Publications by authors named "Antonio Figueras"

118 Publications

Digging into bivalve miRNAomes: between conservation and innovation.

Philos Trans R Soc Lond B Biol Sci 2021 May 5;376(1825):20200165. Epub 2021 Apr 5.

Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691 Stockholm, Sweden.

Bivalves are a diverse mollusc group of economic and ecological importance. An evident resilience to pollution, parasites and extreme environments makes some bivalve species important models for studying adaptation and immunity. Despite substantial progress in sequencing projects of bivalves, information on non-coding genes and gene-regulatory aspects is still lacking. Here, we review the current repertoire of bivalve microRNAs (miRNAs), important regulators of gene expression in Metazoa. We exploited available short non-coding RNA (sncRNA) data for and , and we produced new sncRNA data for two additional bivalves, the Mediterranean mussel and the blood clam . We found substantial heterogeneity and incorrect annotations of miRNAs; hence, we reannotated conserved miRNA families using recently established criteria for microRNA annotation. We found 106 miRNA families missing in the previously published bivalve datasets and 89 and 87 miRNA complements were identified in the two additional species. The overall results provide a homogeneous and evolutionarily consistent picture of miRNAs in bivalves and enable future comparative studies. The identification of two bivalve-specific miRNA families sheds further light on the complexity of transcription and its regulation in bivalve molluscs. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1098/rstb.2020.0165DOI Listing
May 2021

Comparative Genomics Reveals 13 Different Isoforms of Mytimycins (A-M) in .

Int J Mol Sci 2021 Mar 22;22(6). Epub 2021 Mar 22.

Institute of Marine Research (IIM), CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.

Mytimycins are cysteine-rich antimicrobial peptides that show antifungal properties. These peptides are part of the immune network that constitutes the defense system of the Mediterranean mussel (). The immune system of mussels has been increasingly studied in the last decade due to its great efficiency, since these molluscs, particularly resistant to adverse conditions and pathogens, are present all over the world, being considered as an invasive species. The recent sequencing of the mussel genome has greatly simplified the genetic study of some of its immune genes. In the present work, we describe a total of 106 different mytimycin variants in 16 individual mussel genomes. The 13 highly supported mytimycin clusters (A-M) identified with phylogenetic inference were found to be subject to the presence/absence variation, a widespread phenomenon in mussels. We also identified a block of conserved residues evolving under purifying selection, which may indicate the "functional core" of the mature peptide, and a conserved set of 10 invariable plus 6 accessory cysteines which constitute a plastic disulfide array. Finally, we extended the taxonomic range of distribution of mytimycins among Mytilida, identifying novel sequences in , , , , , , and .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms22063235DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8004829PMC
March 2021

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition).

Authors:
Daniel J Klionsky Amal Kamal Abdel-Aziz Sara Abdelfatah Mahmoud Abdellatif Asghar Abdoli Steffen Abel Hagai Abeliovich Marie H Abildgaard Yakubu Princely Abudu Abraham Acevedo-Arozena Iannis E Adamopoulos Khosrow Adeli Timon E Adolph Annagrazia Adornetto Elma Aflaki Galila Agam Anupam Agarwal Bharat B Aggarwal Maria Agnello Patrizia Agostinis Javed N Agrewala Alexander Agrotis Patricia V Aguilar S Tariq Ahmad Zubair M Ahmed Ulises Ahumada-Castro Sonja Aits Shu Aizawa Yunus Akkoc Tonia Akoumianaki Hafize Aysin Akpinar Ahmed M Al-Abd Lina Al-Akra Abeer Al-Gharaibeh Moulay A Alaoui-Jamali Simon Alberti Elísabet Alcocer-Gómez Cristiano Alessandri Muhammad Ali M Abdul Alim Al-Bari Saeb Aliwaini Javad Alizadeh Eugènia Almacellas Alexandru Almasan Alicia Alonso Guillermo D Alonso Nihal Altan-Bonnet Dario C Altieri Élida M C Álvarez Sara Alves Cristine Alves da Costa Mazen M Alzaharna Marialaura Amadio Consuelo Amantini Cristina Amaral Susanna Ambrosio Amal O Amer Veena Ammanathan Zhenyi An Stig U Andersen Shaida A Andrabi Magaiver Andrade-Silva Allen M Andres Sabrina Angelini David Ann Uche C Anozie Mohammad Y Ansari Pedro Antas Adam Antebi Zuriñe Antón Tahira Anwar Lionel Apetoh Nadezda Apostolova Toshiyuki Araki Yasuhiro Araki Kohei Arasaki Wagner L Araújo Jun Araya Catherine Arden Maria-Angeles Arévalo Sandro Arguelles Esperanza Arias Jyothi Arikkath Hirokazu Arimoto Aileen R Ariosa Darius Armstrong-James Laetitia Arnauné-Pelloquin Angeles Aroca Daniela S Arroyo Ivica Arsov Rubén Artero Dalia Maria Lucia Asaro Michael Aschner Milad Ashrafizadeh Osnat Ashur-Fabian Atanas G Atanasov Alicia K Au Patrick Auberger Holger W Auner Laure Aurelian Riccardo Autelli Laura Avagliano Yenniffer Ávalos Sanja Aveic Célia Alexandra Aveleira Tamar Avin-Wittenberg Yucel Aydin Scott Ayton Srinivas Ayyadevara Maria Azzopardi Misuzu Baba Jonathan M Backer Steven K Backues Dong-Hun Bae Ok-Nam Bae Soo Han Bae Eric H Baehrecke Ahruem Baek Seung-Hoon Baek Sung Hee Baek Giacinto Bagetta Agnieszka Bagniewska-Zadworna Hua Bai Jie Bai Xiyuan Bai Yidong Bai Nandadulal Bairagi Shounak Baksi Teresa Balbi Cosima T Baldari Walter Balduini Andrea Ballabio Maria Ballester Salma Balazadeh Rena Balzan Rina Bandopadhyay Sreeparna Banerjee Sulagna Banerjee Ágnes Bánréti Yan Bao Mauricio S Baptista Alessandra Baracca Cristiana Barbati Ariadna Bargiela Daniela Barilà Peter G Barlow Sami J Barmada Esther Barreiro George E Barreto Jiri Bartek Bonnie Bartel Alberto Bartolome Gaurav R Barve Suresh H Basagoudanavar Diane C Bassham Robert C Bast Alakananda Basu Henri Batoko Isabella Batten Etienne E Baulieu Bradley L Baumgarner Jagadeesh Bayry Rupert Beale Isabelle Beau Florian Beaumatin Luiz R G Bechara George R Beck Michael F Beers Jakob Begun Christian Behrends Georg M N Behrens Roberto Bei Eloy Bejarano Shai Bel Christian Behl Amine Belaid Naïma Belgareh-Touzé Cristina Bellarosa Francesca Belleudi Melissa Belló Pérez Raquel Bello-Morales Jackeline Soares de Oliveira Beltran Sebastián Beltran Doris Mangiaracina Benbrook Mykolas Bendorius Bruno A Benitez Irene Benito-Cuesta Julien Bensalem Martin W Berchtold Sabina Berezowska Daniele Bergamaschi Matteo Bergami Andreas Bergmann Laura Berliocchi Clarisse Berlioz-Torrent Amélie Bernard Lionel Berthoux Cagri G Besirli Sebastien Besteiro Virginie M Betin Rudi Beyaert Jelena S Bezbradica Kiran Bhaskar Ingrid Bhatia-Kissova Resham Bhattacharya Sujoy Bhattacharya Shalmoli Bhattacharyya Md Shenuarin Bhuiyan Sujit Kumar Bhutia Lanrong Bi Xiaolin Bi Trevor J Biden Krikor Bijian Viktor A Billes Nadine Binart Claudia Bincoletto Asa B Birgisdottir Geir Bjorkoy Gonzalo Blanco Ana Blas-Garcia Janusz Blasiak Robert Blomgran Klas Blomgren Janice S Blum Emilio Boada-Romero Mirta Boban Kathleen Boesze-Battaglia Philippe Boeuf Barry Boland Pascale Bomont Paolo Bonaldo Srinivasa Reddy Bonam Laura Bonfili Juan S Bonifacino Brian A Boone Martin D Bootman Matteo Bordi Christoph Borner Beat C Bornhauser Gautam Borthakur Jürgen Bosch Santanu Bose Luis M Botana Juan Botas Chantal M Boulanger Michael E Boulton Mathieu Bourdenx Benjamin Bourgeois Nollaig M Bourke Guilhem Bousquet Patricia Boya Peter V Bozhkov Luiz H M Bozi Tolga O Bozkurt Doug E Brackney Christian H Brandts Ralf J Braun Gerhard H Braus Roberto Bravo-Sagua José M Bravo-San Pedro Patrick Brest Marie-Agnès Bringer Alfredo Briones-Herrera V Courtney Broaddus Peter Brodersen Jeffrey L Brodsky Steven L Brody Paola G Bronson Jeff M Bronstein Carolyn N Brown Rhoderick E Brown Patricia C Brum John H Brumell Nicola Brunetti-Pierri Daniele Bruno Robert J Bryson-Richardson Cecilia Bucci Carmen Buchrieser Marta Bueno Laura Elisa Buitrago-Molina Simone Buraschi Shilpa Buch J Ross Buchan Erin M Buckingham Hikmet Budak Mauricio Budini Geert Bultynck Florin Burada Joseph R Burgoyne M Isabel Burón Victor Bustos Sabrina Büttner Elena Butturini Aaron Byrd Isabel Cabas Sandra Cabrera-Benitez Ken Cadwell Jingjing Cai Lu Cai Qian Cai Montserrat Cairó Jose A Calbet Guy A Caldwell Kim A Caldwell Jarrod A Call Riccardo Calvani Ana C Calvo Miguel Calvo-Rubio Barrera Niels Os Camara Jacques H Camonis Nadine Camougrand Michelangelo Campanella Edward M Campbell François-Xavier Campbell-Valois Silvia Campello Ilaria Campesi Juliane C Campos Olivier Camuzard Jorge Cancino Danilo Candido de Almeida Laura Canesi Isabella Caniggia Barbara Canonico Carles Cantí Bin Cao Michele Caraglia Beatriz Caramés Evie H Carchman Elena Cardenal-Muñoz Cesar Cardenas Luis Cardenas Sandra M Cardoso Jennifer S Carew Georges F Carle Gillian Carleton Silvia Carloni Didac Carmona-Gutierrez Leticia A Carneiro Oliana Carnevali Julian M Carosi Serena Carra Alice Carrier Lucie Carrier Bernadette Carroll A Brent Carter Andreia Neves Carvalho Magali Casanova Caty Casas Josefina Casas Chiara Cassioli Eliseo F Castillo Karen Castillo Sonia Castillo-Lluva Francesca Castoldi Marco Castori Ariel F Castro Margarida Castro-Caldas Javier Castro-Hernandez Susana Castro-Obregon Sergio D Catz Claudia Cavadas Federica Cavaliere Gabriella Cavallini Maria Cavinato Maria L Cayuela Paula Cebollada Rica Valentina Cecarini Francesco Cecconi Marzanna Cechowska-Pasko Simone Cenci Victòria Ceperuelo-Mallafré João J Cerqueira Janete M Cerutti Davide Cervia Vildan Bozok Cetintas Silvia Cetrullo Han-Jung Chae Andrei S Chagin Chee-Yin Chai Gopal Chakrabarti Oishee Chakrabarti Tapas Chakraborty Trinad Chakraborty Mounia Chami Georgios Chamilos David W Chan Edmond Y W Chan Edward D Chan H Y Edwin Chan Helen H Chan Hung Chan Matthew T V Chan Yau Sang Chan Partha K Chandra Chih-Peng Chang Chunmei Chang Hao-Chun Chang Kai Chang Jie Chao Tracey Chapman Nicolas Charlet-Berguerand Samrat Chatterjee Shail K Chaube Anu Chaudhary Santosh Chauhan Edward Chaum Frédéric Checler Michael E Cheetham Chang-Shi Chen Guang-Chao Chen Jian-Fu Chen Liam L Chen Leilei Chen Lin Chen Mingliang Chen Mu-Kuan Chen Ning Chen Quan Chen Ruey-Hwa Chen Shi Chen Wei Chen Weiqiang Chen Xin-Ming Chen Xiong-Wen Chen Xu Chen Yan Chen Ye-Guang Chen Yingyu Chen Yongqiang Chen Yu-Jen Chen Yue-Qin Chen Zhefan Stephen Chen Zhi Chen Zhi-Hua Chen Zhijian J Chen Zhixiang Chen Hanhua Cheng Jun Cheng Shi-Yuan Cheng Wei Cheng Xiaodong Cheng Xiu-Tang Cheng Yiyun Cheng Zhiyong Cheng Zhong Chen Heesun Cheong Jit Kong Cheong Boris V Chernyak Sara Cherry Chi Fai Randy Cheung Chun Hei Antonio Cheung King-Ho Cheung Eric Chevet Richard J Chi Alan Kwok Shing Chiang Ferdinando Chiaradonna Roberto Chiarelli Mario Chiariello Nathalia Chica Susanna Chiocca Mario Chiong Shih-Hwa Chiou Abhilash I Chiramel Valerio Chiurchiù Dong-Hyung Cho Seong-Kyu Choe Augustine M K Choi Mary E Choi Kamalika Roy Choudhury Norman S Chow Charleen T Chu Jason P Chua John Jia En Chua Hyewon Chung Kin Pan Chung Seockhoon Chung So-Hyang Chung Yuen-Li Chung Valentina Cianfanelli Iwona A Ciechomska Mariana Cifuentes Laura Cinque Sebahattin Cirak Mara Cirone Michael J Clague Robert Clarke Emilio Clementi Eliana M Coccia Patrice Codogno Ehud Cohen Mickael M Cohen Tania Colasanti Fiorella Colasuonno Robert A Colbert Anna Colell Miodrag Čolić Nuria S Coll Mark O Collins María I Colombo Daniel A Colón-Ramos Lydie Combaret Sergio Comincini Márcia R Cominetti Antonella Consiglio Andrea Conte Fabrizio Conti Viorica Raluca Contu Mark R Cookson Kevin M Coombs Isabelle Coppens Maria Tiziana Corasaniti Dale P Corkery Nils Cordes Katia Cortese Maria do Carmo Costa Sarah Costantino Paola Costelli Ana Coto-Montes Peter J Crack Jose L Crespo Alfredo Criollo Valeria Crippa Riccardo Cristofani Tamas Csizmadia Antonio Cuadrado Bing Cui Jun Cui Yixian Cui Yong Cui Emmanuel Culetto Andrea C Cumino Andrey V Cybulsky Mark J Czaja Stanislaw J Czuczwar Stefania D'Adamo Marcello D'Amelio Daniela D'Arcangelo Andrew C D'Lugos Gabriella D'Orazi James A da Silva Hormos Salimi Dafsari Ruben K Dagda Yasin Dagdas Maria Daglia Xiaoxia Dai Yun Dai Yuyuan Dai Jessica Dal Col Paul Dalhaimer Luisa Dalla Valle Tobias Dallenga Guillaume Dalmasso Markus Damme Ilaria Dando Nico P Dantuma April L Darling Hiranmoy Das Srinivasan Dasarathy Santosh K Dasari Srikanta Dash Oliver Daumke Adrian N Dauphinee Jeffrey S Davies Valeria A Dávila Roger J Davis Tanja Davis Sharadha Dayalan Naidu Francesca De Amicis Karolien De Bosscher Francesca De Felice Lucia De Franceschi Chiara De Leonibus Mayara G de Mattos Barbosa Guido R Y De Meyer Angelo De Milito Cosimo De Nunzio Clara De Palma Mauro De Santi Claudio De Virgilio Daniela De Zio Jayanta Debnath Brian J DeBosch Jean-Paul Decuypere Mark A Deehan Gianluca Deflorian James DeGregori Benjamin Dehay Gabriel Del Rio Joe R Delaney Lea M D Delbridge Elizabeth Delorme-Axford M Victoria Delpino Francesca Demarchi Vilma Dembitz Nicholas D Demers Hongbin Deng Zhiqiang Deng Joern Dengjel Paul Dent Donna Denton Melvin L DePamphilis Channing J Der Vojo Deretic Albert Descoteaux Laura Devis Sushil Devkota Olivier Devuyst Grant Dewson Mahendiran Dharmasivam Rohan Dhiman Diego di Bernardo Manlio Di Cristina Fabio Di Domenico Pietro Di Fazio Alessio Di Fonzo Giovanni Di Guardo Gianni M Di Guglielmo Luca Di Leo Chiara Di Malta Alessia Di Nardo Martina Di Rienzo Federica Di Sano George Diallinas Jiajie Diao Guillermo Diaz-Araya Inés Díaz-Laviada Jared M Dickinson Marc Diederich Mélanie Dieudé Ivan Dikic Shiping Ding Wen-Xing Ding Luciana Dini Jelena Dinić Miroslav Dinic Albena T Dinkova-Kostova Marc S Dionne Jörg H W Distler Abhinav Diwan Ian M C Dixon Mojgan Djavaheri-Mergny Ina Dobrinski Oxana Dobrovinskaya Radek Dobrowolski Renwick C J Dobson Jelena Đokić Serap Dokmeci Emre Massimo Donadelli Bo Dong Xiaonan Dong Zhiwu Dong Gerald W Dorn Ii Volker Dotsch Huan Dou Juan Dou Moataz Dowaidar Sami Dridi Liat Drucker Ailian Du Caigan Du Guangwei Du Hai-Ning Du Li-Lin Du André du Toit Shao-Bin Duan Xiaoqiong Duan Sónia P Duarte Anna Dubrovska Elaine A Dunlop Nicolas Dupont Raúl V Durán Bilikere S Dwarakanath Sergey A Dyshlovoy Darius Ebrahimi-Fakhari Leopold Eckhart Charles L Edelstein Thomas Efferth Eftekhar Eftekharpour Ludwig Eichinger Nabil Eid Tobias Eisenberg N Tony Eissa Sanaa Eissa Miriam Ejarque Abdeljabar El Andaloussi Nazira El-Hage Shahenda El-Naggar Anna Maria Eleuteri Eman S El-Shafey Mohamed Elgendy Aristides G Eliopoulos María M Elizalde Philip M Elks Hans-Peter Elsasser Eslam S Elsherbiny Brooke M Emerling N C Tolga Emre Christina H Eng Nikolai Engedal Anna-Mart Engelbrecht Agnete S T Engelsen Jorrit M Enserink Ricardo Escalante Audrey Esclatine Mafalda Escobar-Henriques Eeva-Liisa Eskelinen Lucile Espert Makandjou-Ola Eusebio Gemma Fabrias Cinzia Fabrizi Antonio Facchiano Francesco Facchiano Bengt Fadeel Claudio Fader Alex C Faesen W Douglas Fairlie Alberto Falcó Bjorn H Falkenburger Daping Fan Jie Fan Yanbo Fan Evandro F Fang Yanshan Fang Yognqi Fang Manolis Fanto Tamar Farfel-Becker Mathias Faure Gholamreza Fazeli Anthony O Fedele Arthur M Feldman Du Feng Jiachun Feng Lifeng Feng Yibin Feng Yuchen Feng Wei Feng Thais Fenz Araujo Thomas A Ferguson Álvaro F Fernández Jose C Fernandez-Checa Sonia Fernández-Veledo Alisdair R Fernie Anthony W Ferrante Alessandra Ferraresi Merari F Ferrari Julio C B Ferreira Susan Ferro-Novick Antonio Figueras Riccardo Filadi Nicoletta Filigheddu Eduardo Filippi-Chiela Giuseppe Filomeni Gian Maria Fimia Vittorio Fineschi Francesca Finetti Steven Finkbeiner Edward A Fisher Paul B Fisher Flavio Flamigni Steven J Fliesler Trude H Flo Ida Florance Oliver Florey Tullio Florio Erika Fodor Carlo Follo Edward A Fon Antonella Forlino Francesco Fornai Paola Fortini Anna Fracassi Alessandro Fraldi Brunella Franco Rodrigo Franco Flavia Franconi Lisa B Frankel Scott L Friedman Leopold F Fröhlich Gema Frühbeck Jose M Fuentes Yukio Fujiki Naonobu Fujita Yuuki Fujiwara Mitsunori Fukuda Simone Fulda Luc Furic Norihiko Furuya Carmela Fusco Michaela U Gack Lidia Gaffke Sehamuddin Galadari Alessia Galasso Maria F Galindo Sachith Gallolu Kankanamalage Lorenzo Galluzzi Vincent Galy Noor Gammoh Boyi Gan Ian G Ganley Feng Gao Hui Gao Minghui Gao Ping Gao Shou-Jiang Gao Wentao Gao Xiaobo Gao Ana Garcera Maria Noé Garcia Verónica E Garcia Francisco García-Del Portillo Vega Garcia-Escudero Aracely Garcia-Garcia Marina Garcia-Macia Diana García-Moreno Carmen Garcia-Ruiz Patricia García-Sanz Abhishek D Garg Ricardo Gargini Tina Garofalo Robert F Garry Nils C Gassen Damian Gatica Liang Ge Wanzhong Ge Ruth Geiss-Friedlander Cecilia Gelfi Pascal Genschik Ian E Gentle Valeria Gerbino Christoph Gerhardt Kyla Germain Marc Germain David A Gewirtz Elham Ghasemipour Afshar Saeid Ghavami Alessandra Ghigo Manosij Ghosh Georgios Giamas Claudia Giampietri Alexandra Giatromanolaki Gary E Gibson Spencer B Gibson Vanessa Ginet Edward Giniger Carlotta Giorgi Henrique Girao Stephen E Girardin Mridhula Giridharan Sandy Giuliano Cecilia Giulivi Sylvie Giuriato Julien Giustiniani Alexander Gluschko Veit Goder Alexander Goginashvili Jakub Golab David C Goldstone Anna Golebiewska Luciana R Gomes Rodrigo Gomez Rubén Gómez-Sánchez Maria Catalina Gomez-Puerto Raquel Gomez-Sintes Qingqiu Gong Felix M Goni Javier González-Gallego Tomas Gonzalez-Hernandez Rosa A Gonzalez-Polo Jose A Gonzalez-Reyes Patricia González-Rodríguez Ing Swie Goping Marina S Gorbatyuk Nikolai V Gorbunov Kıvanç Görgülü Roxana M Gorojod Sharon M Gorski Sandro Goruppi Cecilia Gotor Roberta A Gottlieb Illana Gozes Devrim Gozuacik Martin Graef Markus H Gräler Veronica Granatiero Daniel Grasso Joshua P Gray Douglas R Green Alexander Greenhough Stephen L Gregory Edward F Griffin Mark W Grinstaff Frederic Gros Charles Grose Angelina S Gross Florian Gruber Paolo Grumati Tilman Grune Xueyan Gu Jun-Lin Guan Carlos M Guardia Kishore Guda Flora Guerra Consuelo Guerri Prasun Guha Carlos Guillén Shashi Gujar Anna Gukovskaya Ilya Gukovsky Jan Gunst Andreas Günther Anyonya R Guntur Chuanyong Guo Chun Guo Hongqing Guo Lian-Wang Guo Ming Guo Pawan Gupta Shashi Kumar Gupta Swapnil Gupta Veer Bala Gupta Vivek Gupta Asa B Gustafsson David D Gutterman Ranjitha H B Annakaisa Haapasalo James E Haber Aleksandra Hać Shinji Hadano Anders J Hafrén Mansour Haidar Belinda S Hall Gunnel Halldén Anne Hamacher-Brady Andrea Hamann Maho Hamasaki Weidong Han Malene Hansen Phyllis I Hanson Zijian Hao Masaru Harada Ljubica Harhaji-Trajkovic Nirmala Hariharan Nigil Haroon James Harris Takafumi Hasegawa Noor Hasima Nagoor Jeffrey A Haspel Volker Haucke Wayne D Hawkins Bruce A Hay Cole M Haynes Soren B Hayrabedyan Thomas S Hays Congcong He Qin He Rong-Rong He You-Wen He Yu-Ying He Yasser Heakal Alexander M Heberle J Fielding Hejtmancik Gudmundur Vignir Helgason Vanessa Henkel Marc Herb Alexander Hergovich Anna Herman-Antosiewicz Agustín Hernández Carlos Hernandez Sergio Hernandez-Diaz Virginia Hernandez-Gea Amaury Herpin Judit Herreros Javier H Hervás Daniel Hesselson Claudio Hetz Volker T Heussler Yujiro Higuchi Sabine Hilfiker Joseph A Hill William S Hlavacek Emmanuel A Ho Idy H T Ho Philip Wing-Lok Ho Shu-Leong Ho Wan Yun Ho G Aaron Hobbs Mark Hochstrasser Peter H M Hoet Daniel Hofius Paul Hofman Annika Höhn Carina I Holmberg Jose R Hombrebueno Chang-Won Hong Yi-Ren Hong Lora V Hooper Thorsten Hoppe Rastislav Horos Yujin Hoshida I-Lun Hsin Hsin-Yun Hsu Bing Hu Dong Hu Li-Fang Hu Ming Chang Hu Ronggui Hu Wei Hu Yu-Chen Hu Zhuo-Wei Hu Fang Hua Jinlian Hua Yingqi Hua Chongmin Huan Canhua Huang Chuanshu Huang Chuanxin Huang Chunling Huang Haishan Huang Kun Huang Michael L H Huang Rui Huang Shan Huang Tianzhi Huang Xing Huang Yuxiang Jack Huang Tobias B Huber Virginie Hubert Christian A Hubner Stephanie M Hughes William E Hughes Magali Humbert Gerhard Hummer James H Hurley Sabah Hussain Salik Hussain Patrick J Hussey Martina Hutabarat Hui-Yun Hwang Seungmin Hwang Antonio Ieni Fumiyo Ikeda Yusuke Imagawa Yuzuru Imai Carol Imbriano Masaya Imoto Denise M Inman Ken Inoki Juan Iovanna Renato V Iozzo Giuseppe Ippolito Javier E Irazoqui Pablo Iribarren Mohd Ishaq Makoto Ishikawa Nestor Ishimwe Ciro Isidoro Nahed Ismail Shohreh Issazadeh-Navikas Eisuke Itakura Daisuke Ito Davor Ivankovic Saška Ivanova Anand Krishnan V Iyer José M Izquierdo Masanori Izumi Marja Jäättelä Majid Sakhi Jabir William T Jackson Nadia Jacobo-Herrera Anne-Claire Jacomin Elise Jacquin Pooja Jadiya Hartmut Jaeschke Chinnaswamy Jagannath Arjen J Jakobi Johan Jakobsson Bassam Janji Pidder Jansen-Dürr Patric J Jansson Jonathan Jantsch Sławomir Januszewski Alagie Jassey Steve Jean Hélène Jeltsch-David Pavla Jendelova Andreas Jenny Thomas E Jensen Niels Jessen Jenna L Jewell Jing Ji Lijun Jia Rui Jia Liwen Jiang Qing Jiang Richeng Jiang Teng Jiang Xuejun Jiang Yu Jiang Maria Jimenez-Sanchez Eun-Jung Jin Fengyan Jin Hongchuan Jin Li Jin Luqi Jin Meiyan Jin Si Jin Eun-Kyeong Jo Carine Joffre Terje Johansen Gail V W Johnson Simon A Johnston Eija Jokitalo Mohit Kumar Jolly Leo A B Joosten Joaquin Jordan Bertrand Joseph Dianwen Ju Jeong-Sun Ju Jingfang Ju Esmeralda Juárez Delphine Judith Gábor Juhász Youngsoo Jun Chang Hwa Jung Sung-Chul Jung Yong Keun Jung Heinz Jungbluth Johannes Jungverdorben Steffen Just Kai Kaarniranta Allen Kaasik Tomohiro Kabuta Daniel Kaganovich Alon Kahana Renate Kain Shinjo Kajimura Maria Kalamvoki Manjula Kalia Danuta S Kalinowski Nina Kaludercic Ioanna Kalvari Joanna Kaminska Vitaliy O Kaminskyy Hiromitsu Kanamori Keizo Kanasaki Chanhee Kang Rui Kang Sang Sun Kang Senthilvelrajan Kaniyappan Tomotake Kanki Thirumala-Devi Kanneganti Anumantha G Kanthasamy Arthi Kanthasamy Marc Kantorow Orsolya Kapuy Michalis V Karamouzis Md Razaul Karim Parimal Karmakar Rajesh G Katare Masaru Kato Stefan H E Kaufmann Anu Kauppinen Gur P Kaushal Susmita Kaushik Kiyoshi Kawasaki Kemal Kazan Po-Yuan Ke Damien J Keating Ursula Keber John H Kehrl Kate E Keller Christian W Keller Jongsook Kim Kemper Candia M Kenific Oliver Kepp Stephanie Kermorgant Andreas Kern Robin Ketteler Tom G Keulers Boris Khalfin Hany Khalil Bilon Khambu Shahid Y Khan Vinoth Kumar Megraj Khandelwal Rekha Khandia Widuri Kho Noopur V Khobrekar Sataree Khuansuwan Mukhran Khundadze Samuel A Killackey Dasol Kim Deok Ryong Kim Do-Hyung Kim Dong-Eun Kim Eun Young Kim Eun-Kyoung Kim Hak-Rim Kim Hee-Sik Kim Hyung-Ryong Kim Jeong Hun Kim Jin Kyung Kim Jin-Hoi Kim Joungmok Kim Ju Hwan Kim Keun Il Kim Peter K Kim Seong-Jun Kim Scot R Kimball Adi Kimchi Alec C Kimmelman Tomonori Kimura Matthew A King Kerri J Kinghorn Conan G Kinsey Vladimir Kirkin Lorrie A Kirshenbaum Sergey L Kiselev Shuji Kishi Katsuhiko Kitamoto Yasushi Kitaoka Kaio Kitazato Richard N Kitsis Josef T Kittler Ole Kjaerulff Peter S Klein Thomas Klopstock Jochen Klucken Helene Knævelsrud Roland L Knorr Ben C B Ko Fred Ko Jiunn-Liang Ko Hotaka Kobayashi Satoru Kobayashi Ina Koch Jan C Koch Ulrich Koenig Donat Kögel Young Ho Koh Masato Koike Sepp D Kohlwein Nur M Kocaturk Masaaki Komatsu Jeannette König Toru Kono Benjamin T Kopp Tamas Korcsmaros Gözde Korkmaz Viktor I Korolchuk Mónica Suárez Korsnes Ali Koskela Janaiah Kota Yaichiro Kotake Monica L Kotler Yanjun Kou Michael I Koukourakis Evangelos Koustas Attila L Kovacs Tibor Kovács Daisuke Koya Tomohiro Kozako Claudine Kraft Dimitri Krainc Helmut Krämer Anna D Krasnodembskaya Carole Kretz-Remy Guido Kroemer Nicholas T Ktistakis Kazuyuki Kuchitsu Sabine Kuenen Lars Kuerschner Thomas Kukar Ajay Kumar Ashok Kumar Deepak Kumar Dhiraj Kumar Sharad Kumar Shinji Kume Caroline Kumsta Chanakya N Kundu Mondira Kundu Ajaikumar B Kunnumakkara Lukasz Kurgan Tatiana G Kutateladze Ozlem Kutlu SeongAe Kwak Ho Jeong Kwon Taeg Kyu Kwon Yong Tae Kwon Irene Kyrmizi Albert La Spada Patrick Labonté Sylvain Ladoire Ilaria Laface Frank Lafont Diane C Lagace Vikramjit Lahiri Zhibing Lai Angela S Laird Aparna Lakkaraju Trond Lamark Sheng-Hui Lan Ane Landajuela Darius J R Lane Jon D Lane Charles H Lang Carsten Lange Ülo Langel Rupert Langer Pierre Lapaquette Jocelyn Laporte Nicholas F LaRusso Isabel Lastres-Becker Wilson Chun Yu Lau Gordon W Laurie Sergio Lavandero Betty Yuen Kwan Law Helen Ka-Wai Law Rob Layfield Weidong Le Herve Le Stunff Alexandre Y Leary Jean-Jacques Lebrun Lionel Y W Leck Jean-Philippe Leduc-Gaudet Changwook Lee Chung-Pei Lee Da-Hye Lee Edward B Lee Erinna F Lee Gyun Min Lee He-Jin Lee Heung Kyu Lee Jae Man Lee Jason S Lee Jin-A Lee Joo-Yong Lee Jun Hee Lee Michael Lee Min Goo Lee Min Jae Lee Myung-Shik Lee Sang Yoon Lee Seung-Jae Lee Stella Y Lee Sung Bae Lee Won Hee Lee Ying-Ray Lee Yong-Ho Lee Youngil Lee Christophe Lefebvre Renaud Legouis Yu L Lei Yuchen Lei Sergey Leikin Gerd Leitinger Leticia Lemus Shuilong Leng Olivia Lenoir Guido Lenz Heinz Josef Lenz Paola Lenzi Yolanda León Andréia M Leopoldino Christoph Leschczyk Stina Leskelä Elisabeth Letellier Chi-Ting Leung Po Sing Leung Jeremy S Leventhal Beth Levine Patrick A Lewis Klaus Ley Bin Li Da-Qiang Li Jianming Li Jing Li Jiong Li Ke Li Liwu Li Mei Li Min Li Min Li Ming Li Mingchuan Li Pin-Lan Li Ming-Qing Li Qing Li Sheng Li Tiangang Li Wei Li Wenming Li Xue Li Yi-Ping Li Yuan Li Zhiqiang Li Zhiyong Li Zhiyuan Li Jiqin Lian Chengyu Liang Qiangrong Liang Weicheng Liang Yongheng Liang YongTian Liang Guanghong Liao Lujian Liao Mingzhi Liao Yung-Feng Liao Mariangela Librizzi Pearl P Y Lie Mary A Lilly Hyunjung J Lim Thania R R Lima Federica Limana Chao Lin Chih-Wen Lin Dar-Shong Lin Fu-Cheng Lin Jiandie D Lin Kurt M Lin Kwang-Huei Lin Liang-Tzung Lin Pei-Hui Lin Qiong Lin Shaofeng Lin Su-Ju Lin Wenyu Lin Xueying Lin Yao-Xin Lin Yee-Shin Lin Rafael Linden Paula Lindner Shuo-Chien Ling Paul Lingor Amelia K Linnemann Yih-Cherng Liou Marta M Lipinski Saška Lipovšek Vitor A Lira Natalia Lisiak Paloma B Liton Chao Liu Ching-Hsuan Liu Chun-Feng Liu Cui Hua Liu Fang Liu Hao Liu Hsiao-Sheng Liu Hua-Feng Liu Huifang Liu Jia Liu Jing Liu Julia Liu Leyuan Liu Longhua Liu Meilian Liu Qin Liu Wei Liu Wende Liu Xiao-Hong Liu Xiaodong Liu Xingguo Liu Xu Liu Xuedong Liu Yanfen Liu Yang Liu Yang Liu Yueyang Liu Yule Liu J Andrew Livingston Gerard Lizard Jose M Lizcano Senka Ljubojevic-Holzer Matilde E LLeonart David Llobet-Navàs Alicia Llorente Chih Hung Lo Damián Lobato-Márquez Qi Long Yun Chau Long Ben Loos Julia A Loos Manuela G López Guillermo López-Doménech José Antonio López-Guerrero Ana T López-Jiménez Óscar López-Pérez Israel López-Valero Magdalena J Lorenowicz Mar Lorente Peter Lorincz Laura Lossi Sophie Lotersztajn Penny E Lovat Jonathan F Lovell Alenka Lovy Péter Lőw Guang Lu Haocheng Lu Jia-Hong Lu Jin-Jian Lu Mengji Lu Shuyan Lu Alessandro Luciani John M Lucocq Paula Ludovico Micah A Luftig Morten Luhr Diego Luis-Ravelo Julian J Lum Liany Luna-Dulcey Anders H Lund Viktor K Lund Jan D Lünemann Patrick Lüningschrör Honglin Luo Rongcan Luo Shouqing Luo Zhi Luo Claudio Luparello Bernhard Lüscher Luan Luu Alex Lyakhovich Konstantin G Lyamzaev Alf Håkon Lystad Lyubomyr Lytvynchuk Alvin C Ma Changle Ma Mengxiao Ma Ning-Fang Ma Quan-Hong Ma Xinliang Ma Yueyun Ma Zhenyi Ma Ormond A MacDougald Fernando Macian Gustavo C MacIntosh Jeffrey P MacKeigan Kay F Macleod Sandra Maday Frank Madeo Muniswamy Madesh Tobias Madl Julio Madrigal-Matute Akiko Maeda Yasuhiro Maejima Marta Magarinos Poornima Mahavadi Emiliano Maiani Kenneth Maiese Panchanan Maiti Maria Chiara Maiuri Barbara Majello Michael B Major Elena Makareeva Fayaz Malik Karthik Mallilankaraman Walter Malorni Alina Maloyan Najiba Mammadova Gene Chi Wai Man Federico Manai Joseph D Mancias Eva-Maria Mandelkow Michael A Mandell Angelo A Manfredi Masoud H Manjili Ravi Manjithaya Patricio Manque Bella B Manshian Raquel Manzano Claudia Manzoni Kai Mao Cinzia Marchese Sandrine Marchetti Anna Maria Marconi Fabrizio Marcucci Stefania Mardente Olga A Mareninova Marta Margeta Muriel Mari Sara Marinelli Oliviero Marinelli Guillermo Mariño Sofia Mariotto Richard S Marshall Mark R Marten Sascha Martens Alexandre P J Martin Katie R Martin Sara Martin Shaun Martin Adrián Martín-Segura Miguel A Martín-Acebes Inmaculada Martin-Burriel Marcos Martin-Rincon Paloma Martin-Sanz José A Martina Wim Martinet Aitor Martinez Ana Martinez Jennifer Martinez Moises Martinez Velazquez Nuria Martinez-Lopez Marta Martinez-Vicente Daniel O Martins Joilson O Martins Waleska K Martins Tania Martins-Marques Emanuele Marzetti Shashank Masaldan Celine Masclaux-Daubresse Douglas G Mashek Valentina Massa Lourdes Massieu Glenn R Masson Laura Masuelli Anatoliy I Masyuk Tetyana V Masyuk Paola Matarrese Ander Matheu Satoaki Matoba Sachiko Matsuzaki Pamela Mattar Alessandro Matte Domenico Mattoscio José L Mauriz Mario Mauthe Caroline Mauvezin Emanual Maverakis Paola Maycotte Johanna Mayer Gianluigi Mazzoccoli Cristina Mazzoni Joseph R Mazzulli Nami McCarty Christine McDonald Mitchell R McGill Sharon L McKenna BethAnn McLaughlin Fionn McLoughlin Mark A McNiven Thomas G McWilliams Fatima Mechta-Grigoriou Tania Catarina Medeiros Diego L Medina Lynn A Megeney Klara Megyeri Maryam Mehrpour Jawahar L Mehta Alfred J Meijer Annemarie H Meijer Jakob Mejlvang Alicia Meléndez Annette Melk Gonen Memisoglu Alexandrina F Mendes Delong Meng Fei Meng Tian Meng Rubem Menna-Barreto Manoj B Menon Carol Mercer Anne E Mercier Jean-Louis Mergny Adalberto Merighi Seth D Merkley Giuseppe Merla Volker Meske Ana Cecilia Mestre Shree Padma Metur Christian Meyer Hemmo Meyer Wenyi Mi Jeanne Mialet-Perez Junying Miao Lucia Micale Yasuo Miki Enrico Milan Małgorzata Milczarek Dana L Miller Samuel I Miller Silke Miller Steven W Millward Ira Milosevic Elena A Minina Hamed Mirzaei Hamid Reza Mirzaei Mehdi Mirzaei Amit Mishra Nandita Mishra Paras Kumar Mishra Maja Misirkic Marjanovic Roberta Misasi Amit Misra Gabriella Misso Claire Mitchell Geraldine Mitou Tetsuji Miura Shigeki Miyamoto Makoto Miyazaki Mitsunori Miyazaki Taiga Miyazaki Keisuke Miyazawa Noboru Mizushima Trine H Mogensen Baharia Mograbi Reza Mohammadinejad Yasir Mohamud Abhishek Mohanty Sipra Mohapatra Torsten Möhlmann Asif Mohmmed Anna Moles Kelle H Moley Maurizio Molinari Vincenzo Mollace Andreas Buch Møller Bertrand Mollereau Faustino Mollinedo Costanza Montagna Mervyn J Monteiro Andrea Montella L Ruth Montes Barbara Montico Vinod K Mony Giacomo Monzio Compagnoni Michael N Moore Mohammad A Moosavi Ana L Mora Marina Mora David Morales-Alamo Rosario Moratalla Paula I Moreira Elena Morelli Sandra Moreno Daniel Moreno-Blas Viviana Moresi Benjamin Morga Alwena H Morgan Fabrice Morin Hideaki Morishita Orson L Moritz Mariko Moriyama Yuji Moriyasu Manuela Morleo Eugenia Morselli Jose F Moruno-Manchon Jorge Moscat Serge Mostowy Elisa Motori Andrea Felinto Moura Naima Moustaid-Moussa Maria Mrakovcic Gabriel Muciño-Hernández Anupam Mukherjee Subhadip Mukhopadhyay Jean M Mulcahy Levy Victoriano Mulero Sylviane Muller Christian Münch Ashok Munjal Pura Munoz-Canoves Teresa Muñoz-Galdeano Christian Münz Tomokazu Murakawa Claudia Muratori Brona M Murphy J Patrick Murphy Aditya Murthy Timo T Myöhänen Indira U Mysorekar Jennifer Mytych Seyed Mohammad Nabavi Massimo Nabissi Péter Nagy Jihoon Nah Aimable Nahimana Ichiro Nakagawa Ken Nakamura Hitoshi Nakatogawa Shyam S Nandi Meera Nanjundan Monica Nanni Gennaro Napolitano Roberta Nardacci Masashi Narita Melissa Nassif Ilana Nathan Manabu Natsumeda Ryno J Naude Christin Naumann Olaia Naveiras Fatemeh Navid Steffan T Nawrocki Taras Y Nazarko Francesca Nazio Florentina Negoita Thomas Neill Amanda L Neisch Luca M Neri Mihai G Netea Patrick Neubert Thomas P Neufeld Dietbert Neumann Albert Neutzner Phillip T Newton Paul A Ney Ioannis P Nezis Charlene C W Ng Tzi Bun Ng Hang T T Nguyen Long T Nguyen Hong-Min Ni Clíona Ní Cheallaigh Zhenhong Ni M Celeste Nicolao Francesco Nicoli Manuel Nieto-Diaz Per Nilsson Shunbin Ning Rituraj Niranjan Hiroshi Nishimune Mireia Niso-Santano Ralph A Nixon Annalisa Nobili Clevio Nobrega Takeshi Noda Uxía Nogueira-Recalde Trevor M Nolan Ivan Nombela Ivana Novak Beatriz Novoa Takashi Nozawa Nobuyuki Nukina Carmen Nussbaum-Krammer Jesper Nylandsted Tracey R O'Donovan Seónadh M O'Leary Eyleen J O'Rourke Mary P O'Sullivan Timothy E O'Sullivan Salvatore Oddo Ina Oehme Michinaga Ogawa Eric Ogier-Denis Margret H Ogmundsdottir Besim Ogretmen Goo Taeg Oh Seon-Hee Oh Young J Oh Takashi Ohama Yohei Ohashi Masaki Ohmuraya Vasileios Oikonomou Rani Ojha Koji Okamoto Hitoshi Okazawa Masahide Oku Sara Oliván Jorge M A Oliveira Michael Ollmann James A Olzmann Shakib Omari M Bishr Omary Gizem Önal Martin Ondrej Sang-Bing Ong Sang-Ging Ong Anna Onnis Juan A Orellana Sara Orellana-Muñoz Maria Del Mar Ortega-Villaizan Xilma R Ortiz-Gonzalez Elena Ortona Heinz D Osiewacz Abdel-Hamid K Osman Rosario Osta Marisa S Otegui Kinya Otsu Christiane Ott Luisa Ottobrini Jing-Hsiung James Ou Tiago F Outeiro Inger Oynebraten Melek Ozturk Gilles Pagès Susanta Pahari Marta Pajares Utpal B Pajvani Rituraj Pal Simona Paladino Nicolas Pallet Michela Palmieri Giuseppe Palmisano Camilla Palumbo Francesco Pampaloni Lifeng Pan Qingjun Pan Wenliang Pan Xin Pan Ganna Panasyuk Rahul Pandey Udai B Pandey Vrajesh Pandya Francesco Paneni Shirley Y Pang Elisa Panzarini Daniela L Papademetrio Elena Papaleo Daniel Papinski Diana Papp Eun Chan Park Hwan Tae Park Ji-Man Park Jong-In Park Joon Tae Park Junsoo Park Sang Chul Park Sang-Youel Park Abraham H Parola Jan B Parys Adrien Pasquier Benoit Pasquier João F Passos Nunzia Pastore Hemal H Patel Daniel Patschan Sophie Pattingre Gustavo Pedraza-Alva Jose Pedraza-Chaverri Zully Pedrozo Gang Pei Jianming Pei Hadas Peled-Zehavi Joaquín M Pellegrini Joffrey Pelletier Miguel A Peñalva Di Peng Ying Peng Fabio Penna Maria Pennuto Francesca Pentimalli Cláudia Mf Pereira Gustavo J S Pereira Lilian C Pereira Luis Pereira de Almeida Nirma D Perera Ángel Pérez-Lara Ana B Perez-Oliva María Esther Pérez-Pérez Palsamy Periyasamy Andras Perl Cristiana Perrotta Ida Perrotta Richard G Pestell Morten Petersen Irina Petrache Goran Petrovski Thorsten Pfirrmann Astrid S Pfister Jennifer A Philips Huifeng Pi Anna Picca Alicia M Pickrell Sandy Picot Giovanna M Pierantoni Marina Pierdominici Philippe Pierre Valérie Pierrefite-Carle Karolina Pierzynowska Federico Pietrocola Miroslawa Pietruczuk Claudio Pignata Felipe X Pimentel-Muiños Mario Pinar Roberta O Pinheiro Ronit Pinkas-Kramarski Paolo Pinton Karolina Pircs Sujan Piya Paola Pizzo Theo S Plantinga Harald W Platta Ainhoa Plaza-Zabala Markus Plomann Egor Y Plotnikov Helene Plun-Favreau Ryszard Pluta Roger Pocock Stefanie Pöggeler Christian Pohl Marc Poirot Angelo Poletti Marisa Ponpuak Hana Popelka Blagovesta Popova Helena Porta Soledad Porte Alcon Eliana Portilla-Fernandez Martin Post Malia B Potts Joanna Poulton Ted Powers Veena Prahlad Tomasz K Prajsnar Domenico Praticò Rosaria Prencipe Muriel Priault Tassula Proikas-Cezanne Vasilis J Promponas Christopher G Proud Rosa Puertollano Luigi Puglielli Thomas Pulinilkunnil Deepika Puri Rajat Puri Julien Puyal Xiaopeng Qi Yongmei Qi Wenbin Qian Lei Qiang Yu Qiu Joe Quadrilatero Jorge Quarleri Nina Raben Hannah Rabinowich Debora Ragona Michael J Ragusa Nader Rahimi Marveh Rahmati Valeria Raia Nuno Raimundo Namakkal-Soorappan Rajasekaran Sriganesh Ramachandra Rao Abdelhaq Rami Ignacio Ramírez-Pardo David B Ramsden Felix Randow Pundi N Rangarajan Danilo Ranieri Hai Rao Lang Rao Rekha Rao Sumit Rathore J Arjuna Ratnayaka Edward A Ratovitski Palaniyandi Ravanan Gloria Ravegnini Swapan K Ray Babak Razani Vito Rebecca Fulvio Reggiori Anne Régnier-Vigouroux Andreas S Reichert David Reigada Jan H Reiling Theo Rein Siegfried Reipert Rokeya Sultana Rekha Hongmei Ren Jun Ren Weichao Ren Tristan Renault Giorgia Renga Karen Reue Kim Rewitz Bruna Ribeiro de Andrade Ramos S Amer Riazuddin Teresa M Ribeiro-Rodrigues Jean-Ehrland Ricci Romeo Ricci Victoria Riccio Des R Richardson Yasuko Rikihisa Makarand V Risbud Ruth M Risueño Konstantinos Ritis Salvatore Rizza Rosario Rizzuto Helen C Roberts Luke D Roberts Katherine J Robinson Maria Carmela Roccheri Stephane Rocchi George G Rodney Tiago Rodrigues Vagner Ramon Rodrigues Silva Amaia Rodriguez Ruth Rodriguez-Barrueco Nieves Rodriguez-Henche Humberto Rodriguez-Rocha Jeroen Roelofs Robert S Rogers Vladimir V Rogov Ana I Rojo Krzysztof Rolka Vanina Romanello Luigina Romani Alessandra Romano Patricia S Romano David Romeo-Guitart Luis C Romero Montserrat Romero Joseph C Roney Christopher Rongo Sante Roperto Mathias T Rosenfeldt Philip Rosenstiel Anne G Rosenwald Kevin A Roth Lynn Roth Steven Roth Kasper M A Rouschop Benoit D Roussel Sophie Roux Patrizia Rovere-Querini Ajit Roy Aurore Rozieres Diego Ruano David C Rubinsztein Maria P Rubtsova Klaus Ruckdeschel Christoph Ruckenstuhl Emil Rudolf Rüdiger Rudolf Alessandra Ruggieri Avnika Ashok Ruparelia Paola Rusmini Ryan R Russell Gian Luigi Russo Maria Russo Rossella Russo Oxana O Ryabaya Kevin M Ryan Kwon-Yul Ryu Maria Sabater-Arcis Ulka Sachdev Michael Sacher Carsten Sachse Abhishek Sadhu Junichi Sadoshima Nathaniel Safren Paul Saftig Antonia P Sagona Gaurav Sahay Amirhossein Sahebkar Mustafa Sahin Ozgur Sahin Sumit Sahni Nayuta Saito Shigeru Saito Tsunenori Saito Ryohei Sakai Yasuyoshi Sakai Jun-Ichi Sakamaki Kalle Saksela Gloria Salazar Anna Salazar-Degracia Ghasem H Salekdeh Ashok K Saluja Belém Sampaio-Marques Maria Cecilia Sanchez Jose A Sanchez-Alcazar Victoria Sanchez-Vera Vanessa Sancho-Shimizu J Thomas Sanderson Marco Sandri Stefano Santaguida Laura Santambrogio Magda M Santana Giorgio Santoni Alberto Sanz Pascual Sanz Shweta Saran Marco Sardiello Timothy J Sargeant Apurva Sarin Chinmoy Sarkar Sovan Sarkar Maria-Rosa Sarrias Surajit Sarkar Dipanka Tanu Sarmah Jaakko Sarparanta Aishwarya Sathyanarayan Ranganayaki Sathyanarayanan K Matthew Scaglione Francesca Scatozza Liliana Schaefer Zachary T Schafer Ulrich E Schaible Anthony H V Schapira Michael Scharl Hermann M Schatzl Catherine H Schein Wiep Scheper David Scheuring Maria Vittoria Schiaffino Monica Schiappacassi Rainer Schindl Uwe Schlattner Oliver Schmidt Roland Schmitt Stephen D Schmidt Ingo Schmitz Eran Schmukler Anja Schneider Bianca E Schneider Romana Schober Alejandra C Schoijet Micah B Schott Michael Schramm Bernd Schröder Kai Schuh Christoph Schüller Ryan J Schulze Lea Schürmanns Jens C Schwamborn Melanie Schwarten Filippo Scialo Sebastiano Sciarretta Melanie J Scott Kathleen W Scotto A Ivana Scovassi Andrea Scrima Aurora Scrivo David Sebastian Salwa Sebti Simon Sedej Laura Segatori Nava Segev Per O Seglen Iban Seiliez Ekihiro Seki Scott B Selleck Frank W Sellke Joshua T Selsby Michael Sendtner Serif Senturk Elena Seranova Consolato Sergi Ruth Serra-Moreno Hiromi Sesaki Carmine Settembre Subba Rao Gangi Setty Gianluca Sgarbi Ou Sha John J Shacka Javeed A Shah Dantong Shang Changshun Shao Feng Shao Soroush Sharbati Lisa M Sharkey Dipali Sharma Gaurav Sharma Kulbhushan Sharma Pawan Sharma Surendra Sharma Han-Ming Shen Hongtao Shen Jiangang Shen Ming Shen Weili Shen Zheni Shen Rui Sheng Zhi Sheng Zu-Hang Sheng Jianjian Shi Xiaobing Shi Ying-Hong Shi Kahori Shiba-Fukushima Jeng-Jer Shieh Yohta Shimada Shigeomi Shimizu Makoto Shimozawa Takahiro Shintani Christopher J Shoemaker Shahla Shojaei Ikuo Shoji Bhupendra V Shravage Viji Shridhar Chih-Wen Shu Hong-Bing Shu Ke Shui Arvind K Shukla Timothy E Shutt Valentina Sica Aleem Siddiqui Amanda Sierra Virginia Sierra-Torre Santiago Signorelli Payel Sil Bruno J de Andrade Silva Johnatas D Silva Eduardo Silva-Pavez Sandrine Silvente-Poirot Rachel E Simmonds Anna Katharina Simon Hans-Uwe Simon Matias Simons Anurag Singh Lalit P Singh Rajat Singh Shivendra V Singh Shrawan K Singh Sudha B Singh Sunaina Singh Surinder Pal Singh Debasish Sinha Rohit Anthony Sinha Sangita Sinha Agnieszka Sirko Kapil Sirohi Efthimios L Sivridis Panagiotis Skendros Aleksandra Skirycz Iva Slaninová Soraya S Smaili Andrei Smertenko Matthew D Smith Stefaan J Soenen Eun Jung Sohn Sophia P M Sok Giancarlo Solaini Thierry Soldati Scott A Soleimanpour Rosa M Soler Alexei Solovchenko Jason A Somarelli Avinash Sonawane Fuyong Song Hyun Kyu Song Ju-Xian Song Kunhua Song Zhiyin Song Leandro R Soria Maurizio Sorice Alexander A Soukas Sandra-Fausia Soukup Diana Sousa Nadia Sousa Paul A Spagnuolo Stephen A Spector M M Srinivas Bharath Daret St Clair Venturina Stagni Leopoldo Staiano Clint A Stalnecker Metodi V Stankov Peter B Stathopulos Katja Stefan Sven Marcel Stefan Leonidas Stefanis Joan S Steffan Alexander Steinkasserer Harald Stenmark Jared Sterneckert Craig Stevens Veronika Stoka Stephan Storch Björn Stork Flavie Strappazzon Anne Marie Strohecker Dwayne G Stupack Huanxing Su Ling-Yan Su Longxiang Su Ana M Suarez-Fontes Carlos S Subauste Selvakumar Subbian Paula V Subirada Ganapasam Sudhandiran Carolyn M Sue Xinbing Sui Corey Summers Guangchao Sun Jun Sun Kang Sun Meng-Xiang Sun Qiming Sun Yi Sun Zhongjie Sun Karen K S Sunahara Eva Sundberg Katalin Susztak Peter Sutovsky Hidekazu Suzuki Gary Sweeney J David Symons Stephen Cho Wing Sze Nathaniel J Szewczyk Anna Tabęcka-Łonczynska Claudio Tabolacci Frank Tacke Heinrich Taegtmeyer Marco Tafani Mitsuo Tagaya Haoran Tai Stephen W G Tait Yoshinori Takahashi Szabolcs Takats Priti Talwar Chit Tam Shing Yau Tam Davide Tampellini Atsushi Tamura Chong Teik Tan Eng-King Tan Ya-Qin Tan Masaki Tanaka Motomasa Tanaka Daolin Tang Jingfeng Tang Tie-Shan Tang Isei Tanida Zhipeng Tao Mohammed Taouis Lars Tatenhorst Nektarios Tavernarakis Allen Taylor Gregory A Taylor Joan M Taylor Elena Tchetina Andrew R Tee Irmgard Tegeder David Teis Natercia Teixeira Fatima Teixeira-Clerc Kumsal A Tekirdag Tewin Tencomnao Sandra Tenreiro Alexei V Tepikin Pilar S Testillano Gianluca Tettamanti Pierre-Louis Tharaux Kathrin Thedieck Arvind A Thekkinghat Stefano Thellung Josephine W Thinwa V P Thirumalaikumar Sufi Mary Thomas Paul G Thomes Andrew Thorburn Lipi Thukral Thomas Thum Michael Thumm Ling Tian Ales Tichy Andreas Till Vincent Timmerman Vladimir I Titorenko Sokol V Todi Krassimira Todorova Janne M Toivonen Luana Tomaipitinca Dhanendra Tomar Cristina Tomas-Zapico Sergej Tomić Benjamin Chun-Kit Tong Chao Tong Xin Tong Sharon A Tooze Maria L Torgersen Satoru Torii Liliana Torres-López Alicia Torriglia Christina G Towers Roberto Towns Shinya Toyokuni Vladimir Trajkovic Donatella Tramontano Quynh-Giao Tran Leonardo H Travassos Charles B Trelford Shirley Tremel Ioannis P Trougakos Betty P Tsao Mario P Tschan Hung-Fat Tse Tak Fu Tse Hitoshi Tsugawa Andrey S Tsvetkov David A Tumbarello Yasin Tumtas María J Tuñón Sandra Turcotte Boris Turk Vito Turk Bradley J Turner Richard I Tuxworth Jessica K Tyler Elena V Tyutereva Yasuo Uchiyama Aslihan Ugun-Klusek Holm H Uhlig Marzena Ułamek-Kozioł Ilya V Ulasov Midori Umekawa Christian Ungermann Rei Unno Sylvie Urbe Elisabet Uribe-Carretero Suayib Üstün Vladimir N Uversky Thomas Vaccari Maria I Vaccaro Björn F Vahsen Helin Vakifahmetoglu-Norberg Rut Valdor Maria J Valente Ayelén Valko Richard B Vallee Angela M Valverde Greet Van den Berghe Stijn van der Veen Luc Van Kaer Jorg van Loosdregt Sjoerd J L van Wijk Wim Vandenberghe Ilse Vanhorebeek Marcos A Vannier-Santos Nicola Vannini M Cristina Vanrell Chiara Vantaggiato Gabriele Varano Isabel Varela-Nieto Máté Varga M Helena Vasconcelos Somya Vats Demetrios G Vavvas Ignacio Vega-Naredo Silvia Vega-Rubin-de-Celis Guillermo Velasco Ariadna P Velázquez Tibor Vellai Edo Vellenga Francesca Velotti Mireille Verdier Panayotis Verginis Isabelle Vergne Paul Verkade Manish Verma Patrik Verstreken Tim Vervliet Jörg Vervoorts Alexandre T Vessoni Victor M Victor Michel Vidal Chiara Vidoni Otilia V Vieira Richard D Vierstra Sonia Viganó Helena Vihinen Vinoy Vijayan Miquel Vila Marçal Vilar José M Villalba Antonio Villalobo Beatriz Villarejo-Zori Francesc Villarroya Joan Villarroya Olivier Vincent Cecile Vindis Christophe Viret Maria Teresa Viscomi Dora Visnjic Ilio Vitale David J Vocadlo Olga V Voitsekhovskaja Cinzia Volonté Mattia Volta Marta Vomero Clarissa Von Haefen Marc A Vooijs Wolfgang Voos Ljubica Vucicevic Richard Wade-Martins Satoshi Waguri Kenrick A Waite Shuji Wakatsuki David W Walker Mark J Walker Simon A Walker Jochen Walter Francisco G Wandosell Bo Wang Chao-Yung Wang Chen Wang Chenran Wang Chenwei Wang Cun-Yu Wang Dong Wang Fangyang Wang Feng Wang Fengming Wang Guansong Wang Han Wang Hao Wang Hexiang Wang Hong-Gang Wang Jianrong Wang Jigang Wang Jiou Wang Jundong Wang Kui Wang Lianrong Wang Liming Wang Maggie Haitian Wang Meiqing Wang Nanbu Wang Pengwei Wang Peipei Wang Ping Wang Ping Wang Qing Jun Wang Qing Wang Qing Kenneth Wang Qiong A Wang Wen-Tao Wang Wuyang Wang Xinnan Wang Xuejun Wang Yan Wang Yanchang Wang Yanzhuang Wang Yen-Yun Wang Yihua Wang Yipeng Wang Yu Wang Yuqi Wang Zhe Wang Zhenyu Wang Zhouguang Wang Gary Warnes Verena Warnsmann Hirotaka Watada Eizo Watanabe Maxinne Watchon Anna Wawrzyńska Timothy E Weaver Grzegorz Wegrzyn Ann M Wehman Huafeng Wei Lei Wei Taotao Wei Yongjie Wei Oliver H Weiergräber Conrad C Weihl Günther Weindl Ralf Weiskirchen Alan Wells Runxia H Wen Xin Wen Antonia Werner Beatrice Weykopf Sally P Wheatley J Lindsay Whitton Alexander J Whitworth Katarzyna Wiktorska Manon E Wildenberg Tom Wileman Simon Wilkinson Dieter Willbold Brett Williams Robin S B Williams Roger L Williams Peter R Williamson Richard A Wilson Beate Winner Nathaniel J Winsor Steven S Witkin Harald Wodrich Ute Woehlbier Thomas Wollert Esther Wong Jack Ho Wong Richard W Wong Vincent Kam Wai Wong W Wei-Lynn Wong An-Guo Wu Chengbiao Wu Jian Wu Junfang Wu Kenneth K Wu Min Wu Shan-Ying Wu Shengzhou Wu Shu-Yan Wu Shufang Wu William K K Wu Xiaohong Wu Xiaoqing Wu Yao-Wen Wu Yihua Wu Ramnik J Xavier Hongguang Xia Lixin Xia Zhengyuan Xia Ge Xiang Jin Xiang Mingliang Xiang Wei Xiang Bin Xiao Guozhi Xiao Hengyi Xiao Hong-Tao Xiao Jian Xiao Lan Xiao Shi Xiao Yin Xiao Baoming Xie Chuan-Ming Xie Min Xie Yuxiang Xie Zhiping Xie Zhonglin Xie Maria Xilouri Congfeng Xu En Xu Haoxing Xu Jing Xu JinRong Xu Liang Xu Wen Wen Xu Xiulong Xu Yu Xue Sokhna M S Yakhine-Diop Masamitsu Yamaguchi Osamu Yamaguchi Ai Yamamoto Shunhei Yamashina Shengmin Yan Shian-Jang Yan Zhen Yan Yasuo Yanagi Chuanbin Yang Dun-Sheng Yang Huan Yang Huang-Tian Yang Hui Yang Jin-Ming Yang Jing Yang Jingyu Yang Ling Yang Liu Yang Ming Yang Pei-Ming Yang Qian Yang Seungwon Yang Shu Yang Shun-Fa Yang Wannian Yang Wei Yuan Yang Xiaoyong Yang Xuesong Yang Yi Yang Ying Yang Honghong Yao Shenggen Yao Xiaoqiang Yao Yong-Gang Yao Yong-Ming Yao Takahiro Yasui Meysam Yazdankhah Paul M Yen Cong Yi Xiao-Ming Yin Yanhai Yin Zhangyuan Yin Ziyi Yin Meidan Ying Zheng Ying Calvin K Yip Stephanie Pei Tung Yiu Young H Yoo Kiyotsugu Yoshida Saori R Yoshii Tamotsu Yoshimori Bahman Yousefi Boxuan Yu Haiyang Yu Jun Yu Jun Yu Li Yu Ming-Lung Yu Seong-Woon Yu Victor C Yu W Haung Yu Zhengping Yu Zhou Yu Junying Yuan Ling-Qing Yuan Shilin Yuan Shyng-Shiou F Yuan Yanggang Yuan Zengqiang Yuan Jianbo Yue Zhenyu Yue Jeanho Yun Raymond L Yung David N Zacks Gabriele Zaffagnini Vanessa O Zambelli Isabella Zanella Qun S Zang Sara Zanivan Silvia Zappavigna Pilar Zaragoza Konstantinos S Zarbalis Amir Zarebkohan Amira Zarrouk Scott O Zeitlin Jialiu Zeng Ju-Deng Zeng Eva Žerovnik Lixuan Zhan Bin Zhang Donna D Zhang Hanlin Zhang Hong Zhang Hong Zhang Honghe Zhang Huafeng Zhang Huaye Zhang Hui Zhang Hui-Ling Zhang Jianbin Zhang Jianhua Zhang Jing-Pu Zhang Kalin Y B Zhang Leshuai W Zhang Lin Zhang Lisheng Zhang Lu Zhang Luoying Zhang Menghuan Zhang Peng Zhang Sheng Zhang Wei Zhang Xiangnan Zhang Xiao-Wei Zhang Xiaolei Zhang Xiaoyan Zhang Xin Zhang Xinxin Zhang Xu Dong Zhang Yang Zhang Yanjin Zhang Yi Zhang Ying-Dong Zhang Yingmei Zhang Yuan-Yuan Zhang Yuchen Zhang Zhe Zhang Zhengguang Zhang Zhibing Zhang Zhihai Zhang Zhiyong Zhang Zili Zhang Haobin Zhao Lei Zhao Shuang Zhao Tongbiao Zhao Xiao-Fan Zhao Ying Zhao Yongchao Zhao Yongliang Zhao Yuting Zhao Guoping Zheng Kai Zheng Ling Zheng Shizhong Zheng Xi-Long Zheng Yi Zheng Zu-Guo Zheng Boris Zhivotovsky Qing Zhong Ao Zhou Ben Zhou Cefan Zhou Gang Zhou Hao Zhou Hong Zhou Hongbo Zhou Jie Zhou Jing Zhou Jing Zhou Jiyong Zhou Kailiang Zhou Rongjia Zhou Xu-Jie Zhou Yanshuang Zhou Yinghong Zhou Yubin Zhou Zheng-Yu Zhou Zhou Zhou Binglin Zhu Changlian Zhu Guo-Qing Zhu Haining Zhu Hongxin Zhu Hua Zhu Wei-Guo Zhu Yanping Zhu Yushan Zhu Haixia Zhuang Xiaohong Zhuang Katarzyna Zientara-Rytter Christine M Zimmermann Elena Ziviani Teresa Zoladek Wei-Xing Zong Dmitry B Zorov Antonio Zorzano Weiping Zou Zhen Zou Zhengzhi Zou Steven Zuryn Werner Zwerschke Beate Brand-Saberi X Charlie Dong Chandra Shekar Kenchappa Zuguo Li Yong Lin Shigeru Oshima Yueguang Rong Judith C Sluimer Christina L Stallings Chun-Kit Tong

Autophagy 2021 Jan 8;17(1):1-382. Epub 2021 Feb 8.

Hong Kong Baptist University, School of Chinese Medicine, Hong Kong, China.

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/15548627.2020.1797280DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7996087PMC
January 2021

Modulation of the Tissue Expression Pattern of Zebrafish CRP-Like Molecules Suggests a Relevant Antiviral Role in Fish Skin.

Biology (Basel) 2021 Jan 22;10(2). Epub 2021 Jan 22.

Institute of Research, Development, and Innovation in Healthcare Biotechnology in Elche (IDiBE), Miguel Hernández University (UMH), 03202 Elche, Spain.

Recent studies suggest that short pentraxins in fish might serve as biomarkers for not only bacterial infections, as in higher vertebrates including humans, but also for viral ones. These fish orthologs of mammalian short pentraxins are currently attracting interest because of their newly discovered antiviral activity. In the present work, the modulation of the gene expression of all zebrafish short pentraxins (CRP-like proteins, CRP1-7) was extensively analyzed by quantitative polymerase chain reaction. Initially, the tissue distribution of - transcripts and how the transcripts varied in response to a bath infection with the spring viremia of carp virus, were determined. The expression of - was widely distributed and generally increased after infection (mostly at 5 days post infection), except for (downregulated). Interestingly, several transcription levels significantly increased in skin. Further assays in mutant zebrafish of recombinant activation gene 1 () showed that all s (except for , downregulated) were already constitutively highly expressed in skin from knockouts and only increased moderately after viral infection. Similar results were obtained for most isoforms (a reporter gene of the interferon response), suggesting a general overcompensation of the innate immunity in the absence of the adaptive one.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology10020078DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7912335PMC
January 2021

Transcriptomic Response of Mussel Gills After a Infection Demonstrates Their Role in the Immune Response.

Front Immunol 2020 16;11:615580. Epub 2020 Dec 16.

Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain.

Mussels () are filter feeder bivalves that are constantly in contact with a wide range of microorganisms, some of which are potentially pathogenic. How mussels recognize and respond to pathogens has not been fully elucidated to date; therefore, we investigated the immune mechanisms that these animals employ in response to a bacterial bath infection from the surrounding water, mimicking the response that mussels mount under natural conditions. After the bath infection, mussels were able to remove the bacteria from their bodies and from the water tank. Accordingly, antibacterial activity was detected in gill extracts, demonstrating that this tissue plays a central role in removing and clearing potential pathogens. A transcriptomic study performed after a bath infection with identified a total of 1,156 differentially expressed genes. The expression levels of genes contributing to a number of biological processes, such as immune response activation pathways and their regulation with cytokines, cell recognition, adhesion and apoptosis, were significantly modulated after infection, suggesting that the gills play important roles in pathogen recognition, as well as being activators and regulators of the mussel innate immune response. In addition to RNA-seq analysis, long non-coding RNAs and their neighboring genes were also analyzed and exhibited modulation after the bacterial challenge. The response of gills against bath infection was compared with the findings of a previous transcriptomic study on hemocytes responding to systemic infection, demonstrating the different and specific functions of gills. The results of this study indicate that recognition processes occur in the gill, thereby activating the effector agents of the immune response to overcome bacterial infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.615580DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7772429PMC
December 2020

Stimulation of Hemocytes With Different Immune Challenges Induces Differential Transcriptomic, miRNomic, and Functional Responses.

Front Immunol 2020 17;11:606102. Epub 2020 Dec 17.

Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Vigo, Spain.

Mediterranean mussels () are marine bivalve molluscs with high resilience to biotic and abiotic stress. This resilience is one of the reasons why this species is such an interesting model for studying processes such as the immune response. In this work, we stimulated mussel hemocytes with poly I:C, β-glucans, and LPS and then sequenced hemocyte mRNAs (transcriptome) and microRNAs (miRNome) to investigate the molecular basis of the innate immune responses against these pathogen-associated molecular patterns (PAMPs). An immune transcriptome comprising 219,765 transcripts and an overview of the mussel miRNome based on 5,175,567 non-redundant miRNA reads were obtained. The expression analyses showed opposite results in the transcriptome and miRNome; LPS was the stimulus that triggered the highest transcriptomic response, with 648 differentially expressed genes (DEGs), while poly I:C was the stimulus that triggered the highest miRNA response, with 240 DE miRNAs. Our results reveal a powerful immune response to LPS as well as activation of certain immunometabolism- and ageing/senescence-related processes in response to all the immune challenges. Poly I:C exhibited powerful stimulating properties in mussels, since it triggered the highest miRNomic response and modulated important genes related to energy demand; these effects could be related to the stronger activation of these hemocytes (increased phagocytosis, increased NO synthesis, and increased velocity and accumulated distance). The transcriptome results suggest that after LPS stimulation, pathogen recognition, homeostasis and cell survival processes were activated, and phagocytosis was induced by LPS. β-glucans elicited a response related to cholesterol metabolism, which is important during the immune response, and it was the only stimulus that induced the synthesis of ROS. These results suggest a specific and distinct response of hemocytes to each stimulus from a transcriptomic, miRNomic, and functional point of view.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.606102DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7773633PMC
December 2020

An integrative toxicogenomic analysis of plastic additives.

J Hazard Mater 2021 May 26;409:124975. Epub 2020 Dec 26.

Institute of Marine Research (IIM), Spanish National Research Council (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain.

In developed countries, contact with plastics is constant. Plastics contain a vast number of additives such as plasticisers, stabilisers, antioxidants, flame retardants, etc., that can impact human health. Most of them have been studied separately; however, an integrative approach to identify genes, biological processes, molecular functions, and diseases linked to exposure to these compounds has not been addressed until now. The genes most commonly affected by plastic additives are related to apoptosis, cell death, proliferation and differentiation, immunity and insulin-related processes, and are mainly associated with cancer, mental disorders, diabetes mellitus type II and obesity. The most commonly affected molecular functions included steroid hormone receptor activity implicated in cancer, mental disorders, immune signalling and gonadotropin-releasing hormones. These processes and functions affected by plastic additives are related to the diseases of the developed world, most of which are linked to the endocrine system, such as cancer, diabetes, infertility and obesity. The strong interconnection among the top 50 genes modulated by plastic additives shows that the pathways affected are strongly interrelated. Therefore, studying the effects of plastic additives through a single-compound approach cannot be sufficient and a holistic approach is more appropriate for evaluating the potential effects of plastics in human health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.124975DOI Listing
May 2021

Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel.

Genome Biol 2020 11 10;21(1):275. Epub 2020 Nov 10.

Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.

Background: The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear.

Results: Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom.

Conclusions: Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13059-020-02180-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7653742PMC
November 2020

Interactions between the Parasite and the Immune System of the Turbot . A Transcriptomic Analysis.

Biology (Basel) 2020 Oct 15;9(10). Epub 2020 Oct 15.

Department of Fundamental Biology, Institute of Aquaculture, Campus Vida, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.

The present study analyses the interactions between (a ciliate parasite that causes high mortalities in cultured flatfish) and the peritoneal cells of the turbot during an experimental infection. The transcriptomic response was evaluated in the parasites and in the fish peritoneal cells, at 1, 2 and 4 h post-infection (hpi) in turbot injected intraperitoneally (ip) with 10 ciliates and at 12 and 48 hpi in turbot injected ip with 10 ciliates. Numerous genes were differentially expressed (DE) in , relative to their expression in control ciliates (0 hpi): 407 (369 were up-regulated) at 1 hpi, 769 (415 were up-regulated) at 2 hpi and 507 (119 were up-regulated) at 4 hpi. Gene ontology (GO) analysis of the DE genes showed that the most representative categories of biological processes affected at 1, 2 and 4 hpi were biosynthetic processes, catabolic processes, biogenesis, proteolysis and transmembrane transport. Twelve genes of the ABC transporter family and eight genes of the leishmanolysin family were DE at 1, 2 and 4 hpi. Most of these genes were strongly up-regulated (UR), suggesting that they are involved in infection. A third group of UR genes included several genes related to ribosome biogenesis, DNA transcription and RNA translation. However, expression of tubulins and tubulin associated proteins, such as kinesins or dyneins, which play key roles in ciliate division and movement, was down-regulated (DR). Similarly, genes that coded for lysosomal proteins or that participate in the cell cycle mitotic control, glycolysis, the Krebs cycle and/or in the electron transport chain were also DR. The transcriptomic analysis also revealed that in contrast to many parasites, which passively evade the host immune system, strongly stimulated turbot peritoneal cells. Many genes related to inflammation were DE in peritoneal cells at 1, 2 and 4 hpi. However, the response was much lower at 12 hpi and almost disappeared completely at 48 hpi in fish that were able to kill during the first few hpi. The genes that were DE at 1, 2 and 4 hpi were mainly related to the apoptotic process, the immune response, the Fc-epsilon receptor signalling pathway, the innate immune response, cell adhesion, cell surface receptors, the NF-kappaB signalling pathway and the MAPK cascade. Expression of toll-like receptors 2, 5 and 13 and of several components of NF-κB, MAPK and JAK/STAT signalling pathways was UR in the turbot peritoneal cells. Genes expressing chemokines and chemokine receptors, genes involved in prostaglandin and leukotriene synthesis, prostaglandins, leukotriene receptors, proinflammatory cytokines and genes involved in apoptosis were strongly UR during the first four hours of infection. However, expression of anti-inflammatory cytokines such as Il-10 and lipoxygenases with anti-inflammatory activity (i.e., ) were only UR at 12 and/or 48 hpi, indicating an anti-inflammatory state in these groups of fish. In conclusion, the present study shows the regulation of several genes in during the early stages of infection, some of which probably play important roles in this process. The infection induced a potent acute inflammatory response, and many inflammatory genes were regulated in peritoneal cells, showing that the turbot uses all the protective mechanisms it has available to prevent the entry of the parasite.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology9100337DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7602577PMC
October 2020

The wastewater microbiome: A novel insight for COVID-19 surveillance.

Sci Total Environ 2021 Apr 9;764:142867. Epub 2020 Oct 9.

Secretaría Regional Ministerial de Salud, Region de Ñuble, Ministerio de Salud, Bulnes 620, Chillan, Chile.

Wastewater-Based Epidemiology is a tool to face and mitigate COVID-19 outbreaks by evaluating conditions in a specific community. This study aimed to analyze the microbiome profiles using nanopore technology for full-length 16S rRNA sequencing in wastewater samples collected from a penitentiary (P), a residential care home (RCH), and a quarantine or health care facilities (HCF). During the study, the wastewater samples from the RCH and the P were negative for SARS-CoV-2 based on qPCRs, except during the fourth week when was detected. Unexpectedly, the wastewater microbiome from RCH and P prior to week four was correlated with the samples collected from the HCF, suggesting a core bacterial community is expelled from the digest tract of individuals infected with SARS-CoV-2. The microbiota of wastewater sample positives for SARS-CoV-2 was strongly associated with enteric bacteria previously reported in patients with risk factors for COVID-19. We provide novel evidence that the wastewater microbiome associated with gastrointestinal manifestations appears to precede the SARS-CoV-2 detection in sewage. This finding suggests that the wastewaters microbiome can be applied as an indicator of community-wide SARS-CoV-2 surveillance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142867DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7546644PMC
April 2021

Potential Involvement of lncRNAs in the Modulation of the Transcriptome Response to Nodavirus Challenge in European Sea Bass ( L.).

Biology (Basel) 2020 Jul 15;9(7). Epub 2020 Jul 15.

Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), C/Eduardo Cabello 6, 36208 Vigo, Spain.

Long noncoding RNAs (lncRNAs) are being increasingly recognised as key modulators of various biological mechanisms, including the immune response. Although investigations in teleosts are still lagging behind those conducted in mammals, current research indicates that lncRNAs play a pivotal role in the response of fish to a variety of pathogens. During the last several years, interest in lncRNAs has increased considerably, and a small but notable number of publications have reported the modulation of the lncRNA profile in some fish species after pathogen challenge. This study was the first to identify lncRNAs in the commercial species European sea bass. A total of 12,158 potential lncRNAs were detected in the head kidney and brain. We found that some lncRNAs were not common for both tissues, and these lncRNAs were located near coding genes that are primarily involved in tissue-specific processes, reflecting a degree of cellular specialisation in the synthesis of lncRNAs. Moreover, lncRNA modulation was analysed in both tissues at 24 and 72 h after infection with nodavirus. Enrichment analysis of the neighbouring coding genes of the modulated lncRNAs revealed many terms related to the immune response and viral infectivity but also related to the stress response. An integrated analysis of the lncRNAs and coding genes showed a strong correlation between the expression of the lncRNAs and their flanking coding genes. Our study represents the first systematic identification of lncRNAs in European sea bass and provides evidence regarding the involvement of these lncRNAs in the response to nodavirus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biology9070165DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7407339PMC
July 2020

Comparative Genomics Reveals a Significant Sequence Variability of Myticin Genes in .

Biomolecules 2020 06 22;10(6). Epub 2020 Jun 22.

Institute of Marine Research (IIM), CSIC. Eduardo Cabello 6, 36208 Vigo, Spain.

Myticins are cysteine-rich antimicrobial peptides highly expressed in hemocytes of . Along with other antimicrobial peptides (AMPs), myticins are potent effectors in the mussel immune response to pathogenic infections. As intertidal filter-feeders, mussels are constantly exposed to mutable environmental conditions, as well as to the presence of many pathogens, and myticins may be key players in the great ability of these organisms to withstand these conditions. These AMPs are known to be characterized by a remarkable sequence diversity, which was further explored in this work, thanks to the analysis of the recently released genome sequencing data from 16 specimens. Altogether, we collected 120 different sequence variants, evidencing the important impact of presence/absence variation and positive selection in shaping the repertoire of myticin genes of each individual. From a functional point of view, both the isoelectric point (pI) and the predicted charge of the mature peptide show unusually low values compared with other cysteine-rich AMPs, reinforcing previous observations that myticins may have accessory functions not directly linked with microbe killing. Finally, we report the presence of highly conserved regulatory elements in the promoter region of myticin genes, which might explain their strong hemocyte-specific expression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom10060943DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7356231PMC
June 2020

RNA-Seq analysis of European sea bass (Dicentrarchus labrax L.) infected with nodavirus reveals powerful modulation of the stress response.

Vet Res 2020 May 12;51(1):64. Epub 2020 May 12.

Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.

Nodavirus, or nervous necrosis virus (NNV), is the causative agent of viral encephalopathy and retinopathy (VER), a severe disease affecting numerous fish species worldwide. European sea bass, a cultured species of great economic importance, is highly susceptible to the disease. To better understand the response of this organism to NNV, we conducted RNA-Seq analysis of the brain and head kidney from experimentally infected and uninfected sea bass juveniles at 24 and 72 hours post-infection (hpi). Contrary to what was expected, we observed modest modulation of immune-related genes in the brain, the target organ of this virus, and some of these genes were even downregulated. However, genes involved in the stress response showed extremely high modulation. Accordingly, the genes encoding the enzymes implicated in the synthesis of cortisol were almost the only overexpressed genes in the head kidney at 24 hpi. This stress response was attenuated after 72 h in both tissues, and a progressive immune response against the virus was mounted. Moreover, experiments were conducted to determine how stress activation could impact NNV replication. Our results show the complex interplay between viral activity, the stress reaction and the immune response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13567-020-00784-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7218500PMC
May 2020

Zebrafish Genes Play Relevant but Distinct Roles in Antiviral Immunity.

Vaccines (Basel) 2020 Apr 26;8(2). Epub 2020 Apr 26.

Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), C/ Eduardo Cabello 6, 36208 Vigo, Spain.

The PTEN (phosphatase and TENsin homolog on chromosome 10) gene encodes a bifunctional phosphatase that acts as a tumor suppressor. However, PTEN has been implicated in different immune processes, including autophagy, inflammation, regulation of natural killer (NK) cell cytolytic activity and type I interferon responses. Unlike mammals, zebrafish possess two genes ( and ). This study explores the involvement of both zebrafish genes in antiviral defense. Although and larvae were more susceptible to Spring viremia of carp virus (SVCV), the viral replication rate was lower in the mutant larvae than in the wild-type larvae. We observed that both mutant lines showed alterations in the transcription of numerous genes, including those related to the type I interferon (IFN) system, cytolytic activity, autophagy and inflammation, and some of these genes were regulated in opposite ways depending on which gene was mutated. Even though the lower replication rate of SVCV could be associated with impaired autophagy in the mutant lines, the higher mortality observed in the and larvae does not seem to be associated with an uncontrolled inflammatory response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/vaccines8020199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7349019PMC
April 2020

Conserved function of zebrafish (Danio rerio) Gdf15 as a sepsis tolerance mediator.

Dev Comp Immunol 2020 08 11;109:103698. Epub 2020 Apr 11.

Instituto de Investigaciones Marinas (IIM-CSIC), C/Eduardo Cabello, 6, 36208, Vigo, Spain. Electronic address:

GDF15 is frequently detected in patients suffering from various diseases, especially those associated with pro-inflammatory processes and/or metabolic disorders. Accordingly, sepsis, whose major complications are related to metabolic alterations and systemic inflammation, significantly increases the secretion of GDF15. Indeed, this cytokine could be considered a marker of sepsis severity. However, until the last several years, the involvement of GDF15 in these disorders had not been widely characterized. In mice, GDF15 was recently described as a pivotal inducer of sepsis tolerance by mediating metabolic alterations that reduce tissue damage. In this work we describe a zebrafish gdf15 gene. We found that gdf15 follows an expression pattern similar to that observed in mammals, being highly expressed in the liver and kidney and induced after pro-inflammatory stimuli. Moreover, larvae overexpressing gdf15 were more resistant to bacterial and viral challenges without affecting the pathogen load. Consequently, Gdf15 also protected zebrafish larvae against LPS-induced mortality. As in mice, zebrafish Gdf15 seems to induce sepsis tolerance by altering the metabolic parameters of the individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2020.103698DOI Listing
August 2020

RNA-Seq analysis reveals that spring viraemia of carp virus induces a broad spectrum of PIM kinases in zebrafish kidney that promote viral entry.

Fish Shellfish Immunol 2020 Apr 28;99:86-98. Epub 2020 Jan 28.

Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain. Electronic address:

PIM kinases are a family of serine/threonine protein kinases that potentiate the progression of the cell cycle and inhibit apoptosis. Because of this, they are considered to be proto-oncogenes, and they represent an interesting target for the development of anticancer drugs. In mammals, three PIM kinases exist (PIM-1, PIM-2 and PIM-3), and different inhibitors have been developed to block their activity. In addition to their involvement in cancer, some publications have reported that the PIM kinases have pro-viral activity, and different mechanisms where PIM kinases favour viral infections have been proposed. Zebrafish possess more than 300 Pim kinase members in their genome, and by using RNA-Seq analysis, we found a high number of Pim kinase genes that were significantly induced after infection with spring viraemia of carp virus (SVCV). Moreover, analysis of the miRNAs modulated by this infection revealed that some of them could be involved in the post-transcriptional regulation of Pim kinase abundance. To elucidate the potential role of the 16 overexpressed Pim kinases in the infectivity of SVCV, we used three different pan-PIM kinase inhibitors (SGI-1776, INCB053914 and AZD1208), and different experiments were conducted both in vitro and in vivo. We observed that the PIM kinase inhibitors had a protective effect against SVCV, indicating that, similar to what is observed in mammals, PIM kinases are beneficial for the virus in zebrafish. Moreover, zebrafish Pim kinases seem to facilitate viral entry into the host cells because when ZF4 cells were pre-incubated with the virus and then were treated with the inhibitors, the protective effect of the inhibitors was abrogated. Although more investigation is necessary, these results show that pan-PIM kinase inhibitors could serve as a useful treatment for preventing the spread of viral diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2020.01.055DOI Listing
April 2020

Transcriptomic Analysis Reveals the Wound Healing Activity of Mussel Myticin C.

Biomolecules 2020 01 14;10(1). Epub 2020 Jan 14.

Institute of Marine Research (IIM), CSIC. Eduardo Cabello 6, 36208 Vigo, Spain.

Myticin C is the most studied antimicrobial peptide in the marine mussel . Although it is constitutively expressed in mussel hemocytes and displays antibacterial, antiviral, and chemotactic functions, recent work has suggested that this molecule is mainly activated after tissue injury. Therefore, the main objective of this work was to characterize the hemocytes' transcriptomic response after a myticin C treatment, in order to understand the molecular changes induced by this cytokine-like molecule. The transcriptome analysis revealed the modulation of genes related to cellular movement, such as myosin, transgelin, and calponin-like proteins, in agreement with results of functional assays, where an implication of myticin C in the in vitro activation of hemocytes and migration was evidenced. This was also observed in vivo after a tissue injury, when hemocytes, with high concentrations of myticin C, migrated to the damaged area to heal the wound. All these properties allowed us to think about the biotechnological application of these molecules as wound healers. Human keratinocytes and larvae zebrafish models were used to confirm this hypothesis. Accelerated regeneration after a wound or tail fin amputation was observed after treatment with the myticin C peptide, supporting the chemotactic and healing activity of myticin C.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/biom10010133DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7023338PMC
January 2020

Integrated transcriptomic and functional immunological approach for assessing the invasiveness of bivalve alien species.

Sci Rep 2019 12 27;9(1):19879. Epub 2019 Dec 27.

Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.

Biological invasions started when humans moved species beyond their normal geographic limits. Bivalves are the most notoriously invasive species in subtidal aquatic environments. Next-generation sequencing technologies are applied to understand the molecular mechanisms involved in the invasion. The ecological immunology focuses on the role of immunity in invasion, and its magnitude could help to predict the invasiveness of alien species. A remarkable case of invasion has been reported in the Ría de Vigo (Spain) by the black pygmy mussel Xenostrobus securis. In Galicia, the Mediterranean mussel Mytilus galloprovincialis is the predominant cultured bivalve species. Can we predict the invasiveness of alien bivalve species by analyzing their immune response? Can X. securis represent a risk for the autochthonous mussel? We evaluated the suitability of the immune-related hypotheses in our model by using an integrated transcriptomic and functional immunological approach. Our analysis suggests lower immune capabilities in X. securis compared to M. galloprovincialis, probably due to the relocation of energetic resources from the immune response to vital physiological processes to cope with salinity stress. This multidisciplinary approach will help us understand how the immune response can be influenced by the adaptive process and how this immune response can influence the invasion process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-56421-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934813PMC
December 2019

Extracellular traps (ETosis) can be activated through NADPH-dependent and -independent mechanisms in bivalve mollusks.

Dev Comp Immunol 2020 05 23;106:103585. Epub 2019 Dec 23.

Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.

In mammals, NETosis is a process in which the activation of neutrophils induces the release of chromatin. This DNA prevents the spread of infection by trapping, neutralizing and killing microorganisms during their interaction with antimicrobial proteins. The release of NETs is usually triggered by stimuli that promote reactive oxygen species production. Although this release of extracellular traps (ETs) has been described in some groups of invertebrates, there is a lack of basic information about them in these animals. In the present study, we describe a robust and reproducible model for the induction, analysis and quantification of ETs production using hemocytes from the bivalve Mytilus galloprovincialis. We analyzed the structure of ETs and the involvement of the ROS in the activation of this process. It was demonstrated that the formation of ETs in hemocytes can be triggered through NOX-dependent and NOX-independent pathways, depending on the stimuli used.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2019.103585DOI Listing
May 2020

Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio).

Fish Shellfish Immunol 2019 Dec 30;95:595-605. Epub 2019 Oct 30.

Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain. Electronic address:

Fatty acids (FAs) are key elements that affect not only growth but also different immune functions, and therefore, nutrition is important for growing healthy fish. Zebrafish (Danio rerio) is a good model for assessing the beneficial effects of immunostimulants, including FAs, before applying them in aquaculture. Accordingly, this study evaluated the effects of palmitic acid (PA) treatment on different immune parameters of zebrafish and on the mortality caused by the spring viremia of carp virus (SVCV). The results suggest that PA modulates the infection outcome in vivo, which benefits zebrafish and results in reduced mortality and viral titres. The antiviral protection elicited by this FA seems to be associated with the inhibition of autophagy and is independent of other immune processes, such as neutrophil proliferation or type I interferon (IFN) activity. The use of PA as an immunostimulant at low concentrations showed great potential in the prevention of SVCV infections; therefore, this FA could help to prevent the mortality and morbidity caused by viral agents in aquacultured fish. Nevertheless, the potentially detrimental effects of suppressing autophagy in the organism should be taken into account.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.10.055DOI Listing
December 2019

Comparative modulation of lncRNAs in wild-type and rag1-heterozygous mutant zebrafish exposed to immune challenge with spring viraemia of carp virus (SVCV).

Sci Rep 2019 10 2;9(1):14174. Epub 2019 Oct 2.

Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain.

Although the modulation of immune-related genes after viral infection has been widely described in vertebrates, the potential implications of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in immunity are still a nascent research field. The model species zebrafish could serve as a useful organism for studying the functionality of lncRNAs due to the numerous advantages of this teleost, including the existence of numerous mutant lines. In this work, we conducted a whole-transcriptome analysis of wild-type (WT) and heterozygous rag1 mutant (rag1) zebrafish after infection with the pathogen spring viraemia of carp virus (SVCV). WT and rag1 zebrafish were infected with SVCV for 24 h. Kidney samples were sampled from infected and uninfected fish for transcriptome sequencing. From a total of 198,540 contigs, 12,165 putative lncRNAs were identified in zebrafish. Most of the putative lncRNAs were shared by the two zebrafish lines. However, by comparing the lncRNA profiles induced after SVCV infection in WT and rag1 fish, most of the lncRNAs that were significantly induced after viral challenge were exclusive to each line, reflecting a highly differential response to the virus. Analysis of the neighboring genes of lncRNAs that were exclusively modulated in WT revealed high representation of metabolism-related terms, whereas those from rag1 fish showed enrichment in terms related to the adaptive immune response, among others. On the other hand, genes involved in numerous antiviral processes surrounded commonly modulated lncRNAs, as expected. These results clearly indicate that after SVCV infection in zebrafish, the expression of an array of lncRNAs with functions in different aspects of immunity is induced.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-50766-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6775065PMC
October 2019

Immune Tolerance in Hemocytes After Repeated Contact With .

Front Immunol 2019 9;10:1894. Epub 2019 Aug 9.

Institute of Marine Research (IIM), CSIC, Vigo, Spain.

Mediterranean mussels () are sessile filter feeders that live in close contact with numerous marine microorganisms. As is the case in all invertebrates, mussels lack an adaptive immune system, but they respond to pathogens, injuries or environmental stress in a very efficient manner. However, it is not known if they are able to modify their immune response when they reencounter the same pathogen. In this work, we studied the transcriptomic response of mussel hemocytes before and after two consecutive sublethal challenges with . The first exposure significantly regulated genes related to inflammation, migration and response to bacteria. However, after the second exposure, the differentially expressed genes were related to the control and inhibition of ROS production and the resolution of the inflammatory response. Our results also show that the second injection with led to changes at the transcriptional (control of the expression of pro-inflammatory transcripts), cellular (shift in the hemocyte population distribution), and functional levels (inhibition of ROS production). These results suggest that a modified immune response after the second challenge allowed the mussels to tolerate rather than fight the infection, which minimized tissue damage.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2019.01894DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6697025PMC
October 2020

Rag1 immunodeficiency-induced early aging and senescence in zebrafish are dependent on chronic inflammation and oxidative stress.

Aging Cell 2019 10 26;18(5):e13020. Epub 2019 Jul 26.

Instituto de Investigaciones Marinas, Consejo Superior de Investigaciones Científicas (CSIC), Vigo, Spain.

In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1 zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity- and apoptosis-related genes was increased in the rag1 fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1 zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1 zebrafish compared to their wild-type (wt) siblings, rag1 showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence-related genes and senescence-associated β-galactosidase, respectively, diminished telomere length, and abnormal self-renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1 fish, as was the deficiency of the antioxidant metabolite l-acetylcarnitine (ALCAR) in rag1 fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT-263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.13020DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6718522PMC
October 2019

Genomics and immunity of the Mediterranean mussel Mytilus galloprovincialis in a changing environment.

Fish Shellfish Immunol 2019 Jul 30;90:440-445. Epub 2019 Apr 30.

Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello 6, 36208, Vigo, Spain.

The Mediterranean mussel (Mytilus galloprovincialis) is a marine invasive species cultured all over the world. Mussels are an appreciated resource in local aquaculture enterprises because of their robust production and resilience that translates into a reliable economic value. So far, no massive mortalities have been reported in natural or cultured populations of this species. In the last years, the knowledge about its immune system has greatly improved but there are still many questions to be answered. One of them is why mussels, with their high filtering activity, are able to be exposed to a high number of potential pathogens without getting infected and without developing an elevated inflammatory response. The sequencing of the mussel genome has revealed a very complex organization with high heterozygosity, abundance of repetitive sequences and extreme intraspecific sequence diversity among individuals, mainly in immune related genes. Among those genes, antimicrobial peptides are the most expressed gene families in mussels, highly polymorphic and with antimicrobial effect against molluscs pathogens, but also against pathogens of lower vertebrates and humans. The combination of a complex genome with the adaptation of mussel immune system to a changing environment could explain this high variability, not only in immune-related genes, but also in the functional response among individuals sampled in the same location and date.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.04.064DOI Listing
July 2019

Insights into teleost interferon-gamma biology: An update.

Fish Shellfish Immunol 2019 Jul 24;90:150-164. Epub 2019 Apr 24.

Instituto de Investigaciones Marinas (IIM), CSIC, Vigo, Spain. Electronic address:

Interferon-gamma (IFN-ϒ) is probably one of the most relevant cytokines orchestrating the immune response in vertebrates. Although the activities mediated by this molecule are well known in mammals, several aspects of the IFN-ϒ system in teleosts remain a riddle to scientists. Numerous studies support a potentially similar role of the fish IFN-ϒ signalling pathway in some well-described immunological processes induced by this cytokine in mammals. Nevertheless, the existence in some teleost species of duplicated ifng genes and an additional gene derived from ifng known as interferon-γ-related (ifngrel), among other things, raises new interesting questions about the mode of action of these various molecules in fish. Moreover, certain IFN-ϒ-mediated activities recently observed in mammals are still fully unknown in fish. Another attractive but mainly unexplored curious property of IFN-ϒ in vertebrates is its potential dual role depending on the type of pathogen. In addition, some aspects mediated by this molecule could favour the resolution of a bacterial infection but be harmful in the context of a viral disease, and vice versa. This review collects old and new aspects of IFN-ϒ research in teleosts and discusses new questions and pathways of investigation based on recent discoveries in mammals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2019.04.002DOI Listing
July 2019

High individual variability in the transcriptomic response of Mediterranean mussels to Vibrio reveals the involvement of myticins in tissue injury.

Sci Rep 2019 03 5;9(1):3569. Epub 2019 Mar 5.

Institute of Marine Research (IIM), National Research Council (CSIC), Eduardo Cabello, 6, 36208, Vigo, Spain.

Mediterranean mussels (Mytilus galloprovincialis) are sessile filter feeders that live in close contact with numerous marine microorganisms. As all invertebrates, they lack an adaptive immune response and how these animals are able to respond to a bacterial infection and discriminate it from their normal microbiome is difficult to understand. In this work, we conducted Illumina sequencing of the transcriptome of individual mussels before and after being infected with Vibrio splendidus. The control mussels were injected with filtered seawater. We demonstrate that a great variability exists among individual transcriptomes and that each animal showed an exclusive repertoire of genes not shared with other individuals. The regulated genes in both the control and infected mussels were also analyzed and, unexpectedly, the sampling before the injection was considered a stress stimulus strong enough to trigger and modulate the response in hemocytes, promoting cell migration and proliferation. We found a clear response against the injection of filtered seawater, suggesting a reaction against a tissue injury in which the myticins, the most expressed antimicrobial peptides in mussel, appeared significantly up regulated. Functional experiments with flow cytometry confirmed the transcriptomic results since a significant alteration of hemocyte structures and a decrease in the number of hemocytes positive for myticin C were found only after a Vibrio infection and not observed when mussels were bled before, generating a tissue injury. Therefore, we report the involvement of myticins in the response to a danger signal such as a simple injection in the adductor muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-39870-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401078PMC
March 2019

Analysis of mycobacterial infection-induced changes to host lipid metabolism in a zebrafish infection model reveals a conserved role for LDLR in infection susceptibility.

Fish Shellfish Immunol 2018 Dec 13;83:238-242. Epub 2018 Sep 13.

Tuberculosis Research Program Centenary Institute, Sydney Medical School The University of Sydney, Camperdown, NSW, Australia; Tuberculosis Research Program Centenary Institute, Sydney Medical School and Marie Bashir Institute The University of Sydney, Camperdown, NSW, Australia. Electronic address:

Changes to lipid metabolism are well-characterised consequences of human tuberculosis infection but their functional relevance are not clearly elucidated in these or other host-mycobacterial systems. The zebrafish-Mycobacterium marinum infection model is used extensively to model many aspects of human-M. tuberculosis pathogenesis but has not been widely used to study the role of infection-induced lipid metabolism. We find mammalian mycobacterial infection-induced alterations in host Low Density Lipoprotein metabolism are conserved in the zebrafish model of mycobacterial pathogenesis. Depletion of LDLR, a key lipid metabolism node, decreased M. marinum burden, and corrected infection-induced altered lipid metabolism resulting in decreased LDL and reduced the rate of macrophage transformation into foam cells. Our results demonstrate a conserved role for infection-induced alterations to host lipid metabolism, and specifically the LDL-LDLR axis, across host-mycobacterial species pairings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.09.037DOI Listing
December 2018

β-glucan administration induces metabolic changes and differential survival rates after bacterial or viral infection in turbot (Scophthalmus maximus).

Fish Shellfish Immunol 2018 Nov 3;82:173-182. Epub 2018 Aug 3.

Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello 6, 36208, Vigo, Spain. Electronic address:

The innate immune response is able to ward off pathogens and remember previous infections using different mechanisms; this kind of immune reaction has been called "trained immunity". Changes in cellular metabolism (aerobic glycolysis) have been observed during training with some immunostimulants like β-glucans or during viral and bacterial infections. We hypothesize that β-glucans can induce metabolic changes used by the host to fight pathogens. Accordingly, we evaluated changes in metabolic parameters in turbot that could affect their survival after a previous intraperitoneal treatment with β-glucans and subsequent administration of Viral Hemorrhagic Septicemia Virus (VHSV) or bacteria (Aeromonas salmonicida subsp. salmonicida). The results obtained support that β-glucans, VHSV and A. salmonicida induce changes in lactate, glucose and ATP levels in plasma, head kidney and liver and in the mRNA expression of enzymes related to glucose and fatty acid metabolism in head kidney. Additionally, the metabolic changes induced by β-glucans are beneficial for VHSV replication, but they are harmful to A. salmonicida, resulting in reduced mortality. β-glucans appear to have great therapeutic potential and can induce trained immunity against bacterial disease but not against viral disease, which seems to take advantage of β-glucan metabolic alterations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2018.08.005DOI Listing
November 2018

Analysis of the Long-Lived Responses Induced by Immunostimulants and Their Effects on a Viral Infection in Zebrafish ().

Front Immunol 2018 9;9:1575. Epub 2018 Jul 9.

Institute of Marine Research (IIM), National Research Council (CSIC), Vigo, Spain.

In recent years, the innate immune response has gained importance since evidence indicates that after an adequate priming protocol, it is possible to obtain some prolonged and enhanced immune responses. Nevertheless, several factors, such as the timing and method of administration of the immunostimulants, must be carefully considered. An inappropriate protocol can transform the treatments into a double-edged sword for the teleost immune system, resulting in a stressful and immunosuppressive state. In this work, we analyzed the long-term effects of different stimuli (β-glucans, lipopolysaccharide, and polyinosinic:polycytidylic acid) on the transcriptome modulation induced by Spring Viremia Carp Virus (SVCV) in adult zebrafish () and on the mortality caused by this infection. At 35 days post-immunostimulation, the transcriptome was found to be highly altered compared to that of the control fish, and these stimuli also conditioned the response to SVCV challenge, especially in the case of β-glucans. No protection against SVCV was found with any of the stimuli, and non-significant higher mortalities were even observed, especially with β-glucans. However, in the short term (pre-stimulation with β-glucan and infection after 7 days), slight protection was observed after infection. The transcriptome response in the zebrafish kidney at 35 days posttreatment with β-glucans revealed a significant response associated with stress and immunosuppression. The identification of genes that were differentially expressed before and after the infection seemed to indicate a high energy cost of the immunostimulation that was prolonged over time and could explain the lack of protection against SVCV. Differential responses to stress and alterations in lipid metabolism, the tryptophan-kynurenine pathway, and interferon-gamma signaling seem to be some of the mechanisms involved in this response, which represents the end of trained immunity and the beginning of a stressful state characterized by immunosuppression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2018.01575DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6047052PMC
July 2018

Revealing Mytilus galloprovincialis transcriptomic profiles during ontogeny.

Dev Comp Immunol 2018 07 23;84:292-306. Epub 2018 Feb 23.

Instituto de Investigaciones Marinas, IIM - CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain. Electronic address:

Mediterranean mussels are a worldwide spread bivalve species with extraordinary biological success. One of the reasons of this success could be the reproduction strategy of bivalves, characterized by the presence of trochophore larvae. Larval development in bivalves has been a topic of raising interest in the scientific community but it deserves much more attention. The principal objective of this work was to study the transcriptomic profile of the ontogeny of Mytilus galloprovincialis analyzing the gene expression in different developmental stages, from oocytes to juveniles. For this purpose, after conducting a 454 sequencing of the transcriptomes of mussel hemocytes, adult tissues and larvae, a new DNA microarray was designed and developed. The studied developmental stages: unfertilized oocytes, veliger, pediveliger, settled larvae and juveniles, showed very different transcriptomic profiles and clustered in groups defining their characteristic gene expression along ontogeny. Our results show that oocytes present a distinct and characteristic transcriptome. After metamorphosis, both settled larvae and juveniles showed a very similar transcriptome, with no enriched GO terms found between these two stages. This suggests: 1.- the progressive loss of RNA of maternal origin through larval development and 2.- the stabilization of the gene expression after settlement. On the other hand during metamorphosis a specific profile of differentially expressed genes was found. These genes were related to processes such as differentiation and biosynthesis. Processes related to the immune response were strongly down regulated. These suggest a development commitment at the expense of other non-essential functions, which are temporary set aside. Immune genes such as antimicrobial peptides suffer a decreased expression during metamorphosis. In fact, we found that the oocytes which express a higher quantity of genes such as myticins are more likely to reach success of the offspring, compared to oocytes poor in such mRNAs, whose progeny died before reaching metamorphosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dci.2018.01.016DOI Listing
July 2018