Publications by authors named "Antonietta Mele"

34 Publications

Ultrasonography validation for early alteration of diaphragm echodensity and function in the mdx mouse model of Duchenne muscular dystrophy.

PLoS One 2021 12;16(1):e0245397. Epub 2021 Jan 12.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Bari, Italy.

The mdx mouse model of Duchenne muscular dystrophy is characterized by functional and structural alterations of the diaphragm since early stages of pathology, closely resembling patients' condition. In recent years, ultrasonography has been proposed as a useful longitudinal non-invasive technique to assess mdx diaphragm dysfunction and evaluate drug efficacy over time. To date, only a few preclinical studies have been conducted. Therefore, an independent validation of this method by different laboratories is needed to increase results reliability and reduce biases. Here, we performed diaphragm ultrasonography in 3- and 6-month-old mdx mice, the preferred age-window for pharmacology studies. The alteration of diaphragm function over time was measured as diaphragm ultrasound movement amplitude. At the same time points, a first-time assessment of diaphragm echodensity was performed, as an experimental index of progressive loss of contractile tissue. A parallel evaluation of other in vivo and ex vivo dystrophy-relevant readouts was carried out. Both 3- and 6-month-old mdx mice showed a significant decrease in diaphragm amplitude compared to wild type (wt) mice. This index was well-correlated either with in vivo running performance or ex vivo isometric tetanic force of isolated diaphragm. In addition, diaphragms from 6-month-old dystrophic mice were also highly susceptible to eccentric contraction ex vivo. Importantly, we disclosed an age-dependent increase in echodensity in mdx mice not observed in wt animals, which was independent from abdominal wall thickness. This was accompanied by a notable increase of pro-fibrotic TGF-β1 levels in the mdx diaphragm and of non-muscle tissue amount in diaphragm sections stained by hematoxylin & eosin. Our findings corroborate the usefulness of diaphragm ultrasonography in preclinical drug studies as a powerful tool to monitor mdx pathology progression since early stages.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0245397PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7802948PMC
January 2021

Pathophysiological Consequences of KATP Channel Overactivity and Pharmacological Response to Glibenclamide in Skeletal Muscle of a Murine Model of Cantù Syndrome.

Front Pharmacol 2020 30;11:604885. Epub 2020 Nov 30.

Section of Pharmacology, Department of Pharmacy-Pharmaceutical Sciences, University of Bari "Aldo Moro", Bari, Italy.

Cantù syndrome (CS) arises from mutations in and genes that lead to gain of function (GOF) of ATP-sensitive potassium (KATP) channels containing SUR2A and Kir6.1 subunits, respectively, of KATP channels. Pathological consequences of CS have been reported for cardiac and smooth muscle cells but consequences in skeletal muscle are unknown. Children with CS show muscle hypotonia and adult manifest fatigability. We analyzed muscle properties of Kir6.1[V65M] CS mice, by measurements of forelimb strength and ultrasonography of hind-limb muscles, as well as assessing KATP channel properties in native (FDB) and (SOL) fibers by the patch-clamp technique in parallel with histopathological, immunohistochemical and Polymerase Chain Reaction (PCR) analysis. Forelimb strength was lower in Kir6.1 mice than in WT mice. Also, a significant enhancement of echodensity was observed in hind-limb muscles of Kir6.1 mice relative to WT, suggesting the presence of fibrous tissue. There was a higher KATP channel current amplitude in Kir6.1 FDB fibers relative to WT and a reduced response to glibenclamide. The IC of glibenclamide to block KATP channels in FDB fibers was 1.3 ± 0.2 × 10 M in WT and 1.2 ± 0.1 × 10 M in Kir6.1 mice, respectively; and it was 1.2 ± 0.4 × 10 M in SOL WT fibers but not measurable in Kir6.1 fibers. The sensitivity of the KATP channel to MgATP was not modified in Kir6.1 fibers. Histopathological/immunohistochemical analysis of SOL revealed degeneration plus regressive-necrotic lesions with regeneration, and up-regulation of Atrogin-1, MuRF1, and BNIP3 mRNA/proteins in Kir6.1 mice. Kir6.1 mutation in skeletal muscle leads to changes of the KATP channel response to glibenclamide in FDB and SOL fibers, and it is associated with histopathological and gene expression changes in slow-twitch muscle, suggesting marked atrophy and autophagy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2020.604885DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734337PMC
November 2020

Ergogenic Effect of BCAAs and L-Alanine Supplementation: Proof-of-Concept Study in a Murine Model of Physiological Exercise.

Nutrients 2020 Jul 30;12(8). Epub 2020 Jul 30.

Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Orabona 4-Campus, 70125 Bari, Italy.

Background: Branched-chain amino acids (BCAAs: leucine, isoleucine, valine) account for 35% of skeletal muscle essential amino acids (AAs). As such, they must be provided in the diet to support peptide synthesis and inhibit protein breakdown. Although substantial evidence has been collected about the potential usefulness of BCAAs in supporting muscle function and structure, dietary supplements containing BCAAs alone may not be effective in controlling muscle protein turnover, due to the rate-limiting bioavailability of other AAs involved in BCAAs metabolism.

Methods: We aimed to evaluate the in vivo/ex vivo effects of a 4-week treatment with an oral formulation containing BCAAs alone (2:1:1) on muscle function, structure, and metabolism in a murine model of physiological exercise, which was compared to three modified formulations combining BCAAs with increasing concentrations of L-Alanine (ALA), an AA controlling BCAAs catabolism.

Results: A preliminary pharmacokinetic study confirmed the ability of ALA to boost up BCAAs bioavailability. After 4 weeks, (BCAAs + 2ALA) had the best protective effect on mice force and fatigability, as well as on muscle morphology and metabolic indices.

Conclusion: Our study corroborates the use of BCAAs + ALA to support muscle health during physiological exercise, underlining how the relative BCAAs/ALA ratio is important to control BCAAs distribution.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12082295DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468919PMC
July 2020

The hydroxypropyl-β-cyclodextrin-minoxidil inclusion complex improves the cardiovascular and proliferative adverse effects of minoxidil in male rats: Implications in the treatment of alopecia.

Pharmacol Res Perspect 2020 06;8(3):e00585

Section of Pharmacology, Department of Pharmacy - Pharmaceutical Sciences, University of Bari, Bari, Italy.

The efficacy of minoxidil (MXD) ethanolic solutions (1%-5% w/v) in the treatment of androgenetic alopecia is limited by adverse reactions. The toxicological effects of repeated topical applications of escalating dose (0.035%-3.5% w/v) and of single and twice daily doses (3.5% w/v) of a novel hydroxypropyl-β-cyclodextrin MXD GEL formulation (MXD/HP-β-CD) and a MXD solution were investigated in male rats. The cardiovascular effects were evaluated by telemetric monitoring of ECG and arterial pressure in free-moving rats. Ultrasonographic evaluation of cardiac morphology and function, and histopathological and biochemical analysis of the tissues, were performed. A pharmacovigilance investigation was undertaken using the EudraVigilance database for the evaluation of the potential cancer-related effects of topical MXD. Following the application of repeated escalating doses of MXD solution, cardiac hypertrophy, hypotension, enhanced serum natriuretic peptides and K -ion levels, serum liver biomarkers, and histological lesions including renal cancer were observed. In addition, the administration of a twice daily dose of MXD solution, at SF rat vs human = 311, caused reductions in the systolic, diastolic, and mean blood pressure of the rats (-30.76 ± 3%, -28.84 ± 4%, and -30.66 ± 5%, respectively, vs the baseline; t test P < .05). These effects were not reversible following washout of the MXD solution. Retrospective investigation showed 32 cases of cancer associated with the use of topical MXD in humans. The rats treated with MXD HP-β-CD were less severely affected. MXD causes proliferative adverse effects. The MXD HP-β-CD inclusion complex reduces these adverse effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prp2.585DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7203570PMC
June 2020

Bridging repair of the abdominal wall in a rat experimental model. Comparison between uncoated and polyethylene oxide-coated equine pericardium meshes.

Sci Rep 2020 04 24;10(1):6959. Epub 2020 Apr 24.

University of Bari "A. Moro", Department of Biomedical Sciences and Human Oncology, Unit of Academic General Surgery "V. Bonomo", Bari, Italy.

Biological meshes improve the outcome of incisional hernia repairs in infected fields but often lead to recurrence after bridging techniques. Sixty male Wistar rats undergoing the excision of an abdominal wall portion and bridging mesh repair were randomised in two groups: Group A (N = 30) using the uncoated equine pericardium mesh; Group B (N = 30) using the polyethylene oxide (PEO)-coated one. No deaths were observed during treatment. Shrinkage was significantly less common in A than in B (3% vs 53%, P < 0.001). Adhesions were the most common complication and resulted significantly higher after 90 days in B than in A (90% vs 30%, P < 0.01). Microscopic examination revealed significantly (P < 0.05) higher mesh integrity, fibrosis and calcification in B compared to A. The enzymatic degradation, as assessed with Raman spectroscopy and enzyme stability test, affected A more than B. The PEO-coated equine pericardium mesh showed higher resistance to biodegradation compared to the uncoated one. Understanding the changes of these prostheses in a surgical setting may help to optimize the PEO-coating in designing new biomaterials for the bridging repair of the abdominal wall.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-63886-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181852PMC
April 2020

Elucidating the Contribution of Skeletal Muscle Ion Channels to Amyotrophic Lateral Sclerosis in search of new therapeutic options.

Sci Rep 2019 02 28;9(1):3185. Epub 2019 Feb 28.

Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70125, Bari, Italy.

The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1 mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-39676-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6395744PMC
February 2019

A long-term treatment with taurine prevents cardiac dysfunction in mdx mice.

Transl Res 2019 02 28;204:82-99. Epub 2018 Sep 28.

Section of Pharmacology, Department of Pharmacy - Drug Sciences, University of Bari "A. Moro", Bari, Italy. Electronic address:

Taurine is an amino acid abundantly present in heart and skeletal muscle. Duchenne muscular dystrophy (DMD) is a genetic disorder in which the absence of dystrophin leads to skeletal muscle wasting and heart failure. An altered taurine metabolism has been described in dystrophic animals and short-term taurine administration exerts promising amelioration of early muscular alterations in the mdx mouse model of DMD. To reinforce the therapeutic and nutraceutical taurine potential in DMD, we evaluated the effects of a long-term treatment on cardiac and skeletal muscle function of mdx mice in a later disease stage. Taurine was administered in drinking water (1 g/kg/day) to wt and mdx mice for 6 months, starting at 6 months of age. Ultrasonography evaluation of heart and hind limb was performed, in parallel with in vivo and ex vivo functional tests and biochemical, histological and gene expression analyses. 12-month-old mdx mice showed a significant worsening of left ventricular function parameters (shortening fraction, ejection fraction, stroke volume), which were significantly counteracted by the taurine treatment. In parallel, histologic signs of damage were reduced by taurine along with the expression of proinflammatory myocardial IL-6. Interestingly, no effects were observed on hind limb volume and percentage of vascularization or on in vivo and ex vivo muscle functional parameters, suggesting a tissue-specific action of taurine in relation to the disease phase. A trend toward increase in taurine was found in heart and quadriceps from treated animals, paralleled by a slight decrease in mdx mice plasma. Our study provides evidences that taurine can prevent late heart dysfunction in mdx mice, further corroborating the interest on this amino acid toward clinical trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trsl.2018.09.004DOI Listing
February 2019

Molecular structure and function of big calcium-activated potassium channels in skeletal muscle: pharmacological perspectives.

Physiol Genomics 2017 Jun 28;49(6):306-317. Epub 2017 Apr 28.

Department of Pharmacy-Drug Science, University of Bari, Bari, Italy;

The large-conductance Ca-activated K (BK) channel is broadly expressed in various mammalian cells and tissues such as neurons, skeletal muscles (sarco-BK), and smooth muscles. These channels are activated by changes in membrane electrical potential and by increases in the concentration of intracellular calcium ion (Ca). The BK channel is subjected to many mechanisms that add diversity to the BK channel α-subunit gene. These channels are indeed subject to alternative splicing, auxiliary subunits modulation, posttranslational modifications, and protein-protein interactions. BK channels can be modulated by diverse molecules that may induce either an increase or decrease in channel activity. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, have been found to be relevant in many physiological processes. BK channel diversity is obtained by means of alternative splicing and modulatory β- and γ-subunits. The association of the α-subunit with β- or with γ-subunits can change the BK channel phenotype, functional diversity, and pharmacological properties in different tissues. In the case of the skeletal muscle BK channel (sarco-BK channel), we established that the main mechanism regulating BK channel diversity is the alternative splicing of the gene encoding for the α-subunit generating different splicing isoform in the muscle phenotypes. This finding helps to design molecules selectively targeting the skeletal muscle subtypes. The use of drugs selectively targeting the skeletal muscle BK channels is a promising strategy in the treatment of familial disorders affecting muscular skeletal apparatus including hyperkalemia and hypokalemia periodic paralysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/physiolgenomics.00121.2016DOI Listing
June 2017

Commentary: A BK (Slo1) channel journey from molecule to physiology.

Front Pharmacol 2017 5;8:188. Epub 2017 Apr 5.

Department of Pharmacy-Drug Science, University of BariBari, Italy.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2017.00188DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5380717PMC
April 2017

Growth hormone secretagogues prevent dysregulation of skeletal muscle calcium homeostasis in a rat model of cisplatin-induced cachexia.

J Cachexia Sarcopenia Muscle 2017 Jun 10;8(3):386-404. Epub 2017 Mar 10.

Department of Pharmacy - Drug Sciences, University of Bari, Via Orabona 4, 70125, Bari, Italy.

Background: Cachexia is a wasting condition associated with cancer types and, at the same time, is a serious and dose-limiting side effect of cancer chemotherapy. Skeletal muscle loss is one of the main characteristics of cachexia that significantly contributes to the functional muscle impairment. Calcium-dependent signaling pathways are believed to play an important role in skeletal muscle decline observed in cachexia, but whether intracellular calcium homeostasis is affected in this situation remains uncertain. Growth hormone secretagogues (GHS), a family of synthetic agonists of ghrelin receptor (GHS-R1a), are being developed as a therapeutic option for cancer cachexia syndrome; however, the exact mechanism by which GHS interfere with skeletal muscle is not fully understood.

Methods: By a multidisciplinary approach ranging from cytofluorometry and electrophysiology to gene expression and histology, we characterized the calcium homeostasis in fast-twitch extensor digitorum longus (EDL) muscle of adult rats with cisplatin-induced cachexia and established the potential beneficial effects of two GHS (hexarelin and JMV2894) at this level. Additionally, in vivo measures of grip strength and of ultrasonography recordings allowed us to evaluate the functional impact of GHS therapeutic intervention.

Results: Cisplatin-treated EDL muscle fibres were characterized by a ~18% significant reduction of the muscle weight and fibre diameter together with an up-regulation of atrogin1/Murf-1 genes and a down-regulation of Pgc1-a gene, all indexes of muscle atrophy, and by a two-fold increase in resting intracellular calcium, [Ca ] , compared with control rats. Moreover, the amplitude of the calcium transient induced by caffeine or depolarizing high potassium solution as well as the store-operated calcium entry were ~50% significantly reduced in cisplatin-treated rats. Calcium homeostasis dysregulation parallels with changes of functional ex vivo (excitability and resting macroscopic conductance) and in vivo (forelimb force and muscle volume) outcomes in cachectic animals. Administration of hexarelin or JMV2894 markedly reduced the cisplatin-induced alteration of calcium homeostasis by both common as well as drug-specific mechanisms of action. This effect correlated with muscle function preservation as well as amelioration of various atrophic indexes, thus supporting the functional impact of GHS activity on calcium homeostasis.

Conclusions: Our findings provide a direct evidence that a dysregulation of calcium homeostasis plays a key role in cisplatin-induced model of cachexia gaining insight into the etiopathogenesis of this form of muscle wasting. Furthermore, our demonstration that GHS administration efficaciously prevents cisplatin-induced calcium homeostasis alteration contributes to elucidate the mechanism of action through which GHS could potentially ameliorate chemotherapy-associated cachexia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcsm.12185DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5703021PMC
June 2017

A novel injectable formulation of 6-fluoro-l-DOPA imaging agent for diagnosis of neuroendocrine tumors and Parkinson's disease.

Int J Pharm 2017 Mar 21;519(1-2):304-313. Epub 2017 Jan 21.

Dipartimento di Farmacia - Scienze del Farmaco-Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy, Italy. Electronic address:

Two [19F]F-l-DOPA (F-DOPA) new β-cyclodextrin (CD)-based dosage forms (FA and FB, respectively) have been studied and their physico-chemical and pharmacological features determined to overcome the administration site reactions showed by the currently used [18F]F-l-DOPA formulation (IASOdopa) to perform PET-CT diagnosis in oncology (neuroendocrine tumors) and neurological (Parkinson's disease) field. Chemical stability of FA and FB was found to be longer than IASOdopa by adding the thiol-antioxidant agent, L-Cysteine. H and F NMR investigations suggest the formation of an inclusion complex of F-DOPA with β-CD. In vitro experiments on the effects of FA and FB on mouse skeletal muscle fibers and on the human neuroblastoma SH-SY5Y and embryonal kidney tsA201 cell lines viability showed that FA was the most performant formulation compared to F-DOPA solutions. In vivo tolerability tests of FA on adult male rat showed no significant effects on body weight and no change in their dried organs weight. In addition, their metabolic and physiological parameters were not affected. In conclusion, [18F]F-l-DOPA, formulated as FA, constitutes a promising dosage form for PET-CT diagnosis of both neuroendocrine tumors and Parkinson's disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.01.038DOI Listing
March 2017

Pharmaceutical development of novel lactate-based 6-fluoro-l-DOPA formulations.

Eur J Pharm Sci 2017 Mar 4;99:361-368. Epub 2016 Oct 4.

Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari "Aldo Moro", Via E. Orabona 4, 70125 Bari, Italy. Electronic address:

6-[F]fluoro-l-dihydroxyphenylalanine (F-DOPA) is a diagnostic positron emission tomography (PET) agent, which has been used for decades in imaging the loss of dopaminergic neurons in Parkinson's disease, and more recently to detect, stage and restage neuroendocrine tumors (NETs) and to search for recurrence of viable glioma tissue. The commercially available F-DOPA PET radiopharmaceutical for diagnostic use in European Union countries, is formulated in an aqueous solution of acetic acid (1.05mg/mL) and has the disadvantages that, immediately before injection, the pH must be adjusted to 4.0-5.0 by the addition of a sterile solution of sodium bicarbonate (84mg/mL) causing a light and transient burning sensation at the injection site. To overcome these drawbacks, preformulation studies were accomplished to confirm that F-DOPA degradation was affected by pH. Hence, two formulations of F-DOPA, namely ND1 and ND2, were prepared maintaining the pH=5.0 using 1mM l-(+)-lactate buffer, excluding oxygen, and incorporating in the formula the chelating agent NaEDTA (1mM). F-DOPA oxygen exposure, the presence of free metal cations in formulation and high pH values seem to promote F-DOPA degradation. The resulting formulations proved to guarantee the chemical stability of F-DOPA in solution at pH5.0, value also compatible with the direct infusion. In vitro cell viability tests on mouse skeletal muscle fibers, renal tsa201 and neuronal SH-SY5Y cell lines, and in vivo studies in rats reported elsewhere, showed cell tolerability to the new F-DOPA formulations providing the basis for their further in vivo evaluation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2016.10.001DOI Listing
March 2017

ATP Sensitive Potassium Channels in the Skeletal Muscle Function: Involvement of the KCNJ11(Kir6.2) Gene in the Determination of Mechanical Warner Bratzer Shear Force.

Front Physiol 2016 10;7:167. Epub 2016 May 10.

Department of Veterinary Medicine, University of Bari Aldo Moro Bari, Italy.

The ATP-sensitive K(+)-channels (KATP) are distributed in the tissues coupling metabolism with K(+) ions efflux. KATP subunits are encoded by KCNJ8 (Kir6.1), KCNJ11 (Kir6.2), ABCC8 (SUR1), and ABCC9 (SUR2) genes, alternative RNA splicing give rise to SUR variants that confer distinct physiological properties on the channel. An high expression/activity of the sarco-KATP channel is observed in various rat fast-twitch muscles, characterized by elevated muscle strength, while a low expression/activity is observed in the slow-twitch muscles characterized by reduced strength and frailty. Down-regulation of the KATP subunits of fast-twitch fibers is found in conditions characterized by weakness and frailty. KCNJ11 gene knockout mice have reduced glycogen, lean phenotype, lower body fat, and weakness. KATP channel is also a sensor of muscle atrophy. The KCNJ11 gene is located on BTA15, close to a QTL for meat tenderness, it has also a role in glycogen storage, a key mechanism of the postmortem transformation of muscle into meat. The role of KCNJ11 gene in muscle function may underlie an effect of KCNJ11 genotypes on meat tenderness, as recently reported. The fiber phenotype and genotype are important in livestock production science. Quantitative traits including meat production and quality are influenced both by environment and genes. Molecular markers can play an important role in the genetic improvement of animals through breeding strategies. Many factors influence the muscle Warner-Bratzler shear force including breed, age, feeding, the biochemical, and functional parameters. The role of KCNJ11gene and related genes on muscle tenderness will be discussed in the present review.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2016.00167DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4862255PMC
May 2016

Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery.

Front Pharmacol 2016 10;7:121. Epub 2016 May 10.

Department of Pharmacy - Drug Sciences, University of Bari "Aldo Moro" Bari, Italy.

In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, disabling, or life-threatening. In spite of this, ion channels are the primary target of only about 5% of the marketed drugs suggesting their potential in drug discovery. The current review summarizes the therapeutic management of the principal ion channelopathies of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion channels. For most channelopathies the therapy is mainly empirical and symptomatic, often limited by lack of efficacy and tolerability for a significant number of patients. Other channelopathies can exploit ion channel targeted drugs, such as marketed sodium channel blockers. Developing new and more specific therapeutic approaches is therefore required. To this aim, a major advancement in the pharmacotherapy of channelopathies has been the discovery that ion channel mutations lead to change in biophysics that can in turn specifically modify the sensitivity to drugs: this opens the way to a pharmacogenetics strategy, allowing the development of a personalized therapy with increased efficacy and reduced side effects. In addition, the identification of disease modifiers in ion channelopathies appears an alternative strategy to discover novel druggable targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphar.2016.00121DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4861771PMC
May 2016

In vivo longitudinal study of rodent skeletal muscle atrophy using ultrasonography.

Sci Rep 2016 Feb 1;6:20061. Epub 2016 Feb 1.

Department of Biomedical Sciences &Human Oncology, Polyclinic Biological Research Institute, University of Bari Aldo Moro, P.zza Giulio Cesare 11, Bari, 70124 Italy.

Muscle atrophy is a widespread ill condition occurring in many diseases, which can reduce quality of life and increase morbidity and mortality. We developed a new method using non-invasive ultrasonography to measure soleus and gastrocnemius lateralis muscle atrophy in the hindlimb-unloaded rat, a well-accepted model of muscle disuse. Soleus and gastrocnemius volumes were calculated using the conventional truncated-cone method and a newly-designed sinusoidal method. For Soleus muscle, the ultrasonographic volume determined in vivo with either method was linearly correlated to the volume determined ex-vivo from excised muscles as muscle weight-to-density ratio. For both soleus and gastrocnemius muscles, a strong linear correlation was obtained between the ultrasonographic volume and the muscle fiber cross-sectional area determined ex-vivo on muscle cryosections. Thus ultrasonography allowed the longitudinal in vivo evaluation of muscle atrophy progression during hindlimb unloading. This study validates ultrasonography as a powerful method for the evaluation of rodent muscle atrophy in vivo, which would prove useful in disease models and therapeutic trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep20061DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4735519PMC
February 2016

The large conductance Ca(2+) -activated K(+) (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases.

Front Physiol 2014 9;5:476. Epub 2014 Dec 9.

Department of Pharmacy-Drug Science, University of Bari "Aldo Moro" Bari, Italy.

Here we investigated on the role of the calcium activated K(+)-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K(+)-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K(+)-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46) following depolarization. The intercept of the I/V curve was -33 mV. IbTX(10(-8) - 4 × 10(-7) M) reduced the K(+)-current at +30 mV with an IC50 of 1.85 × 10(-7) M and an Imax of -46% (slope = 2.198) (n = 21). NS1619(10-100 × 10(-6) M) enhanced the K(+)-current of +141% (n = 6), at -10 mV(Vm). TEA(10(-5)-10(-3) M) reduced the K(+)-current with an IC50 of 3.54 × 10(-5) M and an Imax of -90% (slope = 0.95) (n = 5). A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE) of +38% (10(-4) M). IbTX showed an MPE of +42% at 10(-8) M concentration, reducing it at higher concentrations. The MPE of the NS1619(100 × 10(-6) M) was +42%. The PKC inhibitor staurosporine (0.2-2 × 10(-6) M) antagonized the proliferative actions of IbTX and TEA. IbTX (10 × 10(-9) M), TEA (100 × 10(-6) M), and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fphys.2014.00476DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4260485PMC
December 2014

Database search of spontaneous reports and pharmacological investigations on the sulfonylureas and glinides-induced atrophy in skeletal muscle.

Pharmacol Res Perspect 2014 Feb 3;2(1):e00028. Epub 2014 Mar 3.

Departments of Pharmacy-Drug Science, University of Bari Bari, Italy.

The ATP-sensitive K(+) (KATP) channel is an emerging pathway in the skeletal muscle atrophy which is a comorbidity condition in diabetes. The "in vitro" effects of the sulfonylureas and glinides were evaluated on the protein content/muscle weight, fibers viability, mitochondrial succinic dehydrogenases (SDH) activity, and channel currents in oxidative soleus (SOL), glycolitic/oxidative flexor digitorum brevis (FDB), and glycolitic extensor digitorum longus (EDL) muscle fibers of mice using biochemical and cell-counting Kit-8 assay, image analysis, and patch-clamp techniques. The sulfonylureas were: tolbutamide, glibenclamide, and glimepiride; the glinides were: repaglinide and nateglinide. Food and Drug Administration-Adverse Effects Reporting System (FDA-AERS) database searching of atrophy-related signals associated with the use of these drugs in humans has been performed. The drugs after 24 h of incubation time reduced the protein content/muscle weight and fibers viability more effectively in FDB and SOL than in the EDL. The order of efficacy of the drugs in reducing the protein content in FDB was: repaglinide (EC50 = 5.21 × 10(-6)) ≥ glibenclamide(EC50 = 8.84 × 10(-6)) > glimepiride(EC50 = 2.93 × 10(-5)) > tolbutamide(EC50 = 1.07 × 10(-4)) > nateglinide(EC50 = 1.61 × 10(-4)) and it was: repaglinide(7.15 × 10(-5)) ≥ glibenclamide(EC50 = 9.10 × 10(-5)) > nateglinide(EC50 = 1.80 × 10(-4)) ≥ tolbutamide(EC50 = 2.19 × 10(-4)) > glimepiride(EC50=-) in SOL. The drug-induced atrophy can be explained by the KATP channel block and by the enhancement of the mitochondrial SDH activity. In an 8-month period, muscle atrophy was found in 0.27% of the glibenclamide reports in humans and in 0.022% of the other not sulfonylureas and glinides drugs. No reports of atrophy were found for the other sulfonylureas and glinides in the FDA-AERS. Glibenclamide induces atrophy in animal experiments and in human patients. Glimepiride shows less potential for inducing atrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prp2.28DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4186404PMC
February 2014

Effects of the antidiabetic drugs on the age-related atrophy and sarcopenia associated with diabetes type II.

Curr Diabetes Rev 2014 ;10(4):231-7

Dept. of Pharmacy-Drug Science, Univ. of Bari, Italy, Via Orabona, N 4, I-70125 Bari, Italy.

The skeletal muscle atrophy and sarcopenia are negative prognostic factors in the treatment of the diabetic aged-population. Insulin therapy stimulated protein anabolism in younger but not older patients and failed to prevent atrophy. The insulin- sensitizer glitazones are promising agents against atrophy but the un-favorable benefit/risk profile limits their use. Metformin is an AMPK agonist potentiating insulin actions in the adult human muscle, but not in the aged individuals. The AMPK agonists have the potential to induce atrophy. The KATP channel blockers such as the sulfonylureas and glinide may induce atrophy. Glibenclamide indeed induces atrophy in rat and in human. Within the glinides, repaglinide is the most potent atrophic agent "in vitro" in animals. The GLP-1 and incretins showed beneficial effects in skeletal muscle but their effects on the age-dependent muscle atrophy in human and animals are not known. The novel sodium glucose co-transporter inhibitors may not have been recognized as drug-induced atrophic/anti-atrophic effects. Here we reviewed the effects of the anti-diabetic drugs on the age-related muscle atrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573399810666140918121022DOI Listing
July 2015

Dual response of the KATP channels to staurosporine: a novel role of SUR2B, SUR1 and Kir6.2 subunits in the regulation of the atrophy in different skeletal muscle phenotypes.

Biochem Pharmacol 2014 Sep 3;91(2):266-75. Epub 2014 Jul 3.

Department of Pharmacy-Drug Science, University of Bari "Aldo Moro", Via Orabona n 4, 70125 Bari, Italy. Electronic address:

We investigated on the role of the genes encoding for the ATP-sensitive K(+)-channel (KATP) subunits (SUR1-2A/B, Kir6.2) in the atrophy induced "in vitro" by staurosporine (STS) in different skeletal muscle phenotypes of mouse. Patch-clamp and gene expression experiments showed that the expression/activity of the sarcolemma KATP channel subunits was higher in the fast-twitch than in the slow-twitch fibers. After 1 to 3h of incubation time, the STS (2.14×10(-6)M) treatment enhanced the expression/activity of the SUR2B, SUR1 and Kir6.2 subunit genes, but not SUR2A, in the slow-twitch muscle fibers, induced the caspase-3-9, Atrogin-1 and Murf-1 gene expression without affecting protein content. After 3 to 6h, the STS-related atrophy markedly down-regulated the SUR2B, SUR1 and Kir6.2 genes reducing the KATP currents and reduced the protein content/muscle weight ratio of the slow-twitch muscle by -36.4±6% (p<0.05). After 6 to 24h, no additional changes of the SUR1-2B and Kir6.2 gene expression and muscle protein were observed. In the fast-twitch muscles, STS mildly affected the atrophic genes and protein content, but potentiated the KATP currents down-regulating the Bnip-3 gene. Diazoxide (250-500×10(-6)M), a SUR1-2B/Kir6.2 channel opener, prevented the protein loss induced by STS in the slow-twitch muscle after 6h showing an EC50 of 1.35×10(-7)M and Emax of 75%, down-regulated the caspase-9 gene and enhanced the KATP currents. The enhanced expression/activity of the SUR2B, SUR1 and Kir6.2 genes are cytoprotective against STS-induced atrophy in the slow-twitch muscle; their reduced expression/activity is associated with proteolysis and atrophy in skeletal muscle.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2014.06.023DOI Listing
September 2014

[Safe dose rTPA for massive pulmonary embolism associated with high bleeding risk: a case report and review of the literature].

G Ital Cardiol (Rome) 2014 Apr;15(4):240-3

Systemic thrombolysis is a well known treatment for massive pulmonary embolism (PE) but it remains often underutilized in clinical practice because of the risk of major bleeding, especially intracranial hemorrhage. Recently, the use of safe-dose recombinant tissue-type plasminogen activator (rTPA) has been proposed for the treatment of moderate PE demonstrating to be safe and more effective than standard anticoagulation. We report the case of an 83-year-old male patient affected by massive PE associated with high bleeding risk, and treated with half-dose of rTPA that resulted in rapid clinical improvement. This clinical experience led us to focus on the role of reduced doses of rTPA to decrease bleeding risk in patients with PE. We conclude that the new concept of "safe-dose thrombolysis" with rTPA may be considered a reasonable and interesting option in high-bleeding risk patients with massive PE.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1714/1497.16503DOI Listing
April 2014

Effects of pleiotrophin overexpression on mouse skeletal muscles in normal loading and in actual and simulated microgravity.

PLoS One 2013 28;8(8):e72028. Epub 2013 Aug 28.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari - Aldo Moro, Bari, Italy.

Pleiotrophin (PTN) is a widespread cytokine involved in bone formation, neurite outgrowth, and angiogenesis. In skeletal muscle, PTN is upregulated during myogenesis, post-synaptic induction, and regeneration after crushing, but little is known regarding its effects on muscle function. Here, we describe the effects of PTN on the slow-twitch soleus and fast-twitch extensor digitorum longus (EDL) muscles in mice over-expressing PTN under the control of a bone promoter. The mice were maintained in normal loading or disuse condition, induced by hindlimb unloading (HU) for 14 days. Effects of exposition to near-zero gravity during a 3-months spaceflight (SF) into the Mice Drawer System are also reported. In normal loading, PTN overexpression had no effect on muscle fiber cross-sectional area, but shifted soleus muscle toward a slower phenotype, as shown by an increased number of oxidative type 1 fibers, and increased gene expression of cytochrome c oxidase subunit IV and citrate synthase. The cytokine increased soleus and EDL capillary-to-fiber ratio. PTN overexpression did not prevent soleus muscle atrophy, slow-to-fast transition, and capillary regression induced by SF and HU. Nevertheless, PTN exerted various effects on sarcolemma ion channel expression/function and resting cytosolic Ca(2+) concentration in soleus and EDL muscles, in normal loading and after HU. In conclusion, the results show very similar effects of HU and SF on mouse soleus muscle, including activation of specific gene programs. The EDL muscle is able to counterbalance this latter, probably by activating compensatory mechanisms. The numerous effects of PTN on muscle gene expression and functional parameters demonstrate the sensitivity of muscle fibers to the cytokine. Although little benefit was found in HU muscle disuse, PTN may emerge useful in various muscle diseases, because it exerts synergetic actions on muscle fibers and vessels, which could enforce oxidative metabolism and ameliorate muscle performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072028PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3756024PMC
May 2014

Emerging role of calcium-activated potassium channel in the regulation of cell viability following potassium ions challenge in HEK293 cells and pharmacological modulation.

PLoS One 2013 16;8(7):e69551. Epub 2013 Jul 16.

Department of Pharmacy-Drug-Science, University of Bari, Bari, Italy.

Emerging evidences suggest that Ca(2+)activated-K(+)-(BK) channel is involved in the regulation of cell viability. The changes of the cell viability observed under hyperkalemia (15 mEq/L) or hypokalemia (0.55 mEq/L) conditions were investigated in HEK293 cells expressing the hslo subunit (hslo-HEK293) in the presence or absence of BK channel modulators. The BK channel openers(10(-11)-10(-3)M) were: acetazolamide(ACTZ), Dichlorphenamide(DCP), methazolamide(MTZ), bendroflumethiazide(BFT), ethoxzolamide(ETX), hydrochlorthiazide(HCT), quercetin(QUERC), resveratrol(RESV) and NS1619; and the BK channel blockers(2 x 10(-7)M-5 x 10(-3)M) were: tetraethylammonium(TEA), iberiotoxin(IbTx) and charybdotoxin(ChTX). Experiments on cell viability and channel currents were performed using cell counting kit-8 and patch-clamp techniques, respectively. Hslo whole-cell current was potentiated by BK channel openers with different potency and efficacy in hslo-HEK293. The efficacy ranking of the openers at -60 mV(Vm) was BFT> ACTZ >DCP ≥RESV≥ ETX> NS1619> MTZ≥ QUERC; HCT was not effective. Cell viability after 24 h of incubation under hyperkalemia was enhanced by 82+6% and 33+7% in hslo-HEK293 cells and HEK293 cells, respectively. IbTx, ChTX and TEA enhanced cell viability in hslo-HEK293. BK openers prevented the enhancement of the cell viability induced by hyperkalemia or IbTx in hslo-HEK293 showing an efficacy which was comparable with that observed as BK openers. BK channel modulators failed to affect cell currents and viability under hyperkalemia conditions in the absence of hslo subunit. In contrast, under hypokalemia cell viability was reduced by -22+4% and -23+6% in hslo-HEK293 and HEK293 cells, respectively; the BK channel modulators failed to affect this parameter in these cells. In conclusion, BK channel regulates cell viability under hyperkalemia but not hypokalemia conditions. BFT and ACTZ were the most potent drugs either in activating the BK current and in preventing the cell proliferation induced by hyperkalemia. These findings may have relevance in disorders associated with abnormal K(+) ion homeostasis including periodic paralysis and myotonia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0069551PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712936PMC
February 2014

An olive oil-derived antioxidant mixture ameliorates the age-related decline of skeletal muscle function.

Age (Dordr) 2014 Feb 30;36(1):73-88. Epub 2013 May 30.

Section of Pharmacology, Department of Pharmacy & Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4-campus, 70125, Bari, Italy,

Age-related skeletal muscle decline is characterized by the modification of sarcolemma ion channels important to sustain fiber excitability and to prevent metabolic dysfunction. Also, calcium homeostasis and contractile function are impaired. In the aim to understand whether these modifications are related to oxidative damage and can be reverted by antioxidant treatment, we examined the effects of in vivo treatment with an waste water polyphenolic mixture (LACHI MIX HT) supplied by LACHIFARMA S.r.l. Italy containing hydroxytirosol (HT), gallic acid, and homovanillic acid on the skeletal muscles of 27-month-old rats. After 6-week treatment, we found an improvement of chloride ClC-1 channel conductance, pivotal for membrane electrical stability, and of ATP-dependent potassium channel activity, important in coupling excitability with fiber metabolism. Both of them were analyzed using electrophysiological techniques. The treatment also restored the resting cytosolic calcium concentration, the sarcoplasmic reticulum calcium release, and the mechanical threshold for contraction, an index of excitation-contraction coupling mechanism. Muscle weight and blood creatine kinase levels were preserved in LACHI MIX HT-treated aged rats. The antioxidant activity of LACHI MIX HT was confirmed by the reduction of malondialdehyde levels in the brain of the LACHI MIX HT-treated aged rats. In comparison, the administration of purified HT was less effective on all the parameters studied. Although muscle function was not completely recovered, the present study provides evidence of the beneficial effects of LACHI MIX HT, a natural compound, to ameliorate skeletal muscle functional decline due to aging-associated oxidative stress.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11357-013-9544-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3889891PMC
February 2014

Opening/blocking actions of pyruvate kinase antibodies on neuronal and muscular KATP channels.

Pharmacol Res 2012 Nov 9;66(5):401-8. Epub 2012 Aug 9.

Unit of Pharmacology, Department of Pharmacy, via Orabona no. 4, University of Bari, I-70126 Bari, Italy.

ATP-sensitive-K(+) (KATP) channels couple metabolism to the electrical activity of the cells. This channel is associated with glycolytic enzymes to form complexes regulating the channel activity in various tissues. The pyruvate-kinase (PK) enzyme is an antigen in the Paediatric Autoimmune Neuropsychiatric Disorders Associated Streptococcal infection known as PANDAS which is characterized by an abnormal production of auto-antibodies against PK. Here, the effects of the anti-pyruvate kinase antibody (anti-PK-ab) on the muscle and neuronal KATP channels were investigated in native rat skeletal muscle fibres and human neuroblastoma cell-line (SH-SY5Y), respectively. Furthermore, the interaction of PK with the inwardly rectifier potassium channel (Kir6.1/Kir6.2) subunits of the KATP channels was investigated by co-immunoprecipitation experiments in mouse brain using the anti-PK-ab. Patch-clamp experiments showed that the short-term incubation (1h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 enhanced the KATP current of 19.6% and 33.5%, respectively. As opposite, the long-term incubation (24h) of the fibres with the anti-PK-ab at the dilutions of 1:500 and 1:300 reduced the KATP current of 16% and 24%, respectively, reducing the diameter with atrophy. The direct application of the anti-PK-ab to the excised patches in the absence of intracellular ATP caused channel block, while in the presence of nucleotide channel opened. In neuronal cell line, in the short-term the anti-PK-ab potentiated KATP currents without affecting survival, while in the long-term the anti-PK-ab reduced KATP currents inducing neuronal death. Opening/blocking actions of the anti-PK antibodies on the KATP channels were observed, the blocking action causes fibre atrophy and neuronal death. We demonstrated that PK and Kir subunits are physically/functionally coupled in neurons. The KATP/PK complex can be proposed a novel target in the autoimmune diseases associated with anti-PK production as in PANDAS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.phrs.2012.07.007DOI Listing
November 2012

Splicing of the rSlo gene affects the molecular composition and drug response of Ca2+-activated K+ channels in skeletal muscle.

PLoS One 2012 10;7(7):e40235. Epub 2012 Jul 10.

Departments of Pharmacobiology, Faculty of Pharmacy, University of Bari, Bari, Italy.

The molecular composition and drug responses of calcium-activated K(+) (BK) channels of skeletal muscle are unknown. Patch-clamp experiments combined with transcript scanning of the Kcnma1 gene encoding the alpha subunit of the BK channel were performed in rat slow-twitch soleus (Sol) and fast-twitch flexor digitorum brevis (FDB) skeletal muscles. Five splicing products of the Kcnma1 gene were isolated from Sol and FDB: the e17, e22, +29 aa, Slo27 and Slo0 variants. RT-PCR analysis demonstrated that the expression of e22 and Slo0 were 80-90% higher in FDB than Sol, whereas the expression of Slo27 was 60% higher in Sol than FDB, and the +29 aa variant was equally expressed in both muscle types. No beta 1-4 subunits were detected. In Sol, a large BK current with low Ca(2+) sensitivity was recorded. The BK channel of Sol also showed a reduced response to BK channel openers, such as NS1619, acetazolamide and related drugs. In FDB, a reduced BK current with high Ca(2+) sensitivity and an enhanced drug response was recorded. The total BK RNA content, which was 200% higher in Sol than in FDB, correlated with the BK currents in both muscles. Drug responses primarily correlated with e22 and Slo0 expression levels in FDB and to Slo27 expression in Sol muscle. In conclusion, phenotype-dependent BK channel biophysical and pharmacological properties correlated with the expression levels of the variants in muscles. These findings may be relevant to conditions affecting postural muscles, such as prolonged bed-rest, and to diseases affecting fast-twitch muscles, such as periodic paralysis. Down-regulation or up-regulation of the variants associated with pathological conditions may affect channel composition and drug responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040235PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393747PMC
March 2013

Structural nucleotide analogs are potent activators/inhibitors of pancreatic β cell KATP channels: an emerging mechanism supporting their use as antidiabetic drugs.

J Pharmacol Exp Ther 2012 Feb 25;340(2):266-76. Epub 2011 Oct 25.

Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, Via Orabona No. 4, I-70126 Bari, Italy.

The 2H-1,4-benzoxazine derivatives are novel drugs structurally similar to nucleotides; however, their actions on the pancreatic β cell ATP-sensitive K+ (KATP) channel and on glucose disposal are unknown. Therefore, the effects of the linear/branched alkyl substituents and the aliphatic/aromatic rings at position 2 of the 2H-1,4-benzoxazine nucleus on the activity of these molecules against the pancreatic β cell KATP channel and the Kir6.2ΔC36 subunit were investigated using a patch-clamp technique. The effects of these compounds on glucose disposal that followed glucose loading by intraperitoneal glucose tolerance test and on fasting glycemia were investigated in normal mice. The 2-n-hexyl analog blocked the KATP (IC₅₀ = 10.1 × 10⁻⁹ M) and Kir6.2ΔC36 (IC₅₀ = 9.6 × 10⁻⁹ M) channels, which induced depolarization. In contrast, the 2-phenyl analog was a potent opener (drug concentration needed to enhance the current by 50% = 0.04 × 10⁻⁹ M), which induced hyperpolarization. The ranked order of the potency/efficacy of the analog openers was 2-phenyl > 2-benzyl > 2-cyclohexylmethyl. The 2-phenylethyl and 2-isopropyl analogs were not effective as blockers/openers. The 2-n-hexyl (2-10 mg/kg) and 2-phenyl analogs (2-30 mg/kg) reduced and enhanced the glucose areas under the curves, respectively, after glucose loading in mice. These compounds did not affect the fasting glycemia as is observed with glibenclamide. The linear alkyl chain and the aromatic ring at position 2 of the 1,4-benzoxazine nucleus are the determinants, which confer the KATP channel blocking action with glucose-lowering effects and the opening action with increased glucose levels, respectively. The opening/blocking actions of these compounds mimic those that were observed with ATP and ADP. The results support the use of these compounds as novel antidiabetic drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.111.185835DOI Listing
February 2012

The KATP channel is a molecular sensor of atrophy in skeletal muscle.

J Physiol 2010 Mar 11;588(Pt 5):773-84. Epub 2010 Jan 11.

Pharmacobiology Department, Faculty of Pharmacy, University of Bari, Via Orabona No. 4, 70120 Bari, Italy.

The involvement of ATP-sensitive K(+) (K(ATP)) channels in the atrophy of slow-twitch (MHC-I) soleus (SOL) and fast-twitch (MHC-IIa) flexor digitorum brevis (FDB) muscles was investigated in vivo in 14-day-hindlimb-unloaded (14-HU) rats, an animal model of disuse, and in vitro in drug-induced muscle atrophy. Patch-clamp and gene expression experiments were performed in combination with measurements of fibre diameters used as an index of atrophy, and with MHC labelling in 14-HU rats and controls. A down-regulation of K(ATP) channel subunits Kir6.2, SUR1 and SUR2B with marked atrophy and incomplete phenotype transition were observed in SOL of 14-HU rats. The observed changes in K(ATP) currents were well correlated with changes in fibre diameters and SUR1 expression, as well as with MHC-IIa expression. Half of the SOL fibres of 14-HU rats had reduced diameter and K(ATP) currents and were labelled by MHC-I antibodies. Non-atrophic fibres were labelled by MHC-IIa (22%) antibodies and had enhanced K(ATP) currents, or were labelled by MHC-I (28%) antibodies but had normal current. FDB was not affected in 14-HU rats and this is related to the high expression/activity of Kir6.2/SUR1 subunits characterizing this muscle phenotype. The long-term incubation of the control muscles in vitro with the K(ATP) channel blocker glibenclamide (10(6)m) reduced the K(ATP) currents with atrophy and these effects were prevented by the K(ATP) channel opener diazoxide (10(4)m). The in vivo down-regulation of SUR1, and possibly of Kir6.2 and SUR2B, or their in vitro pharmacological blockade activates atrophic signalling in skeletal muscle. All these findings suggest a new role for the K(ATP) channel as a molecular sensor of atrophy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1113/jphysiol.2009.185835DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2834937PMC
March 2010

Molecular determinants for the activating/blocking actions of the 2H-1,4-benzoxazine derivatives, a class of potassium channel modulators targeting the skeletal muscle KATP channels.

Mol Pharmacol 2008 Jul 10;74(1):50-8. Epub 2008 Apr 10.

Department of Pharmacobiology, Faculty of Pharmacy, via Orabona no. 4, Bari, Italy.

The 2H-1,4-benzoxazine derivatives are modulators of the skeletal muscle ATP-sensitive-K(+) channels (K(ATP)), activating it in the presence of ATP but inhibiting it in the absence of nucleotide. To investigate the molecular determinants for the activating/blocking actions of these compounds, novel molecules with different alkyl or aryl-alkyl substitutes at position 2 of the 1,4-benzoxazine ring were prepared. The effects of the lengthening of the alkyl chain and of branched substitutes, as well as of the introduction of aliphatic/aromatic rings on the activity of the molecules, were investigated on the skeletal muscle K(ATP) channels of the rat, in excised-patch experiments, in the presence or absence of internal ATP (10(-4) M). In the presence of ATP, the 2-n-hexyl analog was the most potent activator (DE(50) = 1.08 x 10(-10) M), whereas the 2-phenylethyl was not effective. The rank order of efficacy of the openers was 2-n-hexyl > or =2-cyclohexylmethyl >2-isopropyl = 2-n-butyl > or = 2-phenyl > or = 2-benzyl = 2-isobutyl analogs. In the absence of ATP, the 2-phenyl analog was the most potent inhibitor (IC(50) = 2.5 x 10(-11) M); the rank order of efficacy of the blockers was 2-phenyl > or = 2-n-hexyl > 2-n-butyl > 2-cyclohexylmethyl, whereas the 2-phenylethyl, 2-benzyl, and 2-isobutyl 1,4-benzoxazine analogs were not effective; the 2-isopropyl analog activated the K(ATP) channel even in the absence of nucleotide. Therefore, distinct molecular determinants for the activating or blocking actions for these compounds can be found. For example, the replacement of the linear with the branched alkyl substitutes at the position 2 of the 1,4-benzoxazine nucleus determines the molecular switch from blockers to openers. These compounds were 100-fold more potent and effective as openers than other KCO against the muscle K(ATP) channels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.108.046615DOI Listing
July 2008

Reduced expression of Kir6.2/SUR2A subunits explains KATP deficiency in K+-depleted rats.

Neuromuscul Disord 2008 Jan 6;18(1):74-80. Epub 2007 Sep 6.

Department of Pharmacobiology, Faculty of Pharmacy, University of Bari, via Orabona no 4, 70120 Bari, Italy.

We investigated on the mechanism responsible for the reduced ATP-sensitive K(+)(K(ATP)) channel activity recorded from skeletal muscle of K(+)-depleted rats. Patch-clamp and gene expression measurements of K(ATP) channel subunits were performed. A down-regulation of the K(ATP) channel subunits Kir6.2(-70%) and SUR2A(-46%) in skeletal muscles of K(+)-depleted rats but no changes in the expression of Kir6.1, SUR1 and SUR2B subunits were observed. A reduced K(ATP) channel currents of -69.5% in K(+)-depleted rats was observed. The Kir6.2/SUR2A-B agonist cromakalim showed similar potency in activating the K(ATP) channels of normokalaemic and K(+)-depleted rats but reduced efficacy in K(+)-depleted rats. The Kir6.2/SUR1-2B agonist diazoxide activated K(ATP) channels in normokalaemic and K(+)-depleted rats with equal potency and efficacy. The down-regulation of the Kir6.2 explains the reduced K(ATP) channel activity in K(+)-depleted rats. The lower expression of SUR2A explains the reduced efficacy of cromakalim; preserved SUR1 expression accounts for the efficacy of diazoxide. Kir6.2/SUR2A deficiency is associated with impaired muscle function in K(+)-depleted rats and in hypoPP.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2007.07.009DOI Listing
January 2008