Publications by authors named "Anne Puel"

182 Publications

A Novel TRAF3IP2 Mutation Causing Chronic Mucocutaneous Candidiasis.

J Clin Immunol 2021 Apr 7. Epub 2021 Apr 7.

Primary Immunodeficiencies Unit, Hospital Dona Estefânia-CHLC, EPE, Rua Jacinta Marto, 1169-045, Lisbon, Portugal.

Inborn errors of the IL-17-mediated signaling have been associated with chronic mucocutaneous candidiasis (CMC). We describe a patient with CMC, atopic dermatitis, enamel dysplasia, and recurrent parotitis harboring a novel compound heterozygous mutation of TRAF3IP2, leading to autosomal recessive ACT1 deficiency and deficient IL-17 signaling.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-021-01026-2DOI Listing
April 2021

Clinical and Molecular Findings in Mendelian Susceptibility to Mycobacterial Diseases: Experience From India.

Front Immunol 2021 25;12:631298. Epub 2021 Feb 25.

Department of Immunology, B. J. Wadia Hospital for Children, Mumbai, India.

Mendelian Susceptibility to Mycobacterial diseases (MSMD) are a group of innate immune defects with more than 17 genes and 32 clinical phenotypes identified. Defects in the IFN-γ mediated immunity lead to an increased susceptibility to intracellular pathogens like mycobacteria including attenuated -Bacillus Calmette-Guérin (BCG) vaccine strains and non-tuberculous environmental mycobacteria (NTM), , fungi, parasites like and some viruses, in otherwise healthy individuals. Mutations in the gene are the commonest genetic defects identified. This retrospective study reports the clinical, immunological, and molecular characteristics of a cohort of 55 MSMD patients from 10 centers across India. Mycobacterial infection was confirmed by GeneXpert, Histopathology, and acid fast bacilli staining. Immunological workup included lymphocyte subset analysis, Nitro blue tetrazolium (NBT) test, immunoglobulin levels, and flow-cytometric evaluation of the IFN-γ mediated immunity. Genetic analysis was done by next generation sequencing (NGS). Disseminated BCG-osis was the commonest presenting manifestation (82%) with a median age of presentation of 6 months due to the practice of BCG vaccination at birth. This was followed by infection with and non-typhi (13%), (11%), (7%), NTM (4%), and (2%). Thirty-six percent of patients in cohort were infected by more than one organism. This study is the largest cohort of MSMD patients reported from India to the best of our knowledge and we highlight the importance of work up for IL-12/IL-23/ISG15/IFN-γ circuit in all patients with BCG-osis and suspected MSMD irrespective of age.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2021.631298DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7959731PMC
February 2021

The Ever-Increasing Array of Novel Inborn Errors of Immunity: an Interim Update by the IUIS Committee.

J Clin Immunol 2021 Apr 18;41(3):666-679. Epub 2021 Feb 18.

Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium.

The most recent updated classification of inborn errors of immunity/primary immunodeficiencies, compiled by the International Union of Immunological Societies Expert Committee, was published in January 2020. Within days of completing this report, it was already out of date, evidenced by the frequent publication of genetic variants proposed to cause novel inborn errors of immunity. As the next formal report from the IUIS Expert Committee will not be published until 2022, we felt it important to provide the community with a brief update of recent contributions to the field of inborn errors of immunity. Herein, we highlight studies that have identified 26 additional monogenic gene defects that reach the threshold to represent novel causes of immune defects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-021-00980-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7889474PMC
April 2021

Inherited CARD9 Deficiency in a Child with Invasive Disease Due to Exophiala dermatitidis and Two Older but Asymptomatic Siblings.

J Clin Immunol 2021 Feb 8. Epub 2021 Feb 8.

Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan.

Purpose: Autosomal recessive CARD9 deficiency predisposes patients to invasive fungal disease. Candida and Trichophyton species are major causes of fungal disease in these patients. Other CARD9-deficient patients display invasive diseases caused by other fungi, such as Exophiala spp. The clinical penetrance of CARD9 deficiency regarding fungal disease is surprisingly not complete until adulthood, though the age remains unclear. Moreover, the immunological features of genetically confirmed yet asymptomatic individuals with CARD9 deficiency have not been reported.

Methods: Identification of CARD9 mutations by gene panel sequencing and characterization of the cellular phenotype by quantitative PCR, immunoblot, luciferase reporter, and cytometric bead array assays were performed.

Results: Gene panel sequencing identified compound heterozygous CARD9 variants, c.1118G>C (p.R373P) and c.586A>G (p.K196E), in a 4-year-old patient with multiple cerebral lesions and systemic lymphadenopathy due to Exophiala dermatitidis. The p.R373P is a known disease-causing variant, whereas the p.K196E is a private variant. Although the patient's siblings, a 10-year-old brother and an 8-year-old sister, were also compound heterozygous, they have been asymptomatic to date. Normal CARD9 mRNA and protein expression were found in the patient's CD14 monocytes. However, these cells exhibited markedly impaired pro-inflammatory cytokine production in response to fungal stimulation. Monocytes from both asymptomatic siblings displayed the same cellular phenotype.

Conclusions: CARD9 deficiency should be considered in previously healthy patients with invasive Exophiala dermatitidis disease. Asymptomatic relatives of all ages should be tested for CARD9 deficiency. Detecting cellular defects in asymptomatic individuals is useful for diagnosing CARD9 deficiency.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-021-00988-7DOI Listing
February 2021

Human gut mycobiota tune immunity via CARD9-dependent induction of anti-fungal IgG antibodies.

Cell 2021 Feb 5;184(4):1017-1031.e14. Epub 2021 Feb 5.

Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA. Electronic address:

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9CX3CR1 macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2021.01.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7936855PMC
February 2021

Auto-antibodies to type I IFNs can underlie adverse reactions to yellow fever live attenuated vaccine.

J Exp Med 2021 04;218(4)

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale U1163, Necker Hospital for Sick Children, Paris, France.

Yellow fever virus (YFV) live attenuated vaccine can, in rare cases, cause life-threatening disease, typically in patients with no previous history of severe viral illness. Autosomal recessive (AR) complete IFNAR1 deficiency was reported in one 12-yr-old patient. Here, we studied seven other previously healthy patients aged 13 to 80 yr with unexplained life-threatening YFV vaccine-associated disease. One 13-yr-old patient had AR complete IFNAR2 deficiency. Three other patients vaccinated at the ages of 47, 57, and 64 yr had high titers of circulating auto-Abs against at least 14 of the 17 individual type I IFNs. These antibodies were recently shown to underlie at least 10% of cases of life-threatening COVID-19 pneumonia. The auto-Abs were neutralizing in vitro, blocking the protective effect of IFN-α2 against YFV vaccine strains. AR IFNAR1 or IFNAR2 deficiency and neutralizing auto-Abs against type I IFNs thus accounted for more than half the cases of life-threatening YFV vaccine-associated disease studied here. Previously healthy subjects could be tested for both predispositions before anti-YFV vaccination.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20202486DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7871457PMC
April 2021

SARS-CoV-2 induces human plasmacytoid predendritic cell diversification via UNC93B and IRAK4.

J Exp Med 2021 04;218(4)

Université de Paris, Institut de Recherche Saint-Louis, Institut National de la Santé et de la Recherche Médicale U976, Hôpital Saint-Louis, Paris, France.

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here we have isolated primary SARS-CoV-2 viral strains and studied their interaction with human plasmacytoid predendritic cells (pDCs), a key player in antiviral immunity. We show that pDCs are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20201387DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7849819PMC
April 2021

SARS-CoV-2 induces human plasmacytoid pre-dendritic cell diversification via UNC93B and IRAK4.

bioRxiv 2021 Jan 8. Epub 2021 Jan 8.

Université de Paris, Institut de Recherche Saint-Louis, INSERM U976, Hôpital Saint-Louis, 75010 Paris, France.

Several studies have analyzed antiviral immune pathways in late-stage severe COVID-19. However, the initial steps of SARS-CoV-2 antiviral immunity are poorly understood. Here, we have isolated primary SARS-CoV-2 viral strains, and studied their interaction with human plasmacytoid pre-dendritic cells (pDC), a key player in antiviral immunity. We show that pDC are not productively infected by SARS-CoV-2. However, they efficiently diversified into activated P1-, P2-, and P3-pDC effector subsets in response to viral stimulation. They expressed CD80, CD86, CCR7, and OX40 ligand at levels similar to influenza virus-induced activation. They rapidly produced high levels of interferon-α, interferon-λ1, IL-6, IP-10, and IL-8. All major aspects of SARS-CoV-2-induced pDC activation were inhibited by hydroxychloroquine. Mechanistically, SARS-CoV-2-induced pDC activation critically depended on IRAK4 and UNC93B1, as established using pDC from genetically deficient patients. Overall, our data indicate that human pDC are efficiently activated by SARS-CoV-2 particles and may thus contribute to type I IFN-dependent immunity against SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.07.10.197343DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7805442PMC
January 2021

Inherited GATA2 Deficiency Is Dominant by Haploinsufficiency and Displays Incomplete Clinical Penetrance.

J Clin Immunol 2021 Apr 8;41(3):639-657. Epub 2021 Jan 8.

Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, 24 Boulevard du Montparnasse, Paris, France.

Purpose: Germline heterozygous mutations of GATA2 underlie a variety of hematological and clinical phenotypes. The genetic, immunological, and clinical features of GATA2-deficient patients with mycobacterial diseases in the familial context remain largely unknown.

Methods: We enrolled 15 GATA2 index cases referred for mycobacterial disease. We describe their genetic and clinical features including their relatives.

Results: We identified 12 heterozygous GATA2 mutations, two of which had not been reported. Eight of these mutations were loss-of-function, and four were hypomorphic. None was dominant-negative in vitro, and the GATA2 locus was found to be subject to purifying selection, strongly suggesting a mechanism of haploinsufficiency. Three relatives of index cases had mycobacterial disease and were also heterozygous, resulting in 18 patients in total. Mycobacterial infection was the first clinical manifestation in 11 patients, at a mean age of 22.5 years (range: 12 to 42 years). Most patients also suffered from other infections, monocytopenia, or myelodysplasia. Strikingly, the clinical penetrance was incomplete (32.9% by age 40 years), as 16 heterozygous relatives aged between 6 and 78 years, including 4 older than 60 years, were completely asymptomatic.

Conclusion: Clinical penetrance for mycobacterial disease was found to be similar to other GATA2 deficiency-related manifestations. These observations suggest that other mechanisms contribute to the phenotypic expression of GATA2 deficiency. A diagnosis of autosomal dominant GATA2 deficiency should be considered in patients with mycobacterial infections and/or other GATA2 deficiency-related phenotypes at any age in life. Moreover, all direct relatives should be genotyped at the GATA2 locus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00930-3DOI Listing
April 2021

Negative selection on human genes underlying inborn errors depends on disease outcome and both the mode and mechanism of inheritance.

Proc Natl Acad Sci U S A 2021 Jan;118(3)

Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, 75015 Paris, France.

Genetic variants underlying life-threatening diseases, being unlikely to be transmitted to the next generation, are gradually and selectively eliminated from the population through negative selection. We study the determinants of this evolutionary process in human genes underlying monogenic diseases by comparing various negative selection scores and an integrative approach, CoNeS, at 366 loci underlying inborn errors of immunity (IEI). We find that genes underlying autosomal dominant (AD) or X-linked IEI have stronger negative selection scores than those underlying autosomal recessive (AR) IEI, whose scores are not different from those of genes not known to be disease causing. Nevertheless, genes underlying AR IEI that are lethal before reproductive maturity with complete penetrance have stronger negative selection scores than other genes underlying AR IEI. We also show that genes underlying AD IEI by loss of function have stronger negative selection scores than genes underlying AD IEI by gain of function, while genes underlying AD IEI by haploinsufficiency are under stronger negative selection than other genes underlying AD IEI. These results are replicated in 1,140 genes underlying inborn errors of neurodevelopment. Finally, we propose a supervised classifier, SCoNeS, which predicts better than state-of-the-art approaches whether a gene is more likely to underlie an AD or AR disease. The clinical outcomes of monogenic inborn errors, together with their mode and mechanisms of inheritance, determine the levels of negative selection at their corresponding loci. Integrating scores of negative selection may facilitate the prioritization of candidate genes and variants in patients suspected to carry an inborn error.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2001248118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7826345PMC
January 2021

Pediatric Demodicosis Associated with Gain-of-Function Variant in STAT1 Presenting as Rosacea-Type Rash.

J Clin Immunol 2021 Apr 6;41(3):698-700. Epub 2021 Jan 6.

Laboratory of Clinical Immunology, Inflammation and Allergy, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00942-zDOI Listing
April 2021

Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria.

Cell 2020 Dec 8;183(7):1826-1847.e31. Epub 2020 Dec 8.

St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Necker Hospital for Sick Children, 75015 Paris, France; University of Paris, Imagine Institute, 75015 Paris, France; Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France; Howard Hughes Medical Institute, New York, NY, USA. Electronic address:

Inborn errors of human interferon gamma (IFN-γ) immunity underlie mycobacterial disease. We report a patient with mycobacterial disease due to inherited deficiency of the transcription factor T-bet. The patient has extremely low counts of circulating Mycobacterium-reactive natural killer (NK), invariant NKT (iNKT), mucosal-associated invariant T (MAIT), and Vδ2 γδ T lymphocytes, and of Mycobacterium-non reactive classic T1 lymphocytes, with the residual populations of these cells also producing abnormally small amounts of IFN-γ. Other lymphocyte subsets develop normally but produce low levels of IFN-γ, with the exception of CD8 αβ T and non-classic CD4 αβ T1 lymphocytes, which produce IFN-γ normally in response to mycobacterial antigens. Human T-bet deficiency thus underlies mycobacterial disease by preventing the development of innate (NK) and innate-like adaptive lymphocytes (iNKT, MAIT, and Vδ2 γδ T cells) and IFN-γ production by them, with mycobacterium-specific, IFN-γ-producing, purely adaptive CD8 αβ T, and CD4 αβ T1 cells unable to compensate for this deficit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.10.046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7770098PMC
December 2020

A new case of deep dermatophytic disease with inherited CARD9 deficiency.

Int J Dermatol 2021 Jan 31;60(1):e15-e16. Epub 2020 Oct 31.

University hospital Mustapha Pacha, Alger, Algeria.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijd.15294DOI Listing
January 2021

IRAK4 Deficiency Presenting with Anti-NMDAR Encephalitis and HHV6 Reactivation.

J Clin Immunol 2021 Jan 20;41(1):125-135. Epub 2020 Oct 20.

Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, 1-2-3 Kasumi, Minami-Ku, Hiroshima-Shi, Hiroshima, 734-8551, Japan.

IRAK4 deficiency is an inborn error of immunity predisposing patients to invasive pyogenic infections. Currently, there is no established simple assay that enables precise characterization of IRAK4 mutant alleles in isolation. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is an autoimmune condition that is characterized by psychiatric symptoms, involuntary movement, seizures, autonomic dysfunction, and central hypoventilation. It typically occurs in adult females associated with tumors. Only a few infantile cases with anti-NMDAR encephalitis have been so far reported. We identified a 10-month-old boy with IRAK4 deficiency presenting with anti-NMDAR encephalitis and human herpes virus 6 (HHV6) reactivation. The diagnosis of IRAK4 deficiency was confirmed by the identification of compound heterozygous mutations c.29_30delAT (p.Y10Cfs*9) and c.35G>C (p.R12P) in the IRAK4 gene, low levels of IRAK4 protein expression in peripheral blood, and defective fibroblastic cell responses to TLR and IL-1 (TIR) agonist. We established a novel NF-κB reporter assay using IRAK4-null HEK293T, which enabled the precise evaluation of IRAK4 mutations. Using this system, we confirmed that both novel mutations identified in the patient are deleterious. Our study provides a new simple and reliable method to analyze IRAK4 mutant alleles. It also suggests the possible link between inborn errors of immunity and early onset anti-NMDAR encephalitis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00885-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7846526PMC
January 2021

Autoantibodies against type I IFNs in patients with life-threatening COVID-19.

Authors:
Paul Bastard Lindsey B Rosen Qian Zhang Eleftherios Michailidis Hans-Heinrich Hoffmann Yu Zhang Karim Dorgham Quentin Philippot Jérémie Rosain Vivien Béziat Jérémy Manry Elana Shaw Liis Haljasmägi Pärt Peterson Lazaro Lorenzo Lucy Bizien Sophie Trouillet-Assant Kerry Dobbs Adriana Almeida de Jesus Alexandre Belot Anne Kallaste Emilie Catherinot Yacine Tandjaoui-Lambiotte Jeremie Le Pen Gaspard Kerner Benedetta Bigio Yoann Seeleuthner Rui Yang Alexandre Bolze András N Spaan Ottavia M Delmonte Michael S Abers Alessandro Aiuti Giorgio Casari Vito Lampasona Lorenzo Piemonti Fabio Ciceri Kaya Bilguvar Richard P Lifton Marc Vasse David M Smadja Mélanie Migaud Jérome Hadjadj Benjamin Terrier Darragh Duffy Lluis Quintana-Murci Diederik van de Beek Lucie Roussel Donald C Vinh Stuart G Tangye Filomeen Haerynck David Dalmau Javier Martinez-Picado Petter Brodin Michel C Nussenzweig Stéphanie Boisson-Dupuis Carlos Rodríguez-Gallego Guillaume Vogt Trine H Mogensen Andrew J Oler Jingwen Gu Peter D Burbelo Jeffrey I Cohen Andrea Biondi Laura Rachele Bettini Mariella D'Angio Paolo Bonfanti Patrick Rossignol Julien Mayaux Frédéric Rieux-Laucat Eystein S Husebye Francesca Fusco Matilde Valeria Ursini Luisa Imberti Alessandra Sottini Simone Paghera Eugenia Quiros-Roldan Camillo Rossi Riccardo Castagnoli Daniela Montagna Amelia Licari Gian Luigi Marseglia Xavier Duval Jade Ghosn John S Tsang Raphaela Goldbach-Mansky Kai Kisand Michail S Lionakis Anne Puel Shen-Ying Zhang Steven M Holland Guy Gorochov Emmanuelle Jouanguy Charles M Rice Aurélie Cobat Luigi D Notarangelo Laurent Abel Helen C Su Jean-Laurent Casanova

Science 2020 10 24;370(6515). Epub 2020 Sep 24.

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.

Interindividual clinical variability in the course of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is vast. We report that at least 101 of 987 patients with life-threatening coronavirus disease 2019 (COVID-19) pneumonia had neutralizing immunoglobulin G (IgG) autoantibodies (auto-Abs) against interferon-ω (IFN-ω) (13 patients), against the 13 types of IFN-α (36), or against both (52) at the onset of critical disease; a few also had auto-Abs against the other three type I IFNs. The auto-Abs neutralize the ability of the corresponding type I IFNs to block SARS-CoV-2 infection in vitro. These auto-Abs were not found in 663 individuals with asymptomatic or mild SARS-CoV-2 infection and were present in only 4 of 1227 healthy individuals. Patients with auto-Abs were aged 25 to 87 years and 95 of the 101 were men. A B cell autoimmune phenocopy of inborn errors of type I IFN immunity accounts for life-threatening COVID-19 pneumonia in at least 2.6% of women and 12.5% of men.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd4585DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857397PMC
October 2020

Inborn errors of type I IFN immunity in patients with life-threatening COVID-19.

Authors:
Qian Zhang Paul Bastard Zhiyong Liu Jérémie Le Pen Marcela Moncada-Velez Jie Chen Masato Ogishi Ira K D Sabli Stephanie Hodeib Cecilia Korol Jérémie Rosain Kaya Bilguvar Junqiang Ye Alexandre Bolze Benedetta Bigio Rui Yang Andrés Augusto Arias Qinhua Zhou Yu Zhang Fanny Onodi Sarantis Korniotis Léa Karpf Quentin Philippot Marwa Chbihi Lucie Bonnet-Madin Karim Dorgham Nikaïa Smith William M Schneider Brandon S Razooky Hans-Heinrich Hoffmann Eleftherios Michailidis Leen Moens Ji Eun Han Lazaro Lorenzo Lucy Bizien Philip Meade Anna-Lena Neehus Aileen Camille Ugurbil Aurélien Corneau Gaspard Kerner Peng Zhang Franck Rapaport Yoann Seeleuthner Jeremy Manry Cecile Masson Yohann Schmitt Agatha Schlüter Tom Le Voyer Taushif Khan Juan Li Jacques Fellay Lucie Roussel Mohammad Shahrooei Mohammed F Alosaimi Davood Mansouri Haya Al-Saud Fahd Al-Mulla Feras Almourfi Saleh Zaid Al-Muhsen Fahad Alsohime Saeed Al Turki Rana Hasanato Diederik van de Beek Andrea Biondi Laura Rachele Bettini Mariella D'Angio' Paolo Bonfanti Luisa Imberti Alessandra Sottini Simone Paghera Eugenia Quiros-Roldan Camillo Rossi Andrew J Oler Miranda F Tompkins Camille Alba Isabelle Vandernoot Jean-Christophe Goffard Guillaume Smits Isabelle Migeotte Filomeen Haerynck Pere Soler-Palacin Andrea Martin-Nalda Roger Colobran Pierre-Emmanuel Morange Sevgi Keles Fatma Çölkesen Tayfun Ozcelik Kadriye Kart Yasar Sevtap Senoglu Şemsi Nur Karabela Carlos Rodríguez-Gallego Giuseppe Novelli Sami Hraiech Yacine Tandjaoui-Lambiotte Xavier Duval Cédric Laouénan Andrew L Snow Clifton L Dalgard Joshua D Milner Donald C Vinh Trine H Mogensen Nico Marr András N Spaan Bertrand Boisson Stéphanie Boisson-Dupuis Jacinta Bustamante Anne Puel Michael J Ciancanelli Isabelle Meyts Tom Maniatis Vassili Soumelis Ali Amara Michel Nussenzweig Adolfo García-Sastre Florian Krammer Aurora Pujol Darragh Duffy Richard P Lifton Shen-Ying Zhang Guy Gorochov Vivien Béziat Emmanuelle Jouanguy Vanessa Sancho-Shimizu Charles M Rice Laurent Abel Luigi D Notarangelo Aurélie Cobat Helen C Su Jean-Laurent Casanova

Science 2020 10 24;370(6515). Epub 2020 Sep 24.

St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.

Clinical outcome upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ranges from silent infection to lethal coronavirus disease 2019 (COVID-19). We have found an enrichment in rare variants predicted to be loss-of-function (LOF) at the 13 human loci known to govern Toll-like receptor 3 (TLR3)- and interferon regulatory factor 7 (IRF7)-dependent type I interferon (IFN) immunity to influenza virus in 659 patients with life-threatening COVID-19 pneumonia relative to 534 subjects with asymptomatic or benign infection. By testing these and other rare variants at these 13 loci, we experimentally defined LOF variants underlying autosomal-recessive or autosomal-dominant deficiencies in 23 patients (3.5%) 17 to 77 years of age. We show that human fibroblasts with mutations affecting this circuit are vulnerable to SARS-CoV-2. Inborn errors of TLR3- and IRF7-dependent type I IFN immunity can underlie life-threatening COVID-19 pneumonia in patients with no prior severe infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abd4570DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7857407PMC
October 2020

Human STAT1 Gain-of-Function Heterozygous Mutations: Chronic Mucocutaneous Candidiasis and Type I Interferonopathy.

J Clin Immunol 2020 11 27;40(8):1065-1081. Epub 2020 Aug 27.

St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY, USA.

Heterozygous gain-of-function (GOF) mutations in STAT1 in patients with chronic mucocutaneous candidiasis (CMC) and hypothyroidism were discovered in 2011. CMC is the recurrent or persistent mucocutaneous infection by Candida fungi, and hypothyroidism results from autoimmune thyroiditis. Patients with these diseases develop other infectious diseases, including viral, bacterial, and fungal diseases, and other autoimmune manifestations, including enterocolitis, immune cytopenia, endocrinopathies, and systemic lupus erythematosus. STAT1-GOF mutations are highly penetrant with a median age at onset of 1 year and often underlie an autosomal dominant trait. As many as 105 mutations at 72 residues, including 65 recurrent mutations, have already been reported in more than 400 patients worldwide. The GOF mechanism involves impaired dephosphorylation of STAT1 in the nucleus. Patient cells show enhanced STAT1-dependent responses to type I and II interferons (IFNs) and IL-27. This impairs Th17 cell development, which accounts for CMC. The pathogenesis of autoimmunity likely involves enhanced type I IFN responses, as in other type I interferonopathies. The pathogenesis of other infections, especially those caused by intramacrophagic bacteria and fungi, which are otherwise seen in patients with diminished type II IFN immunity, has remained mysterious. The cumulative survival rates of patients with and without severe disease (invasive infection, cancer, and/or symptomatic aneurysm) at 60 years of age are 31% and 87%, respectively. Severe autoimmunity also worsens the prognosis. The treatment of patients with STAT1-GOF mutations who suffer from severe infectious and autoimmune manifestations relies on hematopoietic stem cell transplantation and/or oral JAK inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00847-xDOI Listing
November 2020

Disseminated Infectious Disease Caused by Histoplasma capsulatum in an Adult Patient as First Manifestation of Inherited IL-12Rβ1 Deficiency.

J Clin Immunol 2020 10 24;40(7):1051-1054. Epub 2020 Jul 24.

Immunodeficiencies Research Unit, National Institute of Pediatrics, 9th Floor, Av. Iman #1, Insurgentes-Cuicuilco, 04530, Mexico City, Mexico.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00828-0DOI Listing
October 2020

Three Copies of Four Interferon Receptor Genes Underlie a Mild Type I Interferonopathy in Down Syndrome.

J Clin Immunol 2020 08 22;40(6):807-819. Epub 2020 Jun 22.

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Imagine Institute, Necker Hospital for Sick Children, Paris, France.

Down syndrome (DS) is characterized by the occurrence of three copies of human chromosome 21 (HSA21). HSA21 contains a cluster of four interferon receptor (IFN-R) genes: IFNAR1, IFNAR2, IFNGR2, and IL10RB. DS patients often develop mucocutaneous infections and autoimmune diseases, mimicking patients with heterozygous gain-of-function (GOF) STAT1 mutations, which enhance cellular responses to three types of interferon (IFN). A gene dosage effect at these four loci may contribute to the infectious and autoimmune manifestations observed in individuals with DS. We report high levels of IFN-αR1, IFN-αR2, and IFN-γR2 expression on the surface of monocytes and EBV-transformed-B (EBV-B) cells from studying 45 DS patients. Total and phosphorylated STAT1 (STAT1 and pSTAT1) levels were constitutively high in unstimulated and IFN-α- and IFN-γ-stimulated monocytes from DS patients but lower than those in patients with GOF STAT1 mutations. Following stimulation with IFN-α or -γ, but not with IL-6 or IL-21, pSTAT1 and IFN-γ activation factor (GAF) DNA-binding activities were significantly higher in the EBV-B cells of DS patients than in controls. These responses resemble the dysregulated responses observed in patients with STAT1 GOF mutations. Concentrations of plasma type I IFNs were high in 12% of the DS patients tested (1.8% in the healthy controls). Levels of type I IFNs, IFN-Rs, and STAT1 were similar in DS patients with and without recurrent skin infections. We performed a genome-wide transcriptomic analysis based on principal component analysis and interferon modules on circulating monocytes. We found that DS monocytes had levels of both IFN-α- and IFN-γ-inducible ISGs intermediate to those of monocytes from healthy controls and from patients with GOF STAT1 mutations. Unlike patients with GOF STAT1 mutations, patients with DS had normal circulating Th17 counts and a high proportion of terminally differentiated CD8 T cells with low levels of STAT1 expression. We conclude a mild interferonopathy in Down syndrome leads to an incomplete penetrance at both cellular and clinical level, which is not correlate with recurrent skin bacterial or fungal infections. The constitutive upregulation of type I and type II IFN-R, at least in monocytes of DS patients, may contribute to the autoimmune diseases observed in these individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00803-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7418179PMC
August 2020

Functional analysis of two STAT1 gain-of-function mutations in two Iranian families with autosomal dominant chronic mucocutaneous candidiasis.

Med Mycol 2021 Feb;59(2):180-188

Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Candidiasis is characterized by susceptibility to recurrent or persistent infections caused by Candida spp., typically Candida albicans, of cutaneous and mucosal surfaces. In this report, function and frequency of Th17 cells as well as genetics of patients susceptible to mucocutaneous candidiasis were studied. For patients, T-cell proliferation tests in response to Candida antigen, Th17 cell proportions, and STAT1 phosphorylation were evaluated through flow cytometry. Expression of IL17A, IL17F and IL22 genes were measured by real-time quantitative PCR. At the same time, whole exome sequencing was performed for all patients. We identified two heterozygous substitutions, one: c.821G > A (p. R274Q) was found in a multiplex family with three individuals affected, the second one: c.812A > C (p. Q271P) was found in a sporadic case. Both mutations are located in the coiled-coil domain (CCD) of STAT1. The frequency of Th17 cells, IL17A, IL17F, and IL22 gene expression in patients' peripheral blood mononuclear cells (PBMCs), and T-cell proliferation to Candida antigens were significantly reduced in the patients as compared to healthy controls. An increased STAT1 phosphorylation was observed in patients' PBMCs upon interferon (IFN)-γ stimulation as compared to healthy controls. We report two different but neighboring heterozygous mutations, located in exon 10 of the STAT1 gene, in four Iranian patients with CMC, one of whom also had hypothyroidism. These mutations were associated with impaired T cell proliferation to Candida antigen, low Th17 cell proportions, and increased STAT1 phosphorylation upon IFN-γ. We suggest that interfering with STAT1 phosphorylation might be a promising way for potential therapeutic measurements for such patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/mmy/myaa043DOI Listing
February 2021

Anti-GM-CSF Autoantibodies and Cryptococcus neoformans var. grubii CNS Vasculitis.

J Clin Immunol 2020 07 3;40(5):767-769. Epub 2020 Jun 3.

Infectious Diseases Unit, Necker-Enfants Malades Hospital, AP-HP, 75015, Paris, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00796-5DOI Listing
July 2020

Correction to: the IL1RN Mutation Creating the Most-Upstream Premature Stop Codon Is Hypomorphic because of a Reinitiation of Translation.

J Clin Immunol 2020 May;40(4):646

Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.

The original version of our manuscript, entitled, " The IL1RN mutation creating the most-upstream premature stop codon is hypomorphic because of a reinitiation of translation" unfortunately contained mistakes in Fig. 1a and d legends. The text should read as follows.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00776-9DOI Listing
May 2020

Dominant-negative mutations in human IL6ST underlie hyper-IgE syndrome.

J Exp Med 2020 06;217(6)

Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Paris, France.

Autosomal dominant hyper-IgE syndrome (AD-HIES) is typically caused by dominant-negative (DN) STAT3 mutations. Patients suffer from cold staphylococcal lesions and mucocutaneous candidiasis, severe allergy, and skeletal abnormalities. We report 12 patients from 8 unrelated kindreds with AD-HIES due to DN IL6ST mutations. We identified seven different truncating mutations, one of which was recurrent. The mutant alleles encode GP130 receptors bearing the transmembrane domain but lacking both the recycling motif and all four STAT3-recruiting tyrosine residues. Upon overexpression, the mutant proteins accumulate at the cell surface and are loss of function and DN for cellular responses to IL-6, IL-11, LIF, and OSM. Moreover, the patients' heterozygous leukocytes and fibroblasts respond poorly to IL-6 and IL-11. Consistently, patients with STAT3 and IL6ST mutations display infectious and allergic manifestations of IL-6R deficiency, and some of the skeletal abnormalities of IL-11R deficiency. DN STAT3 and IL6ST mutations thus appear to underlie clinical phenocopies through impairment of the IL-6 and IL-11 response pathways.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1084/jem.20191804DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7971136PMC
June 2020

Human inborn errors of immunity underlying superficial or invasive candidiasis.

Authors:
Anne Puel

Hum Genet 2020 Jun 2;139(6-7):1011-1022. Epub 2020 Mar 2.

Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital for Sick Children, Necker Branch, 75015, Paris, France.

Candida species, including C. albicans in particular, can cause superficial or invasive disease, often in patients with known acquired immunodeficiencies or iatrogenic conditions. The molecular and cellular basis of these infections in patients with such risk factors remained largely elusive, until the study of inborn errors of immunity clarified the basis of the corresponding inherited and "idiopathic" infections. Superficial candidiasis, also known as chronic mucocutaneous candidiasis (CMC), can be caused by inborn errors of IL-17 immunity. Invasive candidiasis can be caused by inborn errors of CARD9 immunity. In this chapter, we review both groups of inborn errors of immunity, and discuss the contribution of these studies to the deciphering of the critical mechanisms of anti-Candida immunity in patients with other conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00439-020-02141-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7275885PMC
June 2020

Infection in Humans With STAT3-Deficiency Is Associated With Defective Interferon-Gamma and Th17 Responses.

Front Immunol 2020 28;11:38. Epub 2020 Jan 28.

Unité des Aspergillus, Institut Pasteur, Paris, France.

In humans, loss-of-function mutation in the gene is frequently associated with susceptibility to bacterial as well as fungal infections including aspergillosis, although its pathogenesis remains largely unknown. In the present study, we investigated the immune responses obtained after stimulation with in STAT3-deficient patients. conidial killing efficiencies of both monocytes and neutrophils isolated from whole blood samples of STAT3-deficient patients were not different compared to those of healthy controls. After stimulation with conidia, lower concentrations of adaptive cytokines (IFN-γ, IL-17 and IL-22) were secreted by peripheral blood mononuclear cells from STAT3-deficient patients compared to those from healthy controls. Moreover, the frequency of IFN-γ and IL-17 producing CD4+ T cells was lower in STAT3-deficient patients vs. healthy controls. Among the STAT3-deficient patients, those with aspergillosis showed further lower secretion of IFN-γ upon stimulation of their PBMCs with conidia compared to the patients without aspergillosis. Together, our study indicated that STAT3-deficiency leads to a defective adaptive immune response against infection, particularly with a lower IFN-γ and IL-17 responses in those with aspergillosis, suggesting potential therapeutic benefit of recombinant IFN-γ in STAT3-deficient patients with aspergillosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.00038DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997434PMC
February 2021

Human BCL10 Deficiency due to Homozygosity for a Rare Allele.

J Clin Immunol 2020 02 1;40(2):388-398. Epub 2020 Feb 1.

Laboratory of Immunogenetics of Human Diseases, IdiPAZ Institute for Health Research, La Paz Hospital, 28046, Madrid, Spain.

In 2014, a child with broad combined immunodeficiency (CID) who was homozygous for a private BCL10 allele was reported to have complete inherited human BCL10 deficiency. In the present study, we report a new BCL10 mutation in another child with CID who was homozygous for a BCL10 variant (R88X), previously reported as a rare allele in heterozygosis (minor allele frequency, 0.000003986). The mutant allele was a loss-of-expression and loss-of-function allele. As with the previously reported patient, this patient had complete BCL10 deficiency. The clinical phenotype shared features, such as respiratory infections, but differed from that of the previous patient that he did not develop significant gastroenteritis episodes or chronic colitis. Cellular and immunological phenotypes were similar to those of the previous patient. TLR4, TLR2/6, and Dectin-1 responses were found to depend on BCL10 in fibroblasts, and final maturation of T cell and B cell maturation into memory cells was affected. Autosomal-recessive BCL10 deficiency should therefore be considered in children with CID.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10875-020-00760-3DOI Listing
February 2020