4) Protects Against Infection.

Am J Respir Crit Care Med 2020 Dec 16. Epub 2020 Dec 16.

University of Arizona, Cellular & Molecular Medicine, Tucson, Arizona, United States;

Club cell secretory protein (CC16) is a pneumoprotein produced predominantly by pulmonary club cells. Circulating CC16 is associated with protection from the inception and progression of the two most common obstructive lung diseases: asthma and COPD. While exact mechanisms remain elusive, studies consistently suggest a causal role of CC16 in mediating anti-inflammatory and antioxidant functions in the lung. We sought to determine any novel receptor systems that could participate in CC16's role in obstructive lung diseases. Protein alignment of CC16 across species led to the discovery of a highly conserved sequence of amino acids, Leucine-Valine-Aspartic Acid (LVD), a known integrin binding motif. Recombinant CC16 was generated with and without the putative integrin binding site. A Mycoplasma pneumoniae mouse model and a flourescent cellular adhesion assay were used to determine the impact of the LVD site in regards to CC16 function during live infection and on cellular adhesion during inflammatory conditions. CC16 bound to integrin alpha 4 and beta 1 (α4β1), also known as the adhesion molecule very late antigen-4 (VLA-4), dependent on the presence of the LVD integrin binding motif. During infection, rCC16 rescued lung function parameters both when administered to the lung and intravenously, but only when the LVD integrin binding site is intact; likewise, neutrophil recruitment during infection and leukocyte adhesion were both impacted by the loss of the LVD site. We discovered a novel receptor for CC16, VLA-4, which has important mechanistic implications for the role of CC16 in circulation as well as in the lung compartment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.202006-2576OCDOI Listing
December 2020

The role of recombinant human CC10 in the prevention of chronic pulmonary insufficiency of prematurity.

Pediatr Res 2019 08 13;86(2):254-260. Epub 2019 May 13.

Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Boston, MA, USA.

Background: Preterm neonates can develop chronic pulmonary insufficiency of prematurity (CPIP) later in infancy. Recombinant human CC10 protein (rhCC10) is an anti-inflammatory agent that could potentially prevent CPIP.

Methods: The safety and efficacy of a single intratracheal dose of rhCC10 in reducing CPIP at 12 months corrected gestational age (CGA) was evaluated in a Phase II double-blind, randomized, placebo-controlled, multisite clinical trial. Eighty-eight neonates were randomized: 22 to placebo and 22 to 1.5 mg/kg rhCC10 in the first cohort and 21 to placebo and 23 to 5 mg/kg rhCC10 in the second cohort. Neonates were followed to 12 months CGA.

Results: With CPIP defined as signs/symptoms, medical visits, hospital readmissions, and use of medications for respiratory complications at 12 months CGA, no significant differences were observed between rhCC10 or placebo groups. Only 5% of neonates had no evidence of CPIP at 12 months CGA.

Conclusions: A single dose of rhCC10 was not effective in reducing CPIP at 12 CGA. Since most neonates had evidence of CPIP using these exploratory endpoints, it is essential to develop more robust outcome measures for clinical trials of respiratory medications in high-risk premature neonates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41390-019-0419-3DOI Listing
August 2019

Club Cell Protein, CC10, Attenuates Acute Respiratory Distress Syndrome Induced by Smoke Inhalation.

Shock 2020 03;53(3):317-326

University of Texas Medical Branch, Galveston, Texas.

Objectives: To evaluate the dose effects of Recombinant human Club cell 10-kDa protein (rhCC10) on lung function in a well-characterized ovine model of acute respiratory distress syndrome (ARDS) induced by smoke inhalation injury (SII); specifically, the potential of rhCC10 protein to control the inflammatory response and protect pulmonary tissue and function following SII.

Design: Randomized, controlled, prospective, and large animal translational studies.

Setting: University large animal intensive care unit.

Subjects: Thirty-six adult female sheep were surgically prepared and allocated into five groups (Sham (no SII), n = 6; 1 mg/kg/d CC10, n = 8; 3 mg/kg/d CC10, n = 7; 10 mg/kg/d CC10, n = 8; Control SII, n = 7).

Interventions: All groups except the sham group were subjected to SII with cooled cotton smoke. Then, the animals were placed on a ventilator, treated with 1, 3, and 10 mg/kg/d of intravenous rhCC10 or vehicle, divided evenly into two administrations per day every 12 h, fluid resuscitated, and monitored for 48 h in a conscious state.

Measurements And Main Results: The group treated with 10 mg/kg/d rhCC10 attenuated changes in the following variables: PaO2/FiO2 ratio, oxygenation index, and peak inspiratory pressure; neutrophil content in the airway and myeloperoxidase levels; obstruction of the large and small airways; systemic leakage of fluid and proteins, and pulmonary edema.

Conclusions: In this study, high-dose rhCC10 significantly attenuated ARDS progression and lung dysfunction and significantly reduced systemic extravasation of fluid and proteins, normalizing fluid balance. Based on these results, rhCC10 may be considered a novel therapeutic option for the treatment of SII-induced ARDS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/SHK.0000000000001365DOI Listing
March 2020

A novel pathway of LPS uptake through syndecan-1 leading to pyroptotic cell death.

Elife 2018 12 7;7. Epub 2018 Dec 7.

Laboratory of Metabolism, National Cancer Institute, National Institutes of Health, Bethesda, United States.

Intracellular lipopolysaccharide (LPS) triggers the non-canonical inflammasome pathway, resulting in pyroptosis of innate immune cells. In addition to its well-known proinflammatory role, LPS can directly cause regression of some tumors, although the underlying mechanism has remained unknown. Here we show that secretoglobin(SCGB)3A2, a small protein predominantly secreted in airways, chaperones LPS to the cytosol through the cell surface receptor syndecan-1; this leads to pyroptotic cell death driven by caspase-11. SCGB3A2 and LPS co-treatment significantly induced pyroptosis of macrophage RAW264.7 cells and decreased cancer cell proliferation in vitro, while SCGB3A2 treatment resulted in reduced progression of xenograft tumors in mice. These data suggest a conserved function for SCGB3A2 in the innate immune system and cancer cells. These findings demonstrate a critical role for SCGB3A2 as an LPS delivery vehicle; they reveal one mechanism whereby LPS enters innate immune cells leading to pyroptosis, and they clarify the direct effect of LPS on cancer cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.7554/eLife.37854DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286126PMC
December 2018

Evaluation of Club Cell 10-kDa Protein (CC10) Levels in Full-Term Infants.

Neonatology 2017 1;111(3):247-252. Epub 2016 Dec 1.

Division of Newborn Medicine, The Floating Hospital for Children, Tufts Medical Center, Boston, MA, USA.

Background: The club cell 10-kDa protein (CC10) is a homeostatic protein that is produced in the lung, diffuses into the blood, and is then excreted into the urine and stool. CC10 is known to have anti-inflammatory properties and to have lower endogenous production in preterm infants.

Objectives: As recombinant human CC10 (rhCC10) is being studied in preterm infants to reduce lung injury, understanding CC10 levels in term infants with normal lungs is needed to establish appropriate target dosing ranges.

Methods: Serum, urine, and stool samples were collected from 24 healthy full-term infants, and CC10 levels were measured. Levels in term infants were then compared to those in preterm infants who were examined in our previous studies.

Results: The mean gestational age and birth weight of the term infants were 38.8 ±1.1 weeks and 3,257 ± 513 g, respectively. The mean gestational age of the preterm infants was 26.8 ± 1.4 weeks. The median serum [CC10] levels with minimum and maximum values in term infants (214.2 ng/mL [34.1, 428.1]) were >7-fold higher than in preterm infants (27.5 ng/mL [8.0, 760.0]; p < 0.05). A significant correlation was found between [CC10] in urine and stool as well as between gestational age and stool [CC10] (p < 0.05).

Conclusions: CC10 is detectable in serum, urine, and stool in healthy term infants, with levels significantly higher than in preterm infants. This provides important data for ongoing therapeutic intervention trials with rhCC10 in high-risk preterm infants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000452267DOI Listing
December 2017

Protective role for club cell secretory protein-16 (CC16) in the development of COPD.

Eur Respir J 2015 Jun 19;45(6):1544-56. Epub 2015 Feb 19.

Pulmonary Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA Lovelace Respiratory Research Institute, Albuquerque, NM, USA

Club cell secretory protein-16 (CC16) is the major secreted product of airway club cells, but its role in the pathogenesis of chronic obstructive pulmonary disease (COPD) is unclear. We measured CC16 airway expression in humans with and without COPD and CC16 function in a cigarette smoke (CS)-induced COPD murine model. Airway CC16 expression was measured in COPD patients, smokers without COPD and non-smokers. We exposed wildtype (WT) and CC16(-/-)mice to CS or air for up to 6 months, and measured airway CC16 expression, pulmonary inflammation, alveolar septal cell apoptosis, airspace enlargement, airway mucin 5AC (MUC5AC) expression, small airway remodelling and pulmonary function. Smokers and COPD patients had reduced airway CC16 immunostaining that decreased with increasing COPD severity. Exposing mice to CS reduced airway CC16 expression. CC16(-/-) mice had greater CS-induced emphysema, airway remodelling, pulmonary inflammation, alveolar cell apoptosis, airway MUC5AC expression, and more compliant lungs than WT mice. These changes were associated with increased nuclear factor-κB (NF-κB) activation in CC16(-/-) lungs. CS-induced acute pulmonary changes were reversed by adenoviral-mediated over-expression of CC16. CC16 protects lungs from CS-induced injury by reducing lung NF-κB activation. CS-induced airway CC16 deficiency increases CS-induced pulmonary inflammation and injury and likely contributes to the pathogenesis of COPD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1183/09031936.00134214DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4451404PMC
June 2015

Preclinical evaluation of human secretoglobin 3A2 in mouse models of lung development and fibrosis.

Am J Physiol Lung Cell Mol Physiol 2014 Jan 8;306(1):L10-22. Epub 2013 Nov 8.

Bldg. 37, Rm. 3106, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892.

Secretoglobin (SCGB) 3A2 is a member of the SCGB gene superfamily of small secreted proteins, predominantly expressed in lung airways. We hypothesize that human SCGB3A2 may exhibit anti-inflammatory, growth factor, and antifibrotic activities and be of clinical utility. Recombinant human SCGB3A2 was expressed, purified, and biochemically characterized as a first step to its development as a therapeutic agent in clinical settings. Human SCGB3A2, as well as mouse SCGB3A2, readily formed a dimer in solution and exhibited novel phospholipase A2 inhibitory activity. This is the first demonstration of any quantitative biochemical measurement for the evaluation of SCGB3A2 protein. In the mouse as an experimental animal, human SCGB3A2 exhibited growth factor activity by promoting embryonic lung development in both ex vivo and in vivo systems and antifibrotic activity in the bleomycin-induced lung fibrosis model. The results suggested that human SCGB3A2 can function as a growth factor and an antifibrotic agent in humans. When SCGB3A2 was administered to pregnant female mice through the tail vein, the protein was detected in the dam's serum and lung, as well as the placenta, amniotic fluids, and embryonic lungs at 10 min postadministration, suggesting that SCGB3A2 readily crosses the placenta. The results warrant further development of recombinant SCGB3A2 as a therapeutic agent in treating patients suffering from lung diseases or preterm infants with respiratory distress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajplung.00037.2013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3920213PMC
January 2014

Recombinant human Clara cell secretory protein treatment increases lung mRNA expression of surfactant proteins and vascular endothelial growth factor in a premature lamb model of respiratory distress syndrome.

Am J Perinatol 2008 Nov 7;25(10):637-45. Epub 2008 Oct 7.

Department of Physiology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.

Infant respiratory distress syndrome (IRDS) can lead to impaired alveolarization and dysmorphic vascularization of bronchopulmonary dysplasia. Clara cell secretory protein (CC10) has anti-inflammatory properties but is deficient in the premature infant. Because surfactant and vascular endothelial growth factor (VEGF) profiles are impaired by inflammation and CC10 inhibits lung inflammation, we hypothesized that CC10 may up-regulate surfactant protein (SP) and VEGF expression. Preterm lambs ( N = 24; 126 +/- 3 days [standard error] gestation) with IRDS were randomized to receive 100 mg/kg surfactant, 100 mg/kg surfactant followed by intratracheal 0.5, 1.5, or 5 mg/kg rhCC10 and studied for 4 hours. Gas exchange and lung mechanics were monitored; surfactant protein and VEGF mRNA profiles in lung were assessed. There was a significant rhCC10 dose-dependent increase in respiratory compliance and ventilation efficiency index; both parameters were significantly greater in animals treated with 5 mg/kg rhCC10 than those treated with surfactant alone. Similarly, there was a significant rhCC10 dose and protein-dependent increase in surfactant protein (SP-B > SP-C > SP-A) and dose- and isoform-dependent increase in VEGF (VEGF189 > VEGF165 > VEGF121). These data demonstrate that early intervention with rhCC10 up-regulates surfactant protein and VEGF expression, supporting the role of CC10 to protect against hyperoxia and mechanical ventilation in the immature lung.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0028-1090587DOI Listing
November 2008

CC10 reduces inflammation in meconium aspiration syndrome in newborn piglets.

Pediatr Res 2007 Dec;62(6):684-8

Department of Pediatrics, The CardioPulmonary Research Institute, Winthrop University Hospital, SUNY Stony Brook School of Medicine, Mineola, New York 11501, USA.

Complications from meconium aspiration syndrome (MAS) remain significant despite a variety of therapeutic interventions. Clara cell protein (CC10) is a novel anti-inflammatory agent that can also inhibit phospholipase A2 (PLA2) (an important component of meconium). The present study examined whether administration of recombinant human CC10 (rhCC10) would reduce inflammation and improve lung function in a piglet model of MAS. Following meconium instillation, piglets exhibited significant physiologic dysfunction that improved significantly after surfactant administration. Analysis of tracheal aspirates revealed significant increases in both tumor necrosis factor (TNF) alpha and interleukin (IL)-8 after meconium instillation. rhCC10-treated animals had significantly lower TNF-alpha levels at 24 h (561 +/- 321 versus 1357 +/- 675 pg/mL, p < 0.05) compared with saline controls. There were no differences between rhCC10-treated and untreated groups with respect to other measured physiologic variables or inflammatory markers, including secretory PLA2 activity. Histologic analyses revealed marked inflammatory infiltrates and thickened alveolar walls, but no significant differences among rhCC10 and control animals. Newborn piglets with MAS have significant physiologic dysfunction, marked inflammatory changes and histologic abnormalities, which was partially counteracted by a single dose of exogenous surfactant and rhCC10.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1203/PDR.0b013e31815a5632DOI Listing
December 2007

Effects of recombinant Clara cell secretory protein (rhCC10) on inflammatory-related matrix metalloproteinase activity in a preterm lamb model of neonatal respiratory distress.

Pediatr Crit Care Med 2007 Jan;8(1):40-6

Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA.

Objective: To test the hypothesis that recombinant Clara cell secretory protein (rhCC10) instillation would foster improved lung function, acute structural preservation, and attenuation of matrix metalloproteinase (MMP) activity in a surfactant-deficient, mechanically ventilated lung.

Design: Interventional laboratory study.

Setting: An academic medical research facility in the northeastern United States.

Subjects: Sedated, ventilated premature lambs.

Interventions: Preterm lambs (n = 18; 126 +/- 3 days gestation) were instrumented, ventilated, and treated with 100 mg/kg exogenous surfactant. Lambs were randomized to receive 0, 0.5, or 5.0 mg/kg rhCC10 (n = 6 per group) and were ventilated for 4 hrs.

Measurements And Main Results: Posttreatment, lung function and cardiopulmonary stability were monitored for the ventilation period and then animals were killed for in vitro surfactant function analysis, lung histomorphometry, and analysis of MMP-2, -7, and -9 as well as their tissue inhibitors (TIMP)-1 and -2. Ventilation efficiency and pulmonary compliance were improved in the 5.0-mg/kg rhCC10 group by 4 hrs. Lung expansion was variable in the apical regions only. MMP-2 quantity was greater in the apical than the base lung regions of rhCC10-treated groups, and rhCC10 decreased MMP-7 in the base of the lung.

Conclusions: These data suggest that improved lung function in the surfactant-treated preterm lamb following intratracheal rhCC10 may be related to the reduction of proteolytic activity of MMP-7.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.PCC.0000253022.10607.61DOI Listing
January 2007

Recombinant human uteroglobin/CC10 inhibits the adhesion and migration of primary human endothelial cells via specific and saturable binding to fibronectin.

J Cell Physiol 2006 May;207(2):553-61

Oncology Institute, Loyola University Medical Center, Maywood, Illinois.

Uteroglobin (UG) or Clara Cell 10 kDa protein (CC10) is a small, stable, epithelial secretory anti-inflammatory protein. Uteroglobin has been shown to inhibit neointimal formation in vivo after balloon angioplasty through an unknown mechanism. An interaction between UG and plasma fibronectin (Fn) has been demonstrated in mice. Since Fn plays a key role in endothelial cell (EC) migration and angiogenesis, we investigated whether recombinant human UG (rhUG) affects EC migration via Fn binding. In this report, we show a saturable binding of rhUG to Fn depending on Fn conformation and that rhUG is covalently cross-linked to Fn by transglutaminase (TGase). Additionally, our study highlights that rhUG can also bind to exogenously added or self-secreted Fn on the membrane of human primary microvascular endothelial cells (HMVEC), although these complexes are weakly associated with the plasmalemma. Upon the interaction with Fn in solid phase, rhUG strongly inhibits HMVEC attachment on Fn, but not on other ECM proteins. Consequently, rhUG also inhibits cell migration in a dose dependent fashion (I.C.50 = 65 nM) and hinders the "wound healing" in vitro. The small size, stability and human tolerability of rhUG suggest that rhUG in slow-release form or genetically delivered could be used in humans to modulate cell/Fn interactions in the context of tumor microenvironment or in the context of inflammation and fibrosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.20604DOI Listing
May 2006

Recombinant human Clara cell secretory protein in acute lung injury of the rabbit: effect of route of administration.

Pediatr Crit Care Med 2005 Nov;6(6):698-706

Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA.

Objective: To test the hypothesis that intratracheal instillation of Clara cell secretory protein (CC 10) to the lung may afford greater protection than intravenous administration from ventilator-induced lung inflammation.

Design: Interventional laboratory study.

Setting: An academic medical research facility in northeastern United States.

Subjects: Sedated, lavage-injured juvenile rabbits.

Interventions: A total of 18 juvenile rabbits were anesthetized, ventilated, injured with saline lavage (Pao2 of <100 mm Hg; respiratory compliance of <0.50 mL.cm H2O.kg and <50% baseline), and randomized to receive intratracheally administered surfactant plus no recombinant human CC 10 (rhCC 10, control), intravenous rhCC 10, or intratracheal rhCC 10.

Measurement And Main Results: Arterial blood chemistry and pulmonary mechanics were monitored; plasma and urine were collected serially. After 4 hrs of ventilation, lungs were lavaged and harvested. Surfactant function was analyzed from bronchoalveolar lavage samples (surfactometry); rhCC 10, interleukin-8, and lung myeloperoxidase concentrations were measured. Pao2, oxygenation index, ventilatory efficiency index, and respiratory compliance were not different across time or group beyond injury. Surfactometry data identified no differences as a function of group or time. Plasma, bronchoalveolar lavage, and lung interleukin-8 concentrations, lung myeloperoxidase concentrations, and inflammatory cell counts in the alveolar and interstitial spaces of intravenous and intratracheal groups were lower than in the control group (p < .05) but not statistically different from each other. Concentrations of rhCC 10 in lung, bronchoalveolar lavage, and plasma were greater in the intratracheal group than in the intravenous group (p<.05). Urine rhCC 10 concentrations were greater for the intravenous group than for the intratracheal group (p<.05) at 1, 3, and 4 hrs after treatment. No group differences in histomorphometry were noted.

Conclusions: Both intravenous and intratracheal rhCC 10 delivery, after surfactant therapy, effectively decrease lung inflammation vs. surfactant alone. While supporting the physiologic profile, intratracheal instillation results in greater, maintained lung and plasma rhCC 10 pools compared with intravenous administration. As such, intratracheal instillation of rhCC 10 may afford more prolonged protection against lung inflammation than intravenous administration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1097/01.pcc.0000165565.96773.08DOI Listing
November 2005

Effects of an intratracheally delivered anti-inflammatory protein (rhCC10) on physiological and lung structural indices in a juvenile model of acute lung injury.

Biol Neonate 2006 6;89(3):159-70. Epub 2005 Oct 6.

Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, and Nemours Research Lung Center, Alfred I. duPont Hospital for Children, Wilmington, DE, USA.

Background: Mechanical ventilation results in acute lung trauma that can stimulate processes that alter lung development. Activation of matrix metalloproteinases (MMPs) and their tissue-produced inhibitors (TIMPs) is initiated by the inflammatory response to mechanical ventilation and are involved in breakdown of the basement membrane and parenchymal modeling.

Objectives: The aim of this study was to test the hypothesis that rhCC10, a lung anti-inflammatory mediator, would foster improved lung function, structural preservation, and a reduction in net MMP activity in a juvenile model of acute lung injury.

Methods: Twenty-four juvenile rabbits were saline-lavage-injured and treated with 100 or 25 mg/kg surfactant (Survanta, Ross Labs) with or without rhCC10 (Claragen, Inc.; n=6 per group). Animals were ventilated for 4 h, then euthanized for in vitro surfactant function analysis, lung histomorphometry, and analysis of MMP-2, MMP-7, and MMP-9 and TIMPs 1 and 2 in the lung.

Results: Apical lung expansion, reduced with the lower dose of surfactant, was partially restored with the addition of rhCC10. Alveolar septal wall thickness was reduced (p<0.05) with low-dose surfactant plus rhCC10 compared to high-dose surfactant alone. Increased within-group variance in MMP-2 and MMP-9 proteolytic activity was found with the low-dose surfactant and was abolished with rhCC10. MMP-7 was reduced (p<0.05) with rhCC10 administration, independent of surfactant dose.

Conclusions: Intratracheal administration of the anti-inflammatory rhCC10 resulted in preserved lung structure and MMP/TIMP profile after 4 h of mechanical ventilation, in a surfactant dose-dependent manner.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000088843DOI Listing
May 2006

Dose response to rhCC10-augmented surfactant therapy in a lamb model of infant respiratory distress syndrome: physiological, inflammatory, and kinetic profiles.

J Appl Physiol (1985) 2005 Dec 4;99(6):2204-11. Epub 2005 Aug 4.

Dept. of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA.

While surfactant (SF) therapy alone improves respiratory distress syndrome (RDS)-associated gas exchange and lung stability, absence of anti-inflammatory proteins limits efficacy with respect to inflammation. Clara cell secretory protein (CC10), deficient in preterm infants, prevents SF degradation and has anti-inflammatory properties. In this study, intratracheal recombinant human (rh) CC10 (Claragen)-augmented SF (Survanta, Ross) therapy was examined in a premature lamb model of RDS with respect to inflammation and kinetic dose-response profiles. Preterm lambs (n = 24; gestational age: 126 +/- 3 days) were delivered via cesarean section, sedated, ventilated, and randomized into groups: 100 mg/kg SF, 100 mg/kg SF followed by 0.5 mg/kg rhCC10, 100 mg/kg SF followed by 1.5 mg/kg rhCC10, and 100 mg/kg SF followed by 5.0 mg/kg rhCC10. Arterial blood chemistry and lung mechanics were monitored; lungs were lavaged and snap-frozen after 4 h. TNF-alpha, IL-8 in plasma; TNF-alpha, IL-6, IL-8, myeloperoxidase in lung; and rhCC10 in plasma, urine, bronchoalveolar lavage, and lung were analyzed. Improvement in compliance, peak inspiratory pressure, and ventilatory efficiency index were greatest (P < 0.05) with SF + 5.0 mg/kg rhCC10. Plasma, urine, bronchoalveolar lavage, and lung [rhCC10] (where brackets denote concentration) increased (P < 0.01) with dose. Plasma [IL-8] was lower (P < 0.05) with rhCC10 than SF alone. Treatment with at least 1.5 mg/kg rhCC10 resulted in lower (P < 0.05) lung [TNF-alpha], [IL-8], and [myeloperoxidase]; SF + 1.5 mg/kg rhCC10 group had lower (P < 0.05) lung [IL-6], compared with all other groups. Compared with SF alone, SF augmented with at least 1.5 mg/kg rhCC10 decreased RDS-induced lung and systemic inflammation. Given that inflammation may lead to functional compromise, these data suggest that early intervention with rhCC10 may enhance SF therapy and warrant longer duration studies to determine its role to decrease long-term complications of ventilator management.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/japplphysiol.00246.2005DOI Listing
December 2005

The safety, pharmacokinetics, and anti-inflammatory effects of intratracheal recombinant human Clara cell protein in premature infants with respiratory distress syndrome.

Pediatr Res 2005 Jul 17;58(1):15-21. Epub 2005 Mar 17.

Cardio-Pulmonary Research Institute and Department of Pediatrics, Winthrop-University Hospital, SUNY-Stony Brook School of Medicine, Mineola, NY 11501, USA.

Clara cell 10-kD protein (CC10) is a potent anti-inflammatory protein that is normally abundant in the respiratory tract. CC10 is deficient and oxidized in premature infants with poor clinical outcome (death or the development of bronchopulmonary dysplasia). The safety, pharmacokinetics, and anti-inflammatory activity of recombinant human CC10 (rhCC10) were evaluated in a randomized, placebo-controlled, double-blinded, multicenter trial in premature infants with respiratory distress syndrome. A total of 22 infants (mean birth weight: 932 g; gestational age: 26.9 wk) received one intratracheal dose of placebo (n = 7) or 1.5 mg/kg (n = 8) or 5 mg/kg (n = 7) rhCC10 within 4 h of surfactant treatment. Pharmacokinetic analyses demonstrated that the serum half-life was 11.6 (1.5 mg/kg group) and 9.9 h (5 mg/kg group). Excess circulating CC10 was eliminated via the urine within 48 h. rhCC10-treated infants showed significant reductions in total cell count (p < 0.0002), neutrophil counts (p < 0.001), and total protein concentrations (p < 0.01) and tended to have decreased IL-6 (p < 0.07) in tracheal aspirate fluid collected over the first 3 d of life. Infants in all three groups showed comparable growth. At 36 wk postmenstrual age, five of seven infants were still hospitalized and two of seven infants were receiving oxygen in the placebo group compared with two of seven hospitalized and one of seven receiving oxygen in the 1.5-mg/kg group and four of six hospitalized and three of six receiving oxygen in the 5-mg/kg group. A single intratracheal dose of rhCC10 was well tolerated and had significant anti-inflammatory effects in the lung. Multiple doses of rhCC10 will be investigated for efficacy in reducing pulmonary inflammation and ameliorating bronchopulmonary dysplasia in future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1203/01.PDR.0000156371.89952.35DOI Listing
July 2005