Publications by authors named "Anne Destree"

28 Publications

  • Page 1 of 1

Genotype-phenotype correlations in SCN8A-related disorders reveal prognostic and therapeutic implications.

Brain 2021 Aug 25. Epub 2021 Aug 25.

National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, 0001 Oslo, Norway.

We report detailed functional analyses and genotype-phenotype correlations in 392 individuals carrying disease-causing variants in SCN8A, encoding the voltage-gated Na+ channel NaV1.6, with the aim of describing clinical phenotypes related to functional effects. Six different clinical subgroups could be identified: 1) Benign familial infantile epilepsy (BFIE) (n = 15, normal cognition, treatable seizures), 2) intermediate epilepsy (n = 33, mild ID, partially pharmaco-responsive), 3) developmental and epileptic encephalopathy (DEE, n = 177, severe ID, majority pharmaco-resistant), 4) generalized epilepsy (n = 20, mild to moderate ID, frequently with absence seizures), 5) unclassifiable epilepsy (n = 127), and 6) neurodevelopmental disorder without epilepsy (n = 20, mild to moderate ID). Groups 1-3 presented with focal or multifocal seizures (median age of onset: four months) and focal epileptiform discharges, whereas the onset of seizures in group 4 was later (median: 42 months) with generalized epileptiform discharges. We performed functional studies expressing missense variants in ND7/23 neuroblastoma cells and primary neuronal cultures using recombinant tetrodotoxin-insensitive human NaV1.6 channels and whole-cell patch-clamping. Two variants causing DEE showed a strong gain-of-function (GOF, hyperpolarising shift of steady-state activation, strongly increased neuronal firing rate), and one variant causing BFIE or intermediate epilepsy showed a mild GOF (defective fast inactivation, less increased firing). In contrast, all three variants causing generalized epilepsy induced a loss-of-function (LOF, reduced current amplitudes, depolarising shift of steady-state activation, reduced neuronal firing). Including previous studies, functional effects were known for 170 individuals. All 136 individuals carrying a functionally tested GOF variant had either focal (97, groups 1-3), or unclassifiable epilepsy (39), whereas 34 with a LOF variant had either generalized (14), no (11) or unclassifiable (6) epilepsy; only three had DEE. Computational modeling in the GOF group revealed a significant correlation between the severity of the electrophysiological and clinical phenotypes. GOF variant carriers responded significantly better to sodium channel blockers (SCBs) than to other anti-seizure medications, and the same applied for all individuals of groups 1-3. In conclusion, our data reveal clear genotype-phenotype correlations between age at seizure onset, type of epilepsy and gain- or loss-of-function effects of SCN8A variants. Generalized epilepsy with absence seizures is the main epilepsy phenotype of LOF variant carriers and the extent of the electrophysiological dysfunction of the GOF variants is a main determinant of the severity of the clinical phenotype in focal epilepsies. Our pharmacological data indicate that SCBs present a treatment option in SCN8A-related focal epilepsy with onset in the first year of life.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/brain/awab321DOI Listing
August 2021

Phenotypes and genotypes in non-consanguineous and consanguineous primary microcephaly: High incidence of epilepsy.

Mol Genet Genomic Med 2021 Sep 17;9(9):e1768. Epub 2021 Aug 17.

Department of Genetics, Hôpital Erasme, ULB Center of Human Genetics, Université Libre de Bruxelles, Brussels, Belgium.

Background: Primary microcephaly (PM) is defined as a significant reduction in occipitofrontal circumference (OFC) of prenatal onset. Clinical and genetic heterogeneity of PM represents a diagnostic challenge.

Methods: We performed detailed phenotypic and genomic analyses in a large cohort (n = 169) of patients referred for PM and could establish a molecular diagnosis in 38 patients.

Results: Pathogenic variants in ASPM and WDR62 were the most frequent causes in non-consanguineous patients in our cohort. In consanguineous patients, microarray and targeted gene panel analyses reached a diagnostic yield of 67%, which contrasts with a much lower rate in non-consanguineous patients (9%). Our series includes 11 novel pathogenic variants and we identify novel candidate genes including IGF2BP3 and DNAH2. We confirm the progression of microcephaly over time in affected children. Epilepsy was an important associated feature in our PM cohort, affecting 34% of patients with a molecular confirmation of the PM diagnosis, with various degrees of severity and seizure types.

Conclusion: Our findings will help to prioritize genomic investigations, accelerate molecular diagnoses, and improve the management of PM patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mgg3.1768DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8457702PMC
September 2021

Adult phenotype of encephalopathy.

J Med Genet 2021 Apr 2. Epub 2021 Apr 2.

Neurology Department, University Hospital Antwerp, Antwerp, Belgium

Background: Pathogenic variants are a frequent cause of developmental and epileptic encephalopathy.

Methods: We recruited 13 adults (between 18 years and 45 years of age) with encephalopathy and reviewed their clinical, EEG, neuroimaging and treatment history.

Results: While most patients had daily seizures at seizure onset, seizure frequency declined or remitted during childhood and adulthood. The most common seizure type was tonic seizures (early) infancy, and tonic-clonic and focal impaired awareness seizures later in life. Ten individuals (77%) were seizure-free at last follow-up. In 38% of the individuals, earlier periods of seizure freedom lasting a minimum of 2 years followed by seizure recurrence had occurred. Of the 10 seizure-free patients, 4 were receiving a single antiseizure medication (ASM, carbamazepine, lamotrigine or levetiracetam), and 2 had stopped taking ASM. Intellectual disability (ID) ranged from mild to profound, with the majority (54%) of individuals in the severe category. At last contact, six individuals (46%) remained unable to walk independently, six (46%) had limb spasticity and four (31%) tetraparesis/tetraplegia. Six (46%) remained non-verbal, 10 (77%) had autistic features/autism, 4 (31%) exhibited aggressive behaviour and 4 (31%) destructive behaviour with self-injury. Four patients had visual problems, thought to be related to prematurity in one. Sleep problems were seen in six (46%) individuals.

Conclusion: Seizure frequency declines over the years and most patients are seizure-free in adulthood. Longer seizure-free periods followed by seizure recurrence are common during childhood and adolescence. Most adult patients have severe ID. Motor, language and behavioural problems are an issue of continuous concern.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/jmedgenet-2020-107449DOI Listing
April 2021

Prenatally detected copy number variants in a national cohort: A postnatal follow-up study.

Prenat Diagn 2020 09 24;40(10):1272-1283. Epub 2020 Jun 24.

Center for Medical Genetics, Universiteit Antwerpen, Antwerpen, Belgium.

Objective: Belgian genetic centers established a database containing data on all chromosomal microarrays performed in a prenatal context. A study was initiated to evaluate postnatal development in children diagnosed prenatally with a non-benign copy number variant (CNV).

Methods: All children diagnosed with a prenatally detected non-benign CNV in a Belgian genetic center between May 2013 and February 2015 were included in the patient population. The control population consisted of children who had undergone an invasive procedure during pregnancy, with no or only benign CNVs. Child development was evaluated at 36 months using three (3) questionnaires: Ages and Stages Questionnaire Third edition, Ages and Stages Questionnaire Social-Emotional Second Edition and a general questionnaire.

Results: A significant difference in communication and personal-social development was detected between children with a reported susceptibility CNV and both children with an unreported susceptibility CNV and the control population. The outcome of children with a particular CNV is discussed in a case-by-case manner.

Conclusion: Our postnatal follow-up project of children with a prenatally detected non-benign CNV is the first nationwide project of its kind. A higher number of cases for each CNV category is however needed to confirm our findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.5751DOI Listing
September 2020

The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS56.

Sci Rep 2020 Jan 28;10(1):1289. Epub 2020 Jan 28.

Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.

This study aimed to genetically and clinically characterize a unique cohort of 25 individuals from 21 unrelated families with autosomal recessive nanophthalmos (NNO) and posterior microphthalmia (MCOP) from different ethnicities. An ophthalmological assessment in all families was followed by targeted MFRP and PRSS56 testing in 20 families and whole-genome sequencing in one family. Three families underwent homozygosity mapping using SNP arrays. Eight distinct MFRP mutations were found in 10/21 families (47.6%), five of which are novel including a deletion spanning the 5' untranslated region and the first coding part of exon 1. Most cases harbored homozygous mutations (8/10), while a compound heterozygous and a monoallelic genotype were identified in the remaining ones (2/10). Six distinct PRSS56 mutations were found in 9/21 (42.9%) families, three of which are novel. Similarly, homozygous mutations were found in all but one, leaving 2/21 families (9.5%) without a molecular diagnosis. Clinically, all patients had reduced visual acuity, hyperopia, short axial length and crowded optic discs. Retinitis pigmentosa was observed in 5/10 (50%) of the MFRP group, papillomacular folds in 12/19 (63.2%) of MCOP and in 3/6 (50%) of NNO cases. A considerable phenotypic variability was observed, with no clear genotype-phenotype correlations. Overall, our study represents the largest NNO and MCOP cohort reported to date and provides a genetic diagnosis in 19/21 families (90.5%), including the first MFRP genomic rearrangement, offering opportunities for gene-based therapies in MFRP-associated disease. Finally, our study underscores the importance of sequence and copy number analysis of the MFRP and PRSS56 genes in MCOP and NNO.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-57338-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6987234PMC
January 2020

A clinical scoring system for congenital contractural arachnodactyly.

Genet Med 2020 01 18;22(1):124-131. Epub 2019 Jul 18.

Center for Human Genetics, Institute of Pathology and Genetics (IPG), Gosselies, Belgium.

Purpose: Congenital contractural arachnodactyly (CCA) is an autosomal dominant connective tissue disorder manifesting joint contractures, arachnodactyly, crumpled ears, and kyphoscoliosis as main features. Due to its rarity, rather aspecific clinical presentation, and overlap with other conditions including Marfan syndrome, the diagnosis is challenging, but important for prognosis and clinical management. CCA is caused by pathogenic variants in FBN2, encoding fibrillin-2, but locus heterogeneity has been suggested. We designed a clinical scoring system and diagnostic criteria to support the diagnostic process and guide molecular genetic testing.

Methods: In this retrospective study, we assessed 167 probands referred for FBN2 analysis and classified them into a FBN2-positive (n = 44) and FBN2-negative group (n = 123) following molecular analysis. We developed a 20-point weighted clinical scoring system based on the prevalence of ten main clinical characteristics of CCA in both groups.

Results: The total score was significantly different between the groups (P < 0.001) and was indicative for classifying patients into unlikely CCA (total score <7) and likely CCA (total score ≥7) groups.

Conclusions: Our clinical score is helpful for clinical guidance for patients suspected to have CCA, and provides a quantitative tool for phenotyping in research settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0609-8DOI Listing
January 2020

Novel defects in collagen XII and VI expand the mixed myopathy/Ehlers-Danlos syndrome spectrum and lead to variant-specific alterations in the extracellular matrix.

Genet Med 2020 01 5;22(1):112-123. Epub 2019 Jul 5.

Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University and Ghent University Hospital, Ghent, Belgium.

Purpose: To date, heterozygous or homozygous COL12A1 variants have been reported in 13 patients presenting with a clinical phenotype overlapping with collagen VI-related myopathies and Ehlers-Danlos syndrome (EDS). The small number of reported patients limits thorough investigation of this newly identified syndrome, currently coined as myopathic EDS.

Methods: DNA from 78 genetically unresolved patients fulfilling the clinical criteria for myopathic EDS was sequenced using a next-generation panel of COL12A1, COL6A1, COL6A2, and COL6A3.

Results: Among this cohort, we identified four pathogenic heterozygous in-frame exon skipping (∆) defects in COL12A1, clustering to the thrombospondin N-terminal region and the adjacent collagenous domain (Δ52, Δ53, Δ54, and Δ56 respectively), one heterozygous COL12A1 arginine-to-cysteine substitution of unclear significance (p.(Arg1863Cys)), and compound heterozygous pathogenic COL6A1 variants (c.[98-6G>A];[301C>T]) in one proband. Variant-specific intracellular accumulation of collagen XII chains, extracellular overmodification of the long isoform and near-absence of the short isoform of collagen XII, and extracellular decrease of decorin and tenascin-X were observed for the COL12A1 variants. In contrast, the COL6A1 variants abolished collagen VI and V deposition and increased tenascin-X levels.

Conclusion: Our data further support the significant clinical overlap between myopathic EDS and collagen VI-related myopathies, and emphasize the variant-specific consequences of collagen XII defects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-019-0599-6DOI Listing
January 2020

Correction: The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome.

Genet Med 2019 Sep;21(9):2160-2161

University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.

The original version of this Article contained an error in the spelling of the author Pleuntje J. van der Sluijs, which was incorrectly given as Eline (P. J.) van der Sluijs. This has now been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0368-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752317PMC
September 2019

The ARID1B spectrum in 143 patients: from nonsyndromic intellectual disability to Coffin-Siris syndrome.

Genet Med 2019 06 8;21(6):1295-1307. Epub 2018 Nov 8.

University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.

Purpose: Pathogenic variants in ARID1B are one of the most frequent causes of intellectual disability (ID) as determined by large-scale exome sequencing studies. Most studies published thus far describe clinically diagnosed Coffin-Siris patients (ARID1B-CSS) and it is unclear whether these data are representative for patients identified through sequencing of unbiased ID cohorts (ARID1B-ID). We therefore sought to determine genotypic and phenotypic differences between ARID1B-ID and ARID1B-CSS. In parallel, we investigated the effect of different methods of phenotype reporting.

Methods: Clinicians entered clinical data in an extensive web-based survey.

Results: 79 ARID1B-CSS and 64 ARID1B-ID patients were included. CSS-associated dysmorphic features, such as thick eyebrows, long eyelashes, thick alae nasi, long and/or broad philtrum, small nails and small or absent fifth distal phalanx and hypertrichosis, were observed significantly more often (p < 0.001) in ARID1B-CSS patients. No other significant differences were identified.

Conclusion: There are only minor differences between ARID1B-ID and ARID1B-CSS patients. ARID1B-related disorders seem to consist of a spectrum, and patients should be managed similarly. We demonstrated that data collection methods without an explicit option to report the absence of a feature (such as most Human Phenotype Ontology-based methods) tended to underestimate gene-related features.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-018-0330-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6752273PMC
June 2019

The Belgian MicroArray Prenatal (BEMAPRE) database: A systematic nationwide repository of fetal genomic aberrations.

Prenat Diagn 2018 12 14;38(13):1120-1128. Epub 2018 Nov 14.

Center for Medical Genetics, Katholieke Universiteit Leuven, Leuven, Belgium.

Objective: With the replacement of karyotyping by chromosomal microarray (CMA) in invasive prenatal diagnosis, new challenges have arisen. By building a national database, we standardize the classification and reporting of prenatally detected copy number variants (CNVs) across Belgian genetic centers. This database, which will link genetic and ultrasound findings with postnatal development, forms a unique resource to investigate the pathogenicity of variants of uncertain significance and to refine the phenotypic spectrum of pathogenic and susceptibility CNVs.

Methods: The Belgian MicroArray Prenatal (BEMAPRE) consortium is a collaboration of all genetic centers in Belgium. We collected data from all invasive prenatal procedures performed between May 2013 and July 2016.

Results: In this three-year period, 13 266 prenatal CMAs were performed. By national agreement, a limited number of susceptibility CNVs and no variants of uncertain significance were reported. Added values for using CMA versus conventional karyotyping were 1.8% in the general invasive population and 2.7% in cases with an ultrasound anomaly. Of the reported CNVs, 31.5% would have remained undetected with non-invasive prenatal test as the first-tier test.

Conclusion: The establishment of a national database for prenatal CNV data allows for a uniform reporting policy and the investigation of the prenatal and postnatal genotype-phenotype correlation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/pd.5373DOI Listing
December 2018

Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848.

Am J Hum Genet 2018 01 28;102(1):69-87. Epub 2017 Dec 28.

Pediatrics Service, Felipe Guevara Rojas Hospital, University of Oriente, El Tigre-Anzoátegui, Venezuela 6034, Spain.

Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2017.12.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5777934PMC
January 2018

Overlapping SETBP1 gain-of-function mutations in Schinzel-Giedion syndrome and hematologic malignancies.

PLoS Genet 2017 03 27;13(3):e1006683. Epub 2017 Mar 27.

Institute for Clinical Genetics, TU Dresden, Dresden, Germany.

Schinzel-Giedion syndrome (SGS) is a rare developmental disorder characterized by multiple malformations, severe neurological alterations and increased risk of malignancy. SGS is caused by de novo germline mutations clustering to a 12bp hotspot in exon 4 of SETBP1. Mutations in this hotspot disrupt a degron, a signal for the regulation of protein degradation, and lead to the accumulation of SETBP1 protein. Overlapping SETBP1 hotspot mutations have been observed recurrently as somatic events in leukemia. We collected clinical information of 47 SGS patients (including 26 novel cases) with germline SETBP1 mutations and of four individuals with a milder phenotype caused by de novo germline mutations adjacent to the SETBP1 hotspot. Different mutations within and around the SETBP1 hotspot have varying effects on SETBP1 stability and protein levels in vitro and in in silico modeling. Substitutions in SETBP1 residue I871 result in a weak increase in protein levels and mutations affecting this residue are significantly more frequent in SGS than in leukemia. On the other hand, substitutions in residue D868 lead to the largest increase in protein levels. Individuals with germline mutations affecting D868 have enhanced cell proliferation in vitro and higher incidence of cancer compared to patients with other germline SETBP1 mutations. Our findings substantiate that, despite their overlap, somatic SETBP1 mutations driving malignancy are more disruptive to the degron than germline SETBP1 mutations causing SGS. Additionally, this suggests that the functional threshold for the development of cancer driven by the disruption of the SETBP1 degron is higher than for the alteration in prenatal development in SGS. Drawing on previous studies of somatic SETBP1 mutations in leukemia, our results reveal a genotype-phenotype correlation in germline SETBP1 mutations spanning a molecular, cellular and clinical phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1006683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5386295PMC
March 2017

Expanding phenotype of p.Ala140Val mutation in MECP2 in a 4 generation family with X-linked intellectual disability and spasticity.

Eur J Med Genet 2016 Oct 25;59(10):522-5. Epub 2016 Jul 25.

Center for Human Genetics, Institut de Pathologie et Génétique (I.P.G.), Gosselies, Belgium. Electronic address:

Mutations in MECP2 (MIM #312750), located on Xq28 and encoding a methyl CpG binding protein, are classically associated with Rett syndrome in female patients, with a lethal effect in hemizygous males. However, MECP2 mutations have already been reported in surviving males with severe neonatal-onset encephalopathy, or with X-linked intellectual disability associated with psychosis, pyramidal signs, parkinsonian features and macro-orchidism (PPM-X syndrome; MIM3 #300055). Here we report on the identification of the p.Ala140Val mutation in the MECP2 gene in 4 males and 3 females of a large Caucasian family affected with X-linked intellectual disability. Females present with mild cognitive impairment and speech difficulties. Males have moderate intellectual disability, impaired language development, friendly behavior, slowly progressive spastic paraparesis and dystonic movements of the hands. Two of them show microcephaly. The p.Ala140Val mutation is recurrent, as it was already described in 4 families with X-linked mental retardation and in three sporadic male patients with intellectual disability. We further delineate the phenotype associated with the p.Ala140Val mutation, illustrating a variable expressivity even within a given family, and we compare our patients with previous reported cases in the literature.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2016.07.003DOI Listing
October 2016

STXBP1 encephalopathy: A neurodevelopmental disorder including epilepsy.

Neurology 2016 Mar 10;86(10):954-62. Epub 2016 Feb 10.

Authors' affiliations are listed at the end of the article.

Objective: To give a comprehensive overview of the phenotypic and genetic spectrum of STXBP1 encephalopathy (STXBP1-E) by systematically reviewing newly diagnosed and previously reported patients.

Methods: We recruited newly diagnosed patients with STXBP1 mutations through an international network of clinicians and geneticists. Furthermore, we performed a systematic literature search to review the phenotypes of all previously reported patients.

Results: We describe the phenotypic features of 147 patients with STXBP1-E including 45 previously unreported patients with 33 novel STXBP1 mutations. All patients have intellectual disability (ID), which is mostly severe to profound (88%). Ninety-five percent of patients have epilepsy. While one-third of patients presented with Ohtahara syndrome (21%) or West syndrome (9.5%), the majority has a nonsyndromic early-onset epilepsy and encephalopathy (53%) with epileptic spasms or tonic seizures as main seizure type. We found no correlation between severity of seizures and severity of ID or between mutation type and seizure characteristics or cognitive outcome. Neurologic comorbidities including autistic features and movement disorders are frequent. We also report 2 previously unreported adult patients with prominent extrapyramidal features.

Conclusion: De novo STXBP1 mutations are among the most frequent causes of epilepsy and encephalopathy. Most patients have severe to profound ID with little correlation among seizure onset, seizure severity, and the degree of ID. Accordingly, we hypothesize that seizure severity and ID present 2 independent dimensions of the STXBP1-E phenotype. STXBP1-E may be conceptualized as a complex neurodevelopmental disorder rather than a primary epileptic encephalopathy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1212/WNL.0000000000002457DOI Listing
March 2016

High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

Hum Mutat 2015 Nov 21;36(11):1052-63. Epub 2015 Aug 21.

Chaim Sheba Medical Center, Tel Hashomer, Israel.

Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5049609PMC
http://dx.doi.org/10.1002/humu.22832DOI Listing
November 2015

Further delineation of the KAT6B molecular and phenotypic spectrum.

Eur J Hum Genet 2015 Sep 26;23(9):1165-70. Epub 2014 Nov 26.

Paediatrics and Medical Genetics, Barzilai Medical Centre, Ashkelon, Israel.

KAT6B sequence variants have been identified previously in both patients with the Say-Barber-Biesecker type of blepharophimosis mental retardation syndromes (SBBS) and in the more severe genitopatellar syndrome (GPS). We report on the findings in a previously unreported group of 57 individuals with suggestive features of SBBS or GPS. Likely causative variants have been identified in 34/57 patients and were commonly located in the terminal exons of KAT6B. Of those where parental samples could be tested, all occurred de novo. Thirty out of thirty-four had truncating variants, one had a missense variant and the remaining three had the same synonymous change predicted to affect splicing. Variants in GPS tended to occur more proximally to those in SBBS patients, and genotype/phenotype analysis demonstrated significant clinical overlap between SBBS and GPS. The de novo synonymous change seen in three patients with features of SBBS occurred more proximally in exon 16. Statistical analysis of clinical features demonstrated that KAT6B variant-positive patients were more likely to display hypotonia, feeding difficulties, long thumbs/great toes and dental, thyroid and patella abnormalities than KAT6B variant-negative patients. The few reported patients with KAT6B haploinsufficiency had a much milder phenotype, though with some features overlapping those of SBBS. We report the findings in a previously unreported patient with a deletion of the KAT6B gene to further delineate the haploinsufficiency phenotype. The molecular mechanisms giving rise to the SBBS and GPS phenotypes are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2014.248DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351891PMC
September 2015

The SMAD-binding domain of SKI: a hotspot for de novo mutations causing Shprintzen-Goldberg syndrome.

Eur J Hum Genet 2015 Feb 16;23(2):224-8. Epub 2014 Apr 16.

Center for Medical Genetics, Faculty of Medicine and Health Sciences, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium.

Shprintzen-Goldberg syndrome (SGS) is a rare, systemic connective tissue disorder characterized by craniofacial, skeletal, and cardiovascular manifestations that show a significant overlap with the features observed in the Marfan (MFS) and Loeys-Dietz syndrome (LDS). A distinguishing observation in SGS patients is the presence of intellectual disability, although not all patients in this series present this finding. Recently, SGS was shown to be due to mutations in the SKI gene, encoding the oncoprotein SKI, a repressor of TGFβ activity. Here, we report eight recurrent and three novel SKI mutations in eleven SGS patients. All were heterozygous missense mutations located in the R-SMAD binding domain, except for one novel in-frame deletion affecting the DHD domain. Adding our new findings to the existing data clearly reveals a mutational hotspot, with 73% (24 out of 33) of the hitherto described unrelated patients having mutations in a stretch of five SKI residues (from p.(Ser31) to p.(Pro35)). This implicates that the initial molecular testing could be focused on mutation analysis of the first half of exon 1 of SKI. As the majority of the known mutations are located in the R-SMAD binding domain of SKI, our study further emphasizes the importance of TGFβ signaling in the pathogenesis of SGS.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2014.61DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297897PMC
February 2015

Implementation of genomic arrays in prenatal diagnosis: the Belgian approach to meet the challenges.

Eur J Med Genet 2014 Mar 15;57(4):151-6. Epub 2014 Feb 15.

Center for Medical Genetics, Universiteit Antwerpen, Belgium.

After their successful introduction in postnatal testing, genome-wide arrays are now rapidly replacing conventional karyotyping in prenatal diagnostics. While previous studies have demonstrated the advantages of this method, we are confronted with difficulties regarding the technology and the ethical dilemmas inherent to genomic arrays. These include indication for testing, array design, interpretation of variants and how to deal with variants of unknown significance and incidental findings. The experiences with these issues reported in the literature are most often from single centres. Here, we report on a national consensus approach how microarray is implemented in all genetic centres in Belgium. These recommendations are subjected to constant re-evaluation based on our growing experience and can serve as a useful tool for those involved in prenatal diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2014.02.002DOI Listing
March 2014

Myhre and LAPS syndromes: clinical and molecular review of 32 patients.

Eur J Hum Genet 2014 Nov 15;22(11):1272-7. Epub 2014 Jan 15.

Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.

Myhre syndrome is characterized by short stature, brachydactyly, facial features, pseudomuscular hypertrophy, joint limitation and hearing loss. We identified SMAD4 mutations as the cause of Myhre syndrome. SMAD4 mutations have also been identified in laryngotracheal stenosis, arthropathy, prognathism and short stature syndrome (LAPS). This study aimed to review the features of Myhre and LAPS patients to define the clinical spectrum of SMAD4 mutations. We included 17 females and 15 males ranging in age from 8 to 48 years. Thirty were diagnosed with Myhre syndrome and two with LAPS. SMAD4 coding sequence was analyzed by Sanger sequencing. Clinical and radiological features were collected from a questionnaire completed by the referring physicians. All patients displayed a typical facial gestalt, thickened skin, joint limitation and muscular pseudohypertrophy. Growth retardation was common (68.7%) and was variable in severity (from -5.5 to -2 SD), as was mild-to-moderate intellectual deficiency (87.5%) with additional behavioral problems in 56.2% of the patients. Significant health concerns like obesity, arterial hypertension, bronchopulmonary insufficiency, laryngotracheal stenosis, pericarditis and early death occurred in four. Twenty-nine patients had a de novo heterozygous SMAD4 mutation, including both patients with LAPS. In 27 cases mutation affected Ile500 and in two cases Arg496. The three patients without SMAD4 mutations had typical findings of Myhre syndrome. Myhre-LAPS syndrome is a clinically homogenous condition with life threatening complications in the course of the disease. Our identification of SMAD4 mutations in 29/32 cases confirms that SMAD4 is the major gene responsible for Myhre syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2013.288DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4200423PMC
November 2014

The phenotype of Floating-Harbor syndrome: clinical characterization of 52 individuals with mutations in exon 34 of SRCAP.

Orphanet J Rare Dis 2013 Apr 27;8:63. Epub 2013 Apr 27.

Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.

Methods And Results: Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.

Conclusions: This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/1750-1172-8-63DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659005PMC
April 2013

Mutations in the TGF-β repressor SKI cause Shprintzen-Goldberg syndrome with aortic aneurysm.

Nat Genet 2012 Nov 30;44(11):1249-54. Epub 2012 Sep 30.

McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.

Elevated transforming growth factor (TGF)-β signaling has been implicated in the pathogenesis of syndromic presentations of aortic aneurysm, including Marfan syndrome (MFS) and Loeys-Dietz syndrome (LDS). However, the location and character of many of the causal mutations in LDS intuitively imply diminished TGF-β signaling. Taken together, these data have engendered controversy regarding the specific role of TGF-β in disease pathogenesis. Shprintzen-Goldberg syndrome (SGS) has considerable phenotypic overlap with MFS and LDS, including aortic aneurysm. We identified causative variation in ten individuals with SGS in the proto-oncogene SKI, a known repressor of TGF-β activity. Cultured dermal fibroblasts from affected individuals showed enhanced activation of TGF-β signaling cascades and higher expression of TGF-β-responsive genes relative to control cells. Morpholino-induced silencing of SKI paralogs in zebrafish recapitulated abnormalities seen in humans with SGS. These data support the conclusions that increased TGF-β signaling is the mechanism underlying SGS and that high signaling contributes to multiple syndromic presentations of aortic aneurysm.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.2421DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3545695PMC
November 2012

14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements.

Eur J Hum Genet 2012 Dec 27;20(12):1216-23. Epub 2012 Jun 27.

EA 4368, Déficiences mentales et anomalies de structure du génome, Faculté de Médecine, Université de Lorraine, Vandoeuvre-les-Nancy, France.

The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (-4 to-6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ejhg.2012.127DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499785PMC
December 2012

Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome.

Nat Genet 2011 Dec 11;44(1):85-8. Epub 2011 Dec 11.

Département de Génétique, Unité INSERM U781, Université Paris Descartes, Sorbonne Paris Cité, Hôpital Necker Enfants Malades, Paris, France.

Myhre syndrome (MIM 139210) is a developmental disorder characterized by short stature, short hands and feet, facial dysmorphism, muscular hypertrophy, deafness and cognitive delay. Using exome sequencing of individuals with Myhre syndrome, we identified SMAD4 as a candidate gene that contributes to this syndrome on the basis of its pivotal role in the bone morphogenetic pathway (BMP) and transforming growth factor (TGF)-β signaling. We identified three distinct heterozygous missense SMAD4 mutations affecting the codon for Ile500 in 11 individuals with Myhre syndrome. All three mutations are located in the region of SMAD4 encoding the Mad homology 2 (MH2) domain near the site of monoubiquitination at Lys519, and we found a defect in SMAD4 ubiquitination in fibroblasts from affected individuals. We also observed decreased expression of downstream TGF-β target genes, supporting the idea of impaired TGF-β-mediated transcriptional control in individuals with Myhre syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.1016DOI Listing
December 2011

Developmental delay and facial dysmorphism in a child with an 8.9 Mb de novo interstitial deletion of 3q25.1-q25.32: Genotype-phenotype correlations of chromosome 3q25 deletion syndrome.

Eur J Med Genet 2011 Mar-Apr;54(2):177-80. Epub 2010 Dec 15.

Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Charleroi (Gosselies), Belgium.

Interstitial deletions of the long arm of chromosome 3 are rare and detailed genotype-phenotype correlations are not well established. We report on the clinical, cytogenetic and molecular findings of a 5-year-old patient with a de novo interstitial deletion from 3q25.1 to 3q25.32. Clinical features include relative microcephaly, developmental delay and facial dysmorphism with a coarse face, ptosis, synophrys, epicanthic folds, broad nasal bridge, long philtrum, large mouth with full lips, dysplastic and low-set ears. Revealed by conventional banding techniques, the deleted region of 8.9 Mb was confirmed by fluorescent in situ hybridization (FISH) analyses and array comparative genomic hybridization (array-CGH). To our knowledge, this is the smallest interstitial deletion reported in the 3q25 region. The phenotype of our patient is compared with the 10 previously reported cases implicating the 3q25 region.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2010.11.011DOI Listing
August 2011

Identification and characterization of a novel homozygous deletion in the alpha-N-acetylglucosaminidase gene in a patient with Sanfilippo type B syndrome (mucopolysaccharidosis IIIB).

Mol Genet Metab 2010 May 15;100(1):51-6. Epub 2010 Jan 15.

Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA.

Sanfilippo syndrome type B (mucopolysaccharidosis IIIB) is an autosomal recessive disease that is caused by a deficiency of the lysosomal enzyme alpha-N-acetylglucosaminidase (NAGLU). Over 100 different mutations in the NAGLU gene have been identified in Sanfilippo syndrome type B patients; however, no large deletions have been reported. Here we present the first case of a large homozygous intragenic NAGLU gene deletion identified in an affected child of consanguineous parents. Long range and multiplex PCR methods were used to characterize this deletion which encompasses exons 3 and 4 and is 1146 base pairs long. We propose that Alu element-mediated unequal homologous recombination between an Alu-Y in intron 2 and an Alu-Sx in intron 4 is the likely mechanism for this deletion, thereby contributing further insight into the molecular etiology of this disorder and providing additional evidence of its allelic heterogeneity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2010.01.004DOI Listing
May 2010

Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome.

Eur J Med Genet 2009 Mar-Jun;52(2-3):94-100. Epub 2009 Feb 26.

Department of Medical Genetics, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, 2610 Antwerp, Belgium.

Interstitial deletions of 7q11.23 cause Williams-Beuren syndrome, one of the best characterized microdeletion syndromes. The clinical phenotype associated with the reciprocal duplication however is not well defined, though speech delay is often mentioned. We present 14 new 7q11.23 patients with the reciprocal duplication of the Williams-Beuren syndrome critical region, nine familial and five de novo. These were identified by either array-based MLPA or by array-CGH/oligonucleotide analysis in a series of patients with idiopathic mental retardation with an estimated population frequency of 1:13,000-1:20,000. Variable speech delay is a constant finding in our patient group, confirming previous reports. Cognitive abilities range from normal to moderate mental retardation. The association with autism is present in five patients and in one father who also carries the duplication. There is an increased incidence of hypotonia and congenital anomalies: heart defects (PDA), diaphragmatic hernia, cryptorchidism and non-specific brain abnormalities on MRI. Specific dysmorphic features were noted in our patients, including a short philtrum, thin lips and straight eyebrows. Our patient collection demonstrates that the 7q11.23 microduplication not only causes language delay, but is also associated with congenital anomalies and a recognizable face.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmg.2009.02.006DOI Listing
September 2009

NF1 microduplication first clinical report: association with mild mental retardation, early onset of baldness and dental enamel hypoplasia?

Eur J Hum Genet 2008 Mar 9;16(3):305-11. Epub 2008 Jan 9.

Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium.

NF1 microdeletion syndrome is a common dominant genomic disorder responsible for around 5% of type I neurofibromatosis cases. The majority of cases are caused by mutations arising within the NF1 gene. NF1 microdeletion carriers present a more severe phenotype than patients with intragenic mutations, including mental retardation, cardiac anomalies and dysmorphic features. Here, we report on two brothers with mental retardation presenting a microduplication of the NF1 microdeletion syndrome region detected by array-CGH analysis. Main phenotypic features are mental deficiency, early onset of baldness (15 years old), dental enamel hypoplasia and minor facial dysmorphism. The breakpoint regions coincide with the repeats, and the recombination hot spots shown to mediate NF1 microdeletion through NAHR. A screening of the patients' familial relatives showed that this microduplication segregates in the family for at least two generations. This result demonstrates that both deletion and duplication of the NF1 region, at cytogenetic band 17q11.2, give rise to viable gametes, even if only NF1 microdeletions have been reported until now. Our study reports seven cases of NF1 microduplication within one family. Similar phenotypic abnormalities were present in most of the individuals, however, two displayed a normal phenotype, suggesting a potential incomplete penetrance of the phenotype associated with NF1 microduplication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/sj.ejhg.5201978DOI Listing
March 2008

Mutation of perinatal myosin heavy chain associated with a Carney complex variant.

N Engl J Med 2004 Jul;351(5):460-9

Molecular Cardiology Laboratory, Greenberg Cardiology Division, Department of Medicine, Weill Medical College of Cornell University, New York 10021, USA.

Background: Familial cardiac myxomas occur in the hereditary syndrome Carney complex. Although PRKAR1A mutations can cause the Carney complex, the disorder is genetically heterogeneous. To identify the cause of a Carney complex variant associated with distal arthrogryposis (the trismus-pseudocamptodactyly syndrome), we performed clinical and genetic studies.

Methods: A large family with familial cardiac myxomas and the trismus-pseudocamptodactyly syndrome (Family 1) was identified and clinically evaluated along with two families with trismus and pseudocamptodactyly. Genetic linkage analyses were performed with the use of microsatellite polymorphisms to determine a locus for this Carney complex variant. Positional cloning and mutational analyses of candidate genes were performed to identify the genetic cause of disease in the family with the Carney complex as well as in the families with the trismus-pseudocamptodactyly syndrome.

Results: Clinical evaluations demonstrated that the Carney complex cosegregated with the trismus-pseudocamptodactyly syndrome in Family 1, and genetic analyses demonstrated linkage of the disease to chromosome 17p12-p13.1 (maximum multipoint lod score, 4.39). Sequence analysis revealed a missense mutation (Arg674Gln) in the perinatal myosin heavy-chain gene (MYH8). The same mutation was also found in the two families with the trismus-pseudocamptodactyly syndrome. Arg674 is highly conserved evolutionarily, localizes to the actin-binding domain of the perinatal myosin head, and is close to the ATP-binding site. We identified nonsynonymous MYH8 polymorphisms in patients with cardiac myxoma syndromes but without arthrogryposis.

Conclusions: We describe a novel heart-hand syndrome involving familial cardiac myxomas and distal arthrogryposis and demonstrate that these disorders are caused by a founder mutation in the MYH8 gene. Our findings demonstrate novel roles for perinatal myosin in both the development of skeletal muscle and cardiac tumorigenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1056/NEJMoa040584DOI Listing
July 2004
-->