Publications by authors named "Anne E Justice"

59 Publications

Associations of Genetically Predicted Lipoprotein (a) Levels with Cardiovascular Traits in Individuals of European and African Ancestry.

Circ Genom Precis Med 2021 Jul 20. Epub 2021 Jul 20.

Department of Cardiovascular Medicine & Gonda Vascular Center, Mayo Clinic, Rochester, MN.

- Lipoprotein (a) [Lp(a)] levels are higher in individuals of African ancestry (AA) than in individuals of European ancestry (EA). We examined associations of genetically predicted Lp(a) levels with 1) atherosclerotic cardiovascular disease (ASCVD) subtypes: coronary heart disease (CHD), cerebrovascular disease (CVD), peripheral artery disease (PAD), and abdominal aortic aneurysm (AAA); and 2) non-ASCVD phenotypes, stratified by ancestry. - We performed 1) Mendelian randomization (MR) analyses for previously reported cardiovascular associations, and 2) phenome-wide MR (MR-PheWAS) analyses for novel associations. Analyses were stratified by ancestry in electronic MEdical Records and GEnomics, United Kingdom Biobank, and Million Veteran Program cohorts separately and in a combined cohort of 804,507 EA and 103,580 AA participants. - In MR analyses using the combined cohort, a 1-standard deviation (SD) genetic increase in Lp(a) level was associated with ASCVD subtypes in EA - odds ratio and 95% confidence interval for CHD 1.28(1.16-1.41); CVD 1.14(1.07-1.21); PAD 1.22(1.11-1.34); AAA 1.28(1.17-1.40); in AA the effect estimate was lower than in EA and nonsignificant for CHD 1.11(0.99-1.24) and CVD 1.06(0.99-1.14) but similar for PAD 1.16(1.01-1.33) and AAA 1.34(1.11-1.62). In EA, a 1-SD genetic increase in Lp(a) level was associated with aortic valve disorders 1.34(1.10-1.62), mitral valve disorders 1.18(1.09-1.27), congestive heart failure 1.12(1.05-1.19), and chronic kidney disease 1.07(1.01-1.14). In AA no significant associations were noted for aortic valve disorders 1.08(0.94-1.25), mitral valve disorders 1.02(0.89-1.16), congestive heart failure 1.02(0.95-1.10), or chronic kidney disease 1.05(0.99-1.12). MR-PheWAS identified novel associations in EA with arterial thromboembolic disease, non-aortic aneurysmal disease, atrial fibrillation, cardiac conduction disorders, and hypertension. - Many cardiovascular associations of genetically increased Lp(a) that were significant in EA were not significant in AA. Lp(a) was associated with ASCVD in four major arterial beds in EA but only with PAD and AAA in AA. Additional, novel cardiovascular associations were detected in EA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCGEN.120.003354DOI Listing
July 2021

Genome-wide association study of body fat distribution traits in Hispanics/Latinos from the HCHS/SOL.

Hum Mol Genet 2021 Jun 24. Epub 2021 Jun 24.

Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA, 91101, USA.

Central obesity is a leading health concern with a great burden carried by ethnic minority populations, especially Hispanics/Latinos. Genetic factors contribute to the obesity burden overall and to inter-population differences. We aimed to identify loci associated with central adiposity measured as waist-to-hip ratio (WHR), waist circumference (WC), and hip circumference (HIP) adjusted for body mass index (adjBMI), using the Hispanic Community Health Study/Study of Latinos (HCHS/SOL); determine if differences in associations differ by background group within HCHS/SOL; and determine whether previously reported associations generalize to HCHS/SOL. Our analyses included 7472 women and 5200 men of mainland (Mexican, Central and South American) and Caribbean (Puerto Rican, Cuban, and Dominican) background residing in the US. We performed genome-wide association analyses stratified and combined across sexes using linear mixed-model regression. We identified 16 variants for WHRadjBMI, 22 for WCadjBMI, and 28 for HIPadjBMI that reached suggestive significance (P < 1x10-6). Many loci exhibited differences in strength of associations by ethnic background and sex. We brought a total of 66 variants forward for validation in cohorts (N = 34 161) with participants of Hispanic/Latino, African and European descent. We confirmed 4 novel loci (P < 0.05 and consistent direction of effect, and P < 5x10-8 after meta-analysis), including 2 for WHRadjBMI (rs13301996, rs79478137); 1 for WCadjBMI (rs3168072); and 1 for HIPadjBMI (rs28692724). Also, we generalized previously reported associations to HCHS/SOL, (8 for WHRadjBMI; 10 for WCadjBMI; 12 for HIPadjBMI). Our study highlights the importance of large-scale genomic studies in ancestrally diverse Hispanic/Latino populations for identifying and characterizing central obesity-susceptibility that may be ancestry-specific.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddab166DOI Listing
June 2021

Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals.

Am J Hum Genet 2021 07 3;108(7):1350-1355. Epub 2021 Jun 3.

Centre for Genomics Research, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential. Our analyses indicate there are no significant associations with rare protein-coding variants with detectable effect sizes at our current sample sizes. Analyses will be updated as additional data become available, and results are publicly available through the Regeneron Genetics Center COVID-19 Results Browser.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.05.017DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8173480PMC
July 2021

Epigenetically mediated electrocardiographic manifestations of sub-chronic exposures to ambient particulate matter air pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study.

Environ Res 2021 07 22;198:111211. Epub 2021 Apr 22.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA.

Background: Short-duration exposure to ambient particulate matter (PM) air pollution is associated with cardiac autonomic dysfunction and prolonged ventricular repolarization. However, associations with sub-chronic exposures to coarser particulates are relatively poorly characterized as are molecular mechanisms underlying their potential relationships with cardiovascular disease.

Materials And Methods: We estimated associations between monthly mean concentrations of PM < 10 μm and 2.5-10 μm in diameter (PM PM) with time-domain measures of heart rate variability (HRV) and QT interval duration (QT) among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities Study (n = 82,107; n = 76,711). Then we examined mediation of the PM-HRV and PM-QT associations by DNA methylation (DNAm) at three Cytosine-phosphate-Guanine (CpG) sites (cg19004594, cg24102420, cg12124767) with known sensitivity to monthly mean PM concentrations in a subset of the participants (n = 7,169; n = 6,895). After multiply imputing missing PM, electrocardiographic and covariable data, we estimated associations using attrition-weighted, linear, mixed, longitudinal models adjusting for sociodemographic, behavioral, meteorological, and clinical characteristics. We assessed mediation by estimating the proportions of PM-HRV and PM-QT associations mediated by DNAm.

Results: We found little evidence of PM-HRV association, PM-QT association, or mediation by DNAm.

Conclusions: The findings suggest that among racially/ethnically and environmentally diverse U.S. populations, sub-chronic exposures to coarser particulates may not exert appreciable, epigenetically mediated effects on cardiac autonomic function or ventricular repolarization. Further investigation in better-powered studies is warranted, with additional focus on shorter duration exposures to finer particulates and non-electrocardiographic outcomes among relatively susceptible populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envres.2021.111211DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179344PMC
July 2021

Discovery and fine-mapping of height loci via high-density imputation of GWASs in individuals of African ancestry.

Am J Hum Genet 2021 04 12;108(4):564-582. Epub 2021 Mar 12.

The Charles R. Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2021.02.011DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059339PMC
April 2021

Exome-wide evaluation of rare coding variants using electronic health records identifies new gene-phenotype associations.

Nat Med 2021 01 11;27(1):66-72. Epub 2021 Jan 11.

Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, TX, USA.

The clinical impact of rare loss-of-function variants has yet to be determined for most genes. Integration of DNA sequencing data with electronic health records (EHRs) could enhance our understanding of the contribution of rare genetic variation to human disease. By leveraging 10,900 whole-exome sequences linked to EHR data in the Penn Medicine Biobank, we addressed the association of the cumulative effects of rare predicted loss-of-function variants for each individual gene on human disease on an exome-wide scale, as assessed using a set of diverse EHR phenotypes. After discovering 97 genes with exome-by-phenome-wide significant phenotype associations (P < 10), we replicated 26 of these in the Penn Medicine Biobank, as well as in three other medical biobanks and the population-based UK Biobank. Of these 26 genes, five had associations that have been previously reported and represented positive controls, whereas 21 had phenotype associations not previously reported, among which were genes implicated in glaucoma, aortic ectasia, diabetes mellitus, muscular dystrophy and hearing loss. These findings show the value of aggregating rare predicted loss-of-function variants into 'gene burdens' for identifying new gene-disease associations using EHR phenotypes in a medical biobank. We suggest that application of this approach to even larger numbers of individuals will provide the statistical power required to uncover unexplored relationships between rare genetic variation and disease phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41591-020-1133-8DOI Listing
January 2021

Genome-wide association study identifying novel variant for fasting insulin and allelic heterogeneity in known glycemic loci in Chilean adolescents: The Santiago Longitudinal Study.

Pediatr Obes 2021 Jul 30;16(7):e12765. Epub 2020 Dec 30.

Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.

Background: The genetic underpinnings of glycemic traits have been understudied in adolescent and Hispanic/Latino (H/L) populations in comparison to adults and populations of European ancestry.

Objective: To identify genetic factors underlying glycemic traits in an adolescent H/L population.

Methods: We conducted a genome-wide association study (GWAS) of fasting glucose (FG) and fasting insulin (FI) in H/L adolescents from the Santiago Longitudinal Study.

Results: We identified one novel variant positioned in the CSMD1 gene on chromosome 8 (rs77465890, effect allele frequency = 0.10) that was associated with FI (β = -0.299, SE = 0.054, p = 2.72×10 ) and was only slightly attenuated after adjusting for body mass index z-scores (β = -0.252, SE = 0.047, p = 1.03×10 ). We demonstrated directionally consistent, but not statistically significant results in African and Hispanic adults of the Population Architecture Using Genomics and Epidemiology Consortium. We also identified secondary signals for two FG loci after conditioning on known variants, which demonstrate allelic heterogeneity in well-known glucose loci.

Conclusion: Our results exemplify the importance of including populations with diverse ancestral origin and adolescent participants in GWAS of glycemic traits to uncover novel risk loci and expand our understanding of disease aetiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/ijpo.12765DOI Listing
July 2021

Electronic health record analysis identifies kidney disease as the leading risk factor for hospitalization in confirmed COVID-19 patients.

PLoS One 2020 12;15(11):e0242182. Epub 2020 Nov 12.

Geisinger, Danville, Pennsylvania, United States of America.

Background: Empirical data on conditions that increase risk of coronavirus disease 2019 (COVID-19) progression are needed to identify high risk individuals. We performed a comprehensive quantitative assessment of pre-existing clinical phenotypes associated with COVID-19-related hospitalization.

Methods: Phenome-wide association study (PheWAS) of SARS-CoV-2-positive patients from an integrated health system (Geisinger) with system-level outpatient/inpatient COVID-19 testing capacity and retrospective electronic health record (EHR) data to assess pre-COVID-19 pandemic clinical phenotypes associated with hospital admission (hospitalization).

Results: Of 12,971 individuals tested for SARS-CoV-2 with sufficient pre-COVID-19 pandemic EHR data at Geisinger, 1604 were SARS-CoV-2 positive and 354 required hospitalization. We identified 21 clinical phenotypes in 5 disease categories meeting phenome-wide significance (P<1.60x10-4), including: six kidney phenotypes, e.g. end stage renal disease or stage 5 CKD (OR = 11.07, p = 1.96x10-8), six cardiovascular phenotypes, e.g. congestive heart failure (OR = 3.8, p = 3.24x10-5), five respiratory phenotypes, e.g. chronic airway obstruction (OR = 2.54, p = 3.71x10-5), and three metabolic phenotypes, e.g. type 2 diabetes (OR = 1.80, p = 7.51x10-5). Additional analyses defining CKD based on estimated glomerular filtration rate, confirmed high risk of hospitalization associated with pre-existing stage 4 CKD (OR 2.90, 95% CI: 1.47, 5.74), stage 5 CKD/dialysis (OR 8.83, 95% CI: 2.76, 28.27), and kidney transplant (OR 14.98, 95% CI: 2.77, 80.8) but not stage 3 CKD (OR 1.03, 95% CI: 0.71, 1.48).

Conclusions: This study provides quantitative estimates of the contribution of pre-existing clinical phenotypes to COVID-19 hospitalization and highlights kidney disorders as the strongest factors associated with hospitalization in an integrated US healthcare system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0242182PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660530PMC
November 2020

Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

Diabetes 2020 12 11;69(12):2806-2818. Epub 2020 Sep 11.

Department of Biostatistics, Boston University School of Public Health, Boston, MA.

Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , , , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry ( = 2 × 10, = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679778PMC
December 2020

Methylome-wide association study of central adiposity implicates genes involved in immune and endocrine systems.

Epigenomics 2020 09 9;12(17):1483-1499. Epub 2020 Sep 9.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

We conducted a methylome-wide association study to examine associations between DNA methylation in whole blood and central adiposity and body fat distribution, measured as waist circumference, waist-to-hip ratio and waist-to-height ratio adjusted for body mass index, in 2684 African-American adults in the Atherosclerosis Risk in Communities study. We validated significantly associated cytosine-phosphate-guanine methylation sites (CpGs) among adults using the Women's Health Initiative and Framingham Heart Study participants (combined n = 5743) and generalized associations in adolescents from The Raine Study (n = 820). We identified 11 CpGs that were robustly associated with one or more central adiposity trait in adults and two in adolescents, including CpG site associations near , ,  and that had not previously been associated with obesity-related traits.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/epi-2019-0276DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7923253PMC
September 2020

Infant acid suppression use is associated with the development of eosinophilic esophagitis.

Dis Esophagus 2020 Oct;33(10)

Genomic Medicine Institute, Geisinger, Danville, Pennsylvania, USA.

Eosinophilic esophagitis (EoE) is an esophageal allergic inflammatory disorder often presenting with infant/toddler gastroesophageal reflux symptoms refractory to treatment, including acid suppression trials with histamine H2 antagonists and proton pump inhibitors. We propose to evaluate the impact of infant acid suppressant exposure in EoE. Geisinger's pediatric EoE cases were matched to controls (1:5 EoE case control ratio) using age, race, sex, and ages at other diagnoses of asthma, eczema, and environmental allergies, totaling 526 EoE cases and 2,630 controls. Comparisons between EoE cases and matched controls were tested with regard to rates of acid suppression use with H2 antagonists and PPIs during infancy. Our analyses found the use of acid suppression in infancy was positively associated with EoE: PPI (5.7% EoE cases vs. 1.6% controls; P < 0.0001), H2 antagonists (8.8% EoE cases vs. 4.5% controls; P < 0.0001). Additionally, analysis of EoE cases using acid suppression during infancy indicated a likelihood for the diagnosis with EoE at an earlier age. Early acid suppression use in infants is significantly associated with the diagnosis of EoE in childhood in this well-matched retrospective cohort study. The potential link warrants additional investigation. Our study further reinforces the evidence-based stewardship of acid suppressant use, especially in our most vulnerable populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/dote/doaa073DOI Listing
October 2020

A genome-wide association study of polycystic ovary syndrome identified from electronic health records.

Am J Obstet Gynecol 2020 10 11;223(4):559.e1-559.e21. Epub 2020 Apr 11.

Genomic Medicine Institute, Geisinger, Danville, PA. Electronic address:

Background: Polycystic ovary syndrome is the most common endocrine disorder affecting women of reproductive age. A number of criteria have been developed for clinical diagnosis of polycystic ovary syndrome, with the Rotterdam criteria being the most inclusive. Evidence suggests that polycystic ovary syndrome is significantly heritable, and previous studies have identified genetic variants associated with polycystic ovary syndrome diagnosed using different criteria. The widely adopted electronic health record system provides an opportunity to identify patients with polycystic ovary syndrome using the Rotterdam criteria for genetic studies.

Objective: To identify novel associated genetic variants under the same phenotype definition, we extracted polycystic ovary syndrome cases and unaffected controls based on the Rotterdam criteria from the electronic health records and performed a discovery-validation genome-wide association study.

Study Design: We developed a polycystic ovary syndrome phenotyping algorithm on the basis of the Rotterdam criteria and applied it to 3 electronic health record-linked biobanks to identify cases and controls for genetic study. In the discovery phase, we performed an individual genome-wide association study using the Geisinger MyCode and the Electronic Medical Records and Genomics cohorts, which were then meta-analyzed. We attempted validation of the significant association loci (P<1×10) in the BioVU cohort. All association analyses used logistic regression, assuming an additive genetic model, and adjusted for principal components to control for population stratification. An inverse-variance fixed-effect model was adopted for meta-analysis. In addition, we examined the top variants to evaluate their associations with each criterion in the phenotyping algorithm. We used the STRING database to characterize protein-protein interaction network.

Results: Using the same algorithm based on the Rotterdam criteria, we identified 2995 patients with polycystic ovary syndrome and 53,599 population controls in total (2742 cases and 51,438 controls from the discovery phase; 253 cases and 2161 controls in the validation phase). We identified 1 novel genome-wide significant variant rs17186366 (odds ratio [OR]=1.37 [1.23, 1.54], P=2.8×10) located near SOD2. In addition, 2 loci with suggestive association were also identified: rs113168128 (OR=1.72 [1.42, 2.10], P=5.2×10), an intronic variant of ERBB4 that is independent from the previously published variants, and rs144248326 (OR=2.13 [1.52, 2.86], P=8.45×10), a novel intronic variant in WWTR1. In the further association tests of the top 3 single-nucleotide polymorphisms with each criterion in the polycystic ovary syndrome algorithm, we found that rs17186366 (SOD2) was associated with polycystic ovaries and hyperandrogenism, whereas rs11316812 (ERBB4) and rs144248326 (WWTR1) were mainly associated with oligomenorrhea or infertility. We also validated the previously reported association with DENND1A1. Using the STRING database to characterize protein-protein interactions, we found both ERBB4 and WWTR1 can interact with YAP1, which has been previously associated with polycystic ovary syndrome.

Conclusion: Through a discovery-validation genome-wide association study on polycystic ovary syndrome identified from electronic health records using an algorithm based on Rotterdam criteria, we identified and validated a novel genome-wide significant association with a variant near SOD2. We also identified a novel independent variant within ERBB4 and a suggestive association with WWTR1. With previously identified polycystic ovary syndrome gene YAP1, the ERBB4-YAP1-WWTR1 network suggests involvement of the epidermal growth factor receptor and the Hippo pathway in the multifactorial etiology of polycystic ovary syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajog.2020.04.004DOI Listing
October 2020

Leukocyte Traits and Exposure to Ambient Particulate Matter Air Pollution in the Women's Health Initiative and Atherosclerosis Risk in Communities Study.

Environ Health Perspect 2020 01 6;128(1):17004. Epub 2020 Jan 6.

Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina.

Background: Inflammatory effects of ambient particulate matter (PM) air pollution exposures may underlie PM-related increases in cardiovascular disease risk and mortality, although evidence of PM-associated leukocytosis is inconsistent and largely based on small, cross-sectional, and/or unrepresentative study populations.

Objectives: Our objective was to estimate PM-leukocyte associations among U.S. women and men in the Women's Health Initiative and Atherosclerosis Risk in Communities study ().

Methods: We based the PM-leukocyte estimations on up to four study visits per participant, at which peripheral blood leukocytes and geocoded address-specific concentrations of , , and in diameter (, , and , respectively) were available. We multiply imputed missing data using chained equations and estimated PM-leukocyte count associations over daily to yearly PM exposure averaging periods using center-specific, linear, mixed, longitudinal models weighted for attrition and adjusted for sociodemographic, behavioral, meteorological, and geographic covariates. In a subset of participants with available data (), we also estimated PM-leukocyte proportion associations in compositional data analyses.

Results: We found a (95% confidence interval: , 33) higher leukocyte count, a 1.2% (0.6%, 1.8%) higher granulocyte proportion, and a (, ) lower T-cell proportion per increase in 1-month mean . However, shorter-duration exposures were inversely and only modestly associated with leukocyte count.

Discussion: The -leukocyte estimates, albeit imprecise, suggest that among racially, ethnically, and environmentally diverse U.S. populations, sustained, ambient exposure to fine PM may induce subclinical, but epidemiologically important, inflammatory effects. https://doi.org/10.1289/EHP5360.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1289/EHP5360DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7015624PMC
January 2020

A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity.

Hum Mol Genet 2019 10;28(19):3327-3338

Unidad de Investigacion Medica en Bioquımica, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.

Although hundreds of genome-wide association studies-implicated loci have been reported for adult obesity-related traits, less is known about the genetics specific for early-onset obesity and with only a few studies conducted in non-European populations to date. Searching for additional genetic variants associated with childhood obesity, we performed a trans-ancestral meta-analysis of 30 studies consisting of up to 13 005 cases (≥95th percentile of body mass index (BMI) achieved 2-18 years old) and 15 599 controls (consistently <50th percentile of BMI) of European, African, North/South American and East Asian ancestry. Suggestive loci were taken forward for replication in a sample of 1888 cases and 4689 controls from seven cohorts of European and North/South American ancestry. In addition to observing 18 previously implicated BMI or obesity loci, for both early and late onset, we uncovered one completely novel locus in this trans-ancestral analysis (nearest gene, METTL15). The variant was nominally associated with only the European subgroup analysis but had a consistent direction of effect in other ethnicities. We then utilized trans-ancestral Bayesian analysis to narrow down the location of the probable causal variant at each genome-wide significant signal. Of all the fine-mapped loci, we were able to narrow down the causative variant at four known loci to fewer than 10 single nucleotide polymorphisms (SNPs) (FAIM2, GNPDA2, MC4R and SEC16B loci). In conclusion, an ethnically diverse setting has enabled us to both identify an additional pediatric obesity locus and further fine-map existing loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddz161DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859434PMC
October 2019

Quality of dietary fat and genetic risk of type 2 diabetes: individual participant data meta-analysis.

BMJ 2019 07 25;366:l4292. Epub 2019 Jul 25.

Objective: To investigate whether the genetic burden of type 2 diabetes modifies the association between the quality of dietary fat and the incidence of type 2 diabetes.

Design: Individual participant data meta-analysis.

Data Sources: Eligible prospective cohort studies were systematically sourced from studies published between January 1970 and February 2017 through electronic searches in major medical databases (Medline, Embase, and Scopus) and discussion with investigators.

Review Methods: Data from cohort studies or multicohort consortia with available genome-wide genetic data and information about the quality of dietary fat and the incidence of type 2 diabetes in participants of European descent was sought. Prospective cohorts that had accrued five or more years of follow-up were included. The type 2 diabetes genetic risk profile was characterized by a 68-variant polygenic risk score weighted by published effect sizes. Diet was recorded by using validated cohort-specific dietary assessment tools. Outcome measures were summary adjusted hazard ratios of incident type 2 diabetes for polygenic risk score, isocaloric replacement of carbohydrate (refined starch and sugars) with types of fat, and the interaction of types of fat with polygenic risk score.

Results: Of 102 305 participants from 15 prospective cohort studies, 20 015 type 2 diabetes cases were documented after a median follow-up of 12 years (interquartile range 9.4-14.2). The hazard ratio of type 2 diabetes per increment of 10 risk alleles in the polygenic risk score was 1.64 (95% confidence interval 1.54 to 1.75, I=7.1%, τ=0.003). The increase of polyunsaturated fat and total omega 6 polyunsaturated fat intake in place of carbohydrate was associated with a lower risk of type 2 diabetes, with hazard ratios of 0.90 (0.82 to 0.98, I=18.0%, τ=0.006; per 5% of energy) and 0.99 (0.97 to 1.00, I=58.8%, τ=0.001; per increment of 1 g/d), respectively. Increasing monounsaturated fat in place of carbohydrate was associated with a higher risk of type 2 diabetes (hazard ratio 1.10, 95% confidence interval 1.01 to 1.19, I=25.9%, τ=0.006; per 5% of energy). Evidence of small study effects was detected for the overall association of polyunsaturated fat with the risk of type 2 diabetes, but not for the omega 6 polyunsaturated fat and monounsaturated fat associations. Significant interactions between dietary fat and polygenic risk score on the risk of type 2 diabetes (P>0.05 for interaction) were not observed.

Conclusions: These data indicate that genetic burden and the quality of dietary fat are each associated with the incidence of type 2 diabetes. The findings do not support tailoring recommendations on the quality of dietary fat to individual type 2 diabetes genetic risk profiles for the primary prevention of type 2 diabetes, and suggest that dietary fat is associated with the risk of type 2 diabetes across the spectrum of type 2 diabetes genetic risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/bmj.l4292DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6652797PMC
July 2019

Genetic analyses of diverse populations improves discovery for complex traits.

Nature 2019 06 19;570(7762):514-518. Epub 2019 Jun 19.

Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.

Genome-wide association studies (GWAS) have laid the foundation for investigations into the biology of complex traits, drug development and clinical guidelines. However, the majority of discovery efforts are based on data from populations of European ancestry. In light of the differential genetic architecture that is known to exist between populations, bias in representation can exacerbate existing disease and healthcare disparities. Critical variants may be missed if they have a low frequency or are completely absent in European populations, especially as the field shifts its attention towards rare variants, which are more likely to be population-specific. Additionally, effect sizes and their derived risk prediction scores derived in one population may not accurately extrapolate to other populations. Here we demonstrate the value of diverse, multi-ethnic participants in large-scale genomic studies. The Population Architecture using Genomics and Epidemiology (PAGE) study conducted a GWAS of 26 clinical and behavioural phenotypes in 49,839 non-European individuals. Using strategies tailored for analysis of multi-ethnic and admixed populations, we describe a framework for analysing diverse populations, identify 27 novel loci and 38 secondary signals at known loci, as well as replicate 1,444 GWAS catalogue associations across these traits. Our data show evidence of effect-size heterogeneity across ancestries for published GWAS associations, substantial benefits for fine-mapping using diverse cohorts and insights into clinical implications. In the United States-where minority populations have a disproportionately higher burden of chronic conditions-the lack of representation of diverse populations in genetic research will result in inequitable access to precision medicine for those with the highest burden of disease. We strongly advocate for continued, large genome-wide efforts in diverse populations to maximize genetic discovery and reduce health disparities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-019-1310-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6785182PMC
June 2019

Methylome-wide association study provides evidence of particulate matter air pollution-associated DNA methylation.

Environ Int 2019 11 14;132:104723. Epub 2019 Jun 14.

Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences and Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.

Background: DNA methylation (DNAm) may contribute to processes that underlie associations between air pollution and poor health. Therefore, our objective was to evaluate associations between DNAm and ambient concentrations of particulate matter (PM) ≤2.5, ≤10, and 2.5-10 μm in diameter (PM; PM; PM).

Methods: We conducted a methylome-wide association study among twelve cohort- and race/ethnicity-stratified subpopulations from the Women's Health Initiative and the Atherosclerosis Risk in Communities study (n = 8397; mean age: 61.5 years; 83% female; 45% African American; 9% Hispanic/Latino American). We averaged geocoded address-specific estimates of daily and monthly mean PM concentrations over 2, 7, 28, and 365 days and 1 and 12 months before exams at which we measured leukocyte DNAm in whole blood. We estimated subpopulation-specific, DNAm-PM associations at approximately 485,000 Cytosine-phosphate-Guanine (CpG) sites in multi-level, linear, mixed-effects models. We combined subpopulation- and site-specific estimates in fixed-effects, inverse variance-weighted meta-analyses, then for associations that exceeded methylome-wide significance and were not heterogeneous across subpopulations (P < 1.0 × 10; P > 0.10), we characterized associations using publicly accessible genomic databases and attempted replication in the Cooperative Health Research in the Region of Augsburg (KORA) study.

Results: Analyses identified significant DNAm-PM associations at three CpG sites. Twenty-eight-day mean PM was positively associated with DNAm at cg19004594 (chromosome 20; MATN4; P = 3.33 × 10). One-month mean PM and PM were positively associated with DNAm at cg24102420 (chromosome 10; ARPP21; P = 5.84 × 10) and inversely associated with DNAm at cg12124767 (chromosome 7; CFTR; P = 9.86 × 10). The PM-sensitive CpG sites mapped to neurological, pulmonary, endocrine, and cardiovascular disease-related genes, but DNAm at those sites was not associated with gene expression in blood cells and did not replicate in KORA.

Conclusions: Ambient PM concentrations were associated with DNAm at genomic regions potentially related to poor health among racially, ethnically and environmentally diverse populations of U.S. women and men. Further investigation is warranted to uncover mechanisms through which PM-induced epigenomic changes may cause disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2019.03.071DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6754789PMC
November 2019

Association of dietary folate and vitamin B-12 intake with genome-wide DNA methylation in blood: a large-scale epigenome-wide association analysis in 5841 individuals.

Am J Clin Nutr 2019 08;110(2):437-450

Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands.

Background: Folate and vitamin B-12 are essential micronutrients involved in the donation of methyl groups in cellular metabolism. However, associations between intake of these nutrients and genome-wide DNA methylation levels have not been studied comprehensively in humans.

Objective: The aim of this study was to assess whether folate and/or vitamin B-12 intake are asssociated with genome-wide changes in DNA methylation in leukocytes.

Methods: A large-scale epigenome-wide association study of folate and vitamin B-12 intake was performed on DNA from 5841 participants from 10 cohorts using Illumina 450k arrays. Folate and vitamin B-12 intakes were calculated from food-frequency questionnaires (FFQs). Continuous and categorical (low compared with high intake) linear regression mixed models were applied per cohort, controlling for confounders. A meta-analysis was performed to identify significant differentially methylated positions (DMPs) and regions (DMRs), and a pathway analysis was performed on the DMR annotated genes.

Results: The categorical model resulted in 6 DMPs, which are all negatively associated with folate intake, annotated to FAM64A, WRAP73, FRMD8, CUX1, and LCN8 genes, which have a role in cellular processes including centrosome localization, cell proliferation, and tumorigenesis. Regional analysis showed 74 folate-associated DMRs, of which 73 were negatively associated with folate intake. The most significant folate-associated DMR was a 400-base pair (bp) spanning region annotated to the LGALS3BP gene. In the categorical model, vitamin B-12 intake was associated with 29 DMRs annotated to 48 genes, of which the most significant was a 1100-bp spanning region annotated to the calcium-binding tyrosine phosphorylation-regulated gene (CABYR). Vitamin B-12 intake was not associated with DMPs.

Conclusions: We identified novel epigenetic loci that are associated with folate and vitamin B-12 intake. Interestingly, we found a negative association between folate and DNA methylation. Replication of these methylation loci is necessary in future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqz031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6669135PMC
August 2019

Multi-ancestry genome-wide gene-smoking interaction study of 387,272 individuals identifies new loci associated with serum lipids.

Nat Genet 2019 04 29;51(4):636-648. Epub 2019 Mar 29.

Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.

The concentrations of high- and low-density-lipoprotein cholesterol and triglycerides are influenced by smoking, but it is unknown whether genetic associations with lipids may be modified by smoking. We conducted a multi-ancestry genome-wide gene-smoking interaction study in 133,805 individuals with follow-up in an additional 253,467 individuals. Combined meta-analyses identified 13 new loci associated with lipids, some of which were detected only because association differed by smoking status. Additionally, we demonstrate the importance of including diverse populations, particularly in studies of interactions with lifestyle factors, where genomic and lifestyle differences by ancestry may contribute to novel findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-019-0378-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6467258PMC
April 2019

Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution.

Nat Genet 2019 03 18;51(3):452-469. Epub 2019 Feb 18.

Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA.

Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0334-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6560635PMC
March 2019

Exome Sequencing-Based Screening for BRCA1/2 Expected Pathogenic Variants Among Adult Biobank Participants.

JAMA Netw Open 2018 09 7;1(5):e182140. Epub 2018 Sep 7.

Genomic Medicine Institute, Geisinger, Danville, Pennsylvania.

Importance: Detection of disease-associated variants in the BRCA1 and BRCA2 (BRCA1/2) genes allows for cancer prevention and early diagnosis in high-risk individuals.

Objectives: To identify pathogenic and likely pathogenic (P/LP) BRCA1/2 variants in an unselected research cohort, and to characterize the features associated with P/LP variants.

Design, Setting, And Participants: This is a cross-sectional study of adult volunteers (n = 50 726) who underwent exome sequencing at a single health care system (Geisinger Health System, Danville, Pennsylvania) from January 1, 2014, to March 1, 2016. Participants are part of the DiscovEHR cohort and were identified through the Geisinger MyCode Community Health Initiative. They consented to a research protocol that included sequencing and return of actionable test results. Clinical data from electronic health records and clinical visits were correlated with variants. Comparisons were made between those with (cases) and those without (controls) P/LP variants in BRCA1/2.

Main Outcomes: Prevalence of P/LP BRCA1/2 variants in cohort, proportion of variant carriers not previously ascertained through clinical testing, and personal and family history of relevant cancers among BRCA1/2 variant carriers and noncarriers.

Results: Of the 50 726 health system patients who underwent exome sequencing, 50 459 (99.5%) had no expected pathogenic BRCA1/2 variants and 267 (0.5%) were BRCA1/2 carriers. Of the 267 cases (148 [55.4%] were women and 119 [44.6%] were men with a mean [range] age of 58.9 [23-90] years), 183 (68.5%) received clinically confirmed results in their electronic health record. Among the 267 participants with P/LP BRCA1/2 variants, 219 (82.0%) had no prior clinical testing, 95 (35.6%) had BRCA1 variants, and 172 (64.4%) had BRCA2 variants. Syndromic cancer diagnoses were present in 11 (47.8%) of the 23 deceased BRCA1/2 carriers and in 56 (20.9%) of all 267 BRCA1/2 carriers. Among women, 31 (20.9%) of 148 variant carriers had a personal history of breast cancer, compared with 1554 (5.2%) of 29 880 noncarriers (odds ratio [OR], 5.95; 95% CI, 3.88-9.13; P < .001). Ovarian cancer history was present in 15 (10.1%) of 148 variant carriers and in 195 (0.6%) of 29 880 variant noncarriers (OR, 18.30; 95% CI, 10.48-31.4; P < .001). Among 89 BRCA1/2 carriers without prior testing but with comprehensive personal and family history data, 44 (49.4%) did not meet published guidelines for clinical testing.

Conclusions And Relevance: This study found that compared with previous clinical care, exome sequencing-based screening identified 5 times as many individuals with P/LP BRCA1/2 variants. These findings suggest that genomic screening may identify BRCA1/2-associated cancer risk that might otherwise remain undetected within health care systems and may provide opportunities to reduce morbidity and mortality in patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2018.2140DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6324494PMC
September 2018

Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits.

Am J Hum Genet 2019 01 27;104(1):112-138. Epub 2018 Dec 27.

School of Medicine, Division of Endocrinology, Diabetes and Nutrition, and Program for Personalized and Genomic Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.

Mitochondria (MT), the major site of cellular energy production, are under dual genetic control by 37 mitochondrial DNA (mtDNA) genes and numerous nuclear genes (MT-nDNA). In the CHARGEmtDNA+ Consortium, we studied genetic associations of mtDNA and MT-nDNA associations with body mass index (BMI), waist-hip-ratio (WHR), glucose, insulin, HOMA-B, HOMA-IR, and HbA1c. This 45-cohort collaboration comprised 70,775 (insulin) to 170,202 (BMI) pan-ancestry individuals. Validation and imputation of mtDNA variants was followed by single-variant and gene-based association testing. We report two significant common variants, one in MT-ATP6 associated (p ≤ 5E-04) with WHR and one in the D-loop with glucose. Five rare variants in MT-ATP6, MT-ND5, and MT-ND6 associated with BMI, WHR, or insulin. Gene-based meta-analysis identified MT-ND3 associated with BMI (p ≤ 1E-03). We considered 2,282 MT-nDNA candidate gene associations compiled from online summary results for our traits (20 unique studies with 31 dataset consortia's genome-wide associations [GWASs]). Of these, 109 genes associated (p ≤ 1E-06) with at least 1 of our 7 traits. We assessed regulatory features of variants in the 109 genes, cis- and trans-gene expression regulation, and performed enrichment and protein-protein interactions analyses. Of the identified mtDNA and MT-nDNA genes, 79 associated with adipose measures, 49 with glucose/insulin, 13 with risk for type 2 diabetes, and 18 with cardiovascular disease, indicating for pleiotropic effects with health implications. Additionally, 21 genes related to cholesterol, suggesting additional important roles for the genes identified. Our results suggest that mtDNA and MT-nDNA genes and variants reported make important contributions to glucose and insulin metabolism, adipocyte regulation, diabetes, and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2018.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6323610PMC
January 2019

Complex patterns of direct and indirect association between the transcription Factor-7 like 2 gene, body mass index and type 2 diabetes diagnosis in adulthood in the Hispanic Community Health Study/Study of Latinos.

BMC Obes 2018 2;5:26. Epub 2018 Oct 2.

1Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 123 W Franklin St, Building C, Chapel Hill, NC USA.

Background: Genome-wide association studies have implicated the () gene in type 2 diabetes risk, and more recently, in decreased body mass index. Given the contrary direction of genetic effects on these two traits, it has been suggested that the observed association with body mass index may reflect either selection bias or a complex underlying biology at .

Methods: Using 9031 Hispanic/Latino adults (21-76 years) with complete weight history and genetic data from the community-based Hispanic Community Health Study/Study of Latinos (HCHS/SOL, Baseline 2008-2011), we estimated the multivariable association between the additive number of type 2 diabetes increasing-alleles at (rs7903146-T) and body mass index. We then used structural equation models to simultaneously model the genetic association on changes in body mass index across the life course and estimate the odds of type 2 diabetes per risk allele.

Results: We observed both significant increases in type 2 diabetes prevalence at examination (independent of body mass index) and decreases in mean body mass index and waist circumference across genotypes at rs7903146. We observed a significant multivariable association between the additive number of type 2 diabetes-risk alleles and lower body mass index at examination. In our structured modeling, we observed non-significant inverse direct associations between rs7903146-T and body mass index at ages 21 and 45 years, and a significant positive association between rs7903146-T and type 2 diabetes onset in both middle and late adulthood.

Conclusions: Herein, we replicated the protective effect of rs7930146-T on body mass index at multiple time points in the life course, and observed that these effects were not explained by past type 2 diabetes status in our structured modeling. The robust replication of the negative effects of on body mass index in multiple samples, including in our diverse Hispanic/Latino community-based sample, supports a growing body of literature on the complex biologic mechanism underlying the functional consequences of on obesity and type 2 diabetes across the life course.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40608-018-0200-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6167893PMC
October 2018

Direct and indirect genetic effects on triglycerides through omics and correlated phenotypes.

BMC Proc 2018 17;12(Suppl 9):22. Epub 2018 Sep 17.

1Department of Epidemiology, University of North Carolina, Chapel Hill, NC USA.

Even though there has been great success in identifying lipid-associated single-nucleotide polymorphisms (SNPs), the mechanisms through which the SNPs act on each trait are poorly understood. The emergence of large, complex biological data sets in well-characterized cohort studies offers an opportunity to investigate the genetic effects on trait variability as a way of informing the causal genes and biochemical pathways that are involved in lipoprotein metabolism. However, methods for simultaneously analyzing multiple omics, environmental exposures, and longitudinally measured, correlated phenotypes are lacking. The purpose of our study was to demonstrate the utility of the structural equation modeling (SEM) approach to inform our understanding of the pathways by which genetic variants lead to disease risk. With the SEM method, we examine multiple pathways directly and indirectly through previously identified triglyceride (TG)-associated SNPs, methylation, and high-density lipoprotein (HDL), including sex, age, and smoking behavior, while adding in biologically plausible direct and indirect pathways. We observed significant SNP effects ( < 0.05 and directionally consistent) on TGs at visit 4 (TG4) for five loci, including rs645040 (), rs964184 (/), rs4765127 (), rs1121980 (), and rs10401969 (). Across these loci, we identify three with strong evidence of an indirect genetic effect on TG4 through HDL, one with evidence of pleiotropic effect on HDL and TG4, and one variant that acts on TG4 indirectly through a nearby methylation site. Such information can be used to prioritize candidate genes in regions of interest, inform mechanisms of action of methylation effects, and highlight possible genes with pleiotropic effects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12919-018-0118-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157130PMC
September 2018

Characterization of the contribution of shared environmental and genetic factors to metabolic syndrome methylation heritability and familial correlations.

BMC Genet 2018 09 17;19(Suppl 1):69. Epub 2018 Sep 17.

Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC, 27514, USA.

Background: Transgenerational epigenetic inheritance has been posited as a possible contributor to the observed heritability of metabolic syndrome (MetS). Yet the extent to which estimates of epigenetic inheritance for DNA methylation sites are inflated by environmental and genetic covariance within families is still unclear. We applied current methods to quantify the environmental and genetic contributors to the observed heritability and familial correlations of four previously associated MetS methylation sites at three genes (CPT1A, SOCS3 and ABCG1) using real data made available through the GAW20.

Results: Our findings support the role of both shared environment and genetic variation in explaining the heritability of MetS and the four MetS cytosine-phosphate-guanine (CpG) sites, although the resulting heritability estimates were indistinguishable from one another. Familial correlations by type of relative pair generally followed our expectation based on relatedness, but in the case of sister and parent pairs we observed nonsignificant trends toward greater correlation than expected, as would be consistent with the role of shared environmental factors in the inflation of our estimated correlations.

Conclusions: Our work provides an interesting and flexible statistical framework for testing models of epigenetic inheritance in the context of human family studies. Future work should endeavor to replicate our findings and advance these methods to more robustly describe epigenetic inheritance patterns in human populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12863-018-0634-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157030PMC
September 2018

Genome-wide meta-analysis of macronutrient intake of 91,114 European ancestry participants from the cohorts for heart and aging research in genomic epidemiology consortium.

Mol Psychiatry 2019 12 9;24(12):1920-1932. Epub 2018 Jul 9.

Department of Clinical Chemistry, Fimlab Laboratories, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.

Macronutrient intake, the proportion of calories consumed from carbohydrate, fat, and protein, is an important risk factor for metabolic diseases with significant familial aggregation. Previous studies have identified two genetic loci for macronutrient intake, but incomplete coverage of genetic variation and modest sample sizes have hindered the discovery of additional loci. Here, we expanded the genetic landscape of macronutrient intake, identifying 12 suggestively significant loci (P < 1 × 10) associated with intake of any macronutrient in 91,114 European ancestry participants. Four loci replicated and reached genome-wide significance in a combined meta-analysis including 123,659 European descent participants, unraveling two novel loci; a common variant in RARB locus for carbohydrate intake and a rare variant in DRAM1 locus for protein intake, and corroborating earlier FGF21 and FTO findings. In additional analysis of 144,770 participants from the UK Biobank, all identified associations from the two-stage analysis were confirmed except for DRAM1. Identified loci might have implications in brain and adipose tissue biology and have clinical impact in obesity-related phenotypes. Our findings provide new insight into biological functions related to macronutrient intake.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-018-0079-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326896PMC
December 2019

Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes.

Nat Genet 2018 04 9;50(4):559-571. Epub 2018 Apr 9.

Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 40 coding variant association signals (P < 2.2 × 10); of these, 16 map outside known risk-associated loci. We make two important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes are modest (odds ratio ≤1.29). Second, when we used large-scale genome-wide association data to fine-map the associated variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants clearly represent 'false leads' with potential to generate erroneous mechanistic inference. Coding variant associations offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0084-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898373PMC
April 2018

Publisher Correction: Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity.

Nat Genet 2018 05;50(5):766-767

Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.

In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-018-0082-3DOI Listing
May 2018