Publications by authors named "Anne C Dalziel"

17 Publications

  • Page 1 of 1

Heterogeneous histories of recombination suppression on stickleback sex chromosomes.

Mol Biol Evol 2021 Jun 12. Epub 2021 Jun 12.

Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712.

How consistent are the evolutionary trajectories of sex chromosomes shortly after they form? Insights into the evolution of recombination, differentiation, and degeneration can be provided by comparing closely related species with homologous sex chromosomes. The sex chromosomes of the threespine stickleback (Gasterosteus aculeatus) and its sister species, the Japan Sea stickleback (G. nipponicus), have been well characterized. Little is known, however, about the sex chromosomes of their congener, the blackspotted stickleback (G. wheatlandi). We used pedigrees to obtain experimentally phased whole genome sequences from blackspotted stickleback X and Y chromosomes. Using multispecies gene trees and analysis of shared duplications, we demonstrate that Chromosome 19 is the ancestral sex chromosome and that its oldest stratum evolved in the common ancestor of the genus. After the blackspotted lineage diverged, its sex chromosomes experienced independent and more extensive recombination suppression, greater X-Y differentiation, and a much higher rate of Y degeneration than the other two species. These patterns may result from a smaller effective population size in the blackspotted stickleback. A recent fusion between the ancestral blackspotted stickleback Y chromosome and Chromosome 12, which produced a neo-X and neo-Y, may have been favored by the very small size of the recombining region on the ancestral sex chromosome. We identify six strata on the ancestral and neo-sex chromosomes where recombination between the X and Y ceased at different times. These results confirm that sex chromosomes can evolve large differences within and between species over short evolutionary timescales.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/msab179DOI Listing
June 2021

Using asexual vertebrates to study genome evolution and animal physiology: Banded () x Common Killifish () hybrid lineages as a model system.

Evol Appl 2020 Jul 4;13(6):1214-1239. Epub 2020 May 4.

Département de biologie Université de Moncton Moncton NB Canada.

Wild, asexual, vertebrate hybrids have many characteristics that make them good model systems for studying how genomes evolve and epigenetic modifications influence animal physiology. In particular, the formation of asexual hybrid lineages is a form of reproductive incompatibility, but we know little about the genetic and genomic mechanisms by which this mode of reproductive isolation proceeds in animals. Asexual lineages also provide researchers with the ability to produce genetically identical individuals, enabling the study of autonomous epigenetic modifications without the confounds of genetic variation. Here, we briefly review the cellular and molecular mechanisms leading to asexual reproduction in vertebrates and the known genetic and epigenetic consequences of the loss of sex. We then specifically discuss what is known about asexual lineages of to highlight gaps in our knowledge of the biology of these clones. Our preliminary studies of and karyotypes from Porter's Lake (Nova Scotia, Canada) agree with data from other populations, suggesting a conserved interspecific chromosomal arrangement. In addition, genetic analyses suggest that: (a) the same major clonal lineage (Clone A) of has remained dominant over the past decade, (b) some minor clones have also persisted, (c) new clones may have recently formed, and iv) wild clones still mainly descend from ♀ x s crosses (96% in 2017-2018). These data suggest that clone formation may be a relatively rare, but continuous process, and there are persistent environmental or genetic factors causing a bias in cross direction. We end by describing our current research on the genomic causes and consequences of a transition to asexuality and the potential physiological consequences of epigenetic variation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/eva.12975DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7359844PMC
July 2020

Do differences in the activities of carbohydrate metabolism enzymes between Lake Whitefish ecotypes match predictions from transcriptomic studies?

Comp Biochem Physiol B Biochem Mol Biol 2018 Oct 7;224:138-149. Epub 2017 Aug 7.

Department of Biology, Institut de Biologie Intégrative et des Systèmes, Université Laval, 1030 Avenue de la Médecine, Québec City, Québec G1V 0A6, Canada.

Transcriptomic studies are facilitating the search for the molecular bases of adaptation in natural populations, but the impact of these differences in mRNA content on animal physiology are often unknown. One way to determine if molecular changes have the potential to influence animal physiology and performance is to test for correlated changes at higher levels of biological organization, including enzyme activity. Here, we measure the activities of carbohydrate metabolism enzymes to test if previously documented genetic and transcriptomic variation between 'dwarf' and 'normal' Lake Whitefish ecotypes are associated with corresponding changes in enzyme activity (measured as maximal rate, V) in liver and skeletal muscle. We use laboratory-reared fish from the same populations as prior transcriptomic studies and find that white muscle mRNA content is a good predictor of glycolytic and glycogen metabolism enzyme activity, and dwarf whitefish have evolved higher activities than normal whitefish. However, the differences in hepatic mRNA content found between ecotypes in prior studies are not associated with comparable changes in enzyme activity. For example, dwarf whitefish have lower enzyme activities, but higher transcript abundances for two glycolytic enzymes compared to normal whitefish. Overall, we find that transcriptomic studies successfully highlight evolutionary variation in enzyme activities, but not always in the direction predicted, indicating that a variety of tissue-specific regulatory mechanisms contributed to the evolution of energy metabolism in Lake Whitefish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2017.08.001DOI Listing
October 2018

Convergence in organ size but not energy metabolism enzyme activities among wild Lake Whitefish (Coregonus clupeaformis) species pairs.

Mol Ecol 2017 Jan 24;26(1):225-244. Epub 2016 Oct 24.

Department of Biology, Institut de Biologie Intégrative et des Systèmes, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.

The repeated evolution of similar phenotypes by similar mechanisms can be indicative of local adaptation, constraints or biases in the evolutionary process. Little is known about the incidence of physiological convergence in natural populations, so here we test whether energy metabolism in 'dwarf' and 'normal' Lake Whitefish evolves by similar mechanisms. Prior genomic and transcriptomic studies have found that divergence in energy metabolism is key to local adaptation in whitefish species pairs, but that distinct genetic and transcriptomic changes often underlie phenotypic evolution among lakes. Here, we predicted that traits at higher levels of biological organization, including the activities of energy metabolism enzymes (the product of enzyme concentration and turnover rate) and the relative proportions of metabolically active tissues (heart, liver, skeletal muscle), would show greater convergence than genetic and transcriptomic variation. We compared four whitefish species pairs and found convergence in organ size whereby all dwarf whitefish populations have a higher proportion of red skeletal muscle, three have relatively larger livers and two have relatively larger ventricles than normal fish. On the other hand, hepatic and muscle enzyme activities showed little convergence and were largely dependent on lake of origin. Only the most genetically divergent species pair (Cliff Lake) displayed white muscle enzyme activities matching results from laboratory-reared normal and dwarf whitefish. Overall, these data show convergence in the evolution of organ size, but not in the activities of candidate enzymes of energy metabolism, which may have evolved mainly as a consequence of demographic or ecological differences among lakes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.13847DOI Listing
January 2017

Adaptation and acclimation of traits associated with swimming capacity in Lake Whitefish (coregonus clupeaformis) ecotypes.

BMC Evol Biol 2016 08 11;16(1):160. Epub 2016 Aug 11.

Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada.

Background: Improved performance in a given ecological niche can occur through local adaptation, phenotypic plasticity, or a combination of these mechanisms. Evaluating the relative importance of these two mechanisms is needed to better understand the cause of intra specific polymorphism. In this study, we reared populations of Lake Whitefish (Coregonus clupeaformis) representing the'normal' (benthic form) and the 'dwarf' (derived limnetic form) ecotypes in two different conditions (control and swim-training) to test the relative importance of adaptation and acclimation in the differentiation of traits related to swimming capacity. The dwarf whitefish is a more active swimmer than the normal ecotype, and also has a higher capacity for aerobic energy production in the swimming musculature. We hypothesized that dwarf fish would show changes in morphological and physiological traits consistent with reductions in the energetic costs of swimming and maintenance metabolism.

Results: We found differences in traits predicted to decrease the costs of prolonged swimming and standard metabolic rate and allow for a more active lifestyle in dwarf whitefish. Dwarf whitefish evolved a more streamlined body shape, predicted to lead to a decreased drag, and a smaller brain, which may decrease their standard metabolic rate. Contrary to predictions, we also found evidence of acclimation in liver size and metabolic enzyme activities.

Conclusion: Results support the view that local adaptation has contributed to the genetically-based divergence of traits associated with swimming activity. Presence of post-zygotic barriers limiting gene flow between these ecotype pairs may have favoured repeated local adaptation to the limnetic niches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12862-016-0732-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982116PMC
August 2016

Cline coupling and uncoupling in a stickleback hybrid zone.

Evolution 2016 05 29;70(5):1023-38. Epub 2016 Apr 29.

Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada.

Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this "cline uncoupling" effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12917DOI Listing
May 2016

Adaptation and acclimation of aerobic exercise physiology in Lake Whitefish ecotypes (Coregonus clupeaformis).

Evolution 2015 08 6;69(8):2167-86. Epub 2015 Aug 6.

Departement de Biologie, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine Université Laval, Québec City, Québec, Canada, G1V 0A6.

The physiological mechanisms underlying local adaptation in natural populations of animals, and whether the same mechanisms contribute to adaptation and acclimation, are largely unknown. Therefore, we tested for evolutionary divergence in aerobic exercise physiology in laboratory bred, size-matched crosses of ancestral, benthic, normal Lake Whitefish (Coregonus clupeaformis) and derived, limnetic, more actively swimming "dwarf" ecotypes. We acclimated fish to constant swimming (emulating limnetic foraging) and control conditions (emulating normal activity levels) to simultaneously study phenotypic plasticity. We found extensive divergence between ecotypes: dwarf fish generally had constitutively higher values of traits related to oxygen transport (ventricle size) and use by skeletal muscle (percent oxidative muscle, mitochondrial content), and also evolved differential plasticity of mitochondrial function (Complex I activity and flux through Complexes I-IV and IV). The effects of swim training were less pronounced than differences among ecotypes and the traits which had a significant training effect (ventricle protein content, ventricle malate dehydrogenase activity, and muscle Complex V activity) did not differ among ecotypes. Only one trait, ventricle mass, varied in a similar manner with acclimation and adaptation and followed a pattern consistent with genetic accommodation. Overall, the physiological and biochemical mechanisms underlying acclimation and adaptation to swimming activity in Lake Whitefish differ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/evo.12727DOI Listing
August 2015

RAD-QTL Mapping Reveals Both Genome-Level Parallelism and Different Genetic Architecture Underlying the Evolution of Body Shape in Lake Whitefish (Coregonus clupeaformis) Species Pairs.

G3 (Bethesda) 2015 May 21;5(7):1481-91. Epub 2015 May 21.

Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Pavillon Charles-Eugène-Marchand, Québec, G1V 0A6, Canada.

Parallel changes in body shape may evolve in response to similar environmental conditions, but whether such parallel phenotypic changes share a common genetic basis is still debated. The goal of this study was to assess whether parallel phenotypic changes could be explained by genetic parallelism, multiple genetic routes, or both. We first provide evidence for parallelism in fish shape by using geometric morphometrics among 300 fish representing five species pairs of Lake Whitefish. Using a genetic map comprising 3438 restriction site-associated DNA sequencing single-nucleotide polymorphisms, we then identified quantitative trait loci underlying body shape traits in a backcross family reared in the laboratory. A total of 138 body shape quantitative trait loci were identified in this cross, thus revealing a highly polygenic architecture of body shape in Lake Whitefish. Third, we tested for evidence of genetic parallelism among independent wild populations using both a single-locus method (outlier analysis) and a polygenic approach (analysis of covariation among markers). The single-locus approach provided limited evidence for genetic parallelism. However, the polygenic analysis revealed genetic parallelism for three of the five lakes, which differed from the two other lakes. These results provide evidence for both genetic parallelism and multiple genetic routes underlying parallel phenotypic evolution in fish shape among populations occupying similar ecological niches.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1534/g3.115.019067DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4502382PMC
May 2015

Origins and functional diversification of salinity-responsive Na(+) , K(+) ATPase α1 paralogs in salmonids.

Mol Ecol 2014 Jul;23(14):3483-503

Department of Zoology, Biodiversity Research Center, University of British Columbia, 6270 University Blvd, Vancouver, British Columbia, Canada, V6T 1Z4; Department of Biology, Pavillon Charles-Eugène-Marchand, Université Laval, 1030 Avenue de la Médecine, Québec City, Québec, Canada, G1V 0A6.

The Salmoniform whole-genome duplication is hypothesized to have facilitated the evolution of anadromy, but little is known about the contribution of paralogs from this event to the physiological performance traits required for anadromy, such as salinity tolerance. Here, we determined when two candidate, salinity-responsive paralogs of the Na(+) , K(+) ATPase α subunit (α1a and α1b) evolved and studied their evolutionary trajectories and tissue-specific expression patterns. We found that these paralogs arose during a small-scale duplication event prior to the Salmoniform, but after the teleost, whole-genome duplication. The 'freshwater paralog' (α1a) is primarily expressed in the gills of Salmoniformes and an unduplicated freshwater sister species (Esox lucius) and experienced positive selection in the freshwater ancestor of Salmoniformes and Esociformes. Contrary to our predictions, the 'saltwater paralog' (α1b), which is more widely expressed than α1a, did not experience positive selection during the evolution of anadromy in the Coregoninae and Salmonine. To determine whether parallel mutations in Na(+) , K(+) ATPase α1 may contribute to salinity tolerance in other fishes, we studied independently evolved salinity-responsive Na(+) , K(+) ATPase α1 paralogs in Anabas testudineus and Oreochromis mossambicus. We found that a quarter of the mutations occurring between salmonid α1a and α1b in functionally important sites also evolved in parallel in at least one of these species. Together, these data argue that paralogs contributing to salinity tolerance evolved prior to the Salmoniform whole-genome duplication and that strong selection and/or functional constraints have led to parallel evolution in salinity-responsive Na(+) , K(+) ATPase α1 paralogs in fishes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/mec.12828DOI Listing
July 2014

Ecological proteomics: finding molecular markers that matter.

Mol Ecol 2012 Jul;21(14):3382-4

Department of Zoology, University of British Columbia,Vancouver, BC, Canada.

It is becoming increasingly clear that local adaptation can occur even in the face of high gene flow and limited overall genomic differentiation among populations (reviewed by Nosil et al. 2009). Thus, one important task for molecular ecologists is to sift through genomic data to identify the genes that matter for local adaptation (Hoffmann & Willi 2008; Stapley et al. 2010). Recent advances in high-throughput molecular technologies have facilitated this search, and a variety of approaches can be applied, including those grounded in population genetics [e.g. outlier analysis (Pavlidis et al. 2008)], classical and quantitative genetics [e.g. quantitative trait locus analysis (MacKay et al. 2009)], and cellular and molecular biology [e.g. transcriptomics (Larsen et al. 2011)]. However, applying these approaches in nonmodel organisms that lack extensive genetic and genomic resources has been a formidable challenge. In this issue, Papakostas et al. (2012). demonstrate how one such approach – high-throughput label-free proteomics (reviewed by Gstaiger & Aebersold 2009; Domon & Aebersold 2010) – can be applied to detect genes that may be involved in local adaptation in a species with limited genomic resources. Using this approach, they identified genes that may be implicated in local adaptation to salinity in European whitefish (Coregonus lavaretus L.) and provide insight into the mechanisms by which fish cope with changes in this critically important environmental parameter.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294x.2012.05632.xDOI Listing
July 2012

Correlates of prolonged swimming performance in F2 hybrids of migratory and non-migratory threespine stickleback.

J Exp Biol 2012 Oct 5;215(Pt 20):3587-96. Epub 2012 Jul 5.

Department of Zoology and Biodiversity Research Center, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4.

Determining which underlying traits contribute to differences in whole-animal performance can be difficult when many traits differ between individuals with high and low capacities. We have previously found that migratory (anadromous marine) and non-migratory (stream-resident) threespine stickleback (Gasterosteus aculeatus) populations have genetically based differences in prolonged swimming performance (U(crit)) that are associated with divergence of a number of candidate morphological and physiological traits (pectoral fin size and shape, body shape, pectoral muscle and heart size, and pectoral muscle metabolic enzyme activities). Here, we use F2 hybrid crosses to determine which traits are correlated with U(crit) when expressed in a largely randomized genetic background and a range of trait values for other divergent traits. We found that four of our 12 candidate traits were positively correlated with U(crit) in F2 hybrids and that the combined effects of ventricle mass, pectoral adductor mass and adductor citrate synthase activity accounted for 17.9% of the variation in U(crit). These data provide additional support for a causal role of muscle and heart size in mediating intraspecific differences in U(crit), but indicate that many candidate morphological and biochemical traits do not have a strong effect on U(crit) when disassociated from other divergent traits. However, the limited variation in U(crit) in our F2 hybrid families may have decreased our ability to detect correlations among these candidate traits and U(crit). These data suggest that many traits, interactions among traits and traits not measured in this study affect prolonged swimming performance in threespine stickleback.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.071951DOI Listing
October 2012

Reductions in prolonged swimming capacity following freshwater colonization in multiple threespine stickleback populations.

Evolution 2012 Apr 28;66(4):1226-39. Epub 2011 Nov 28.

Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.

We compared ancestral anadromous-marine and nonmigratory, stream-resident threespine stickleback (Gasterosteus aculeatus) populations to examine the outcome of relaxed selection on prolonged swimming performance. We reared marine and stream-resident fish from two locations in a common environment and found that both stream-resident populations had lower critical swimming speeds (U(crits) ) than marine populations. F1 hybrids from the two locations displayed significant differences in dominance, suggesting that the genetic basis for variation in U(crit) differs between locations. To determine which traits evolved in conjunction with, and may underlie, differences in performance capacity we measured a suite of traits known to affect prolonged swimming performance in fish. Although some candidate traits did not evolve (standard metabolic rate and two body shape traits), multiple morphological (pectoral fin size, shape, and four body shape measures) and physiological (maximum metabolic rate; MMR) traits evolved in the predicted direction in both stream-resident populations. However, data from F1 hybrids suggested that only one of these traits (MMR) had dominance effects similar to those of U(crit) in both locations. Overall, our data suggest that reductions in prolonged swimming performance were selected for in nonmigratory populations of threespine stickleback, and that decreases in MMR may mediate these reductions in performance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1558-5646.2011.01498.xDOI Listing
April 2012

Mechanisms underlying parallel reductions in aerobic capacity in non-migratory threespine stickleback (Gasterosteus aculeatus) populations.

J Exp Biol 2012 Mar;215(Pt 5):746-59

Biodiversity Research Center and Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada V6T 1Z4.

Non-migratory, stream-resident populations of threespine stickleback, Gasterosteus aculeatus, have a lower maximum oxygen consumption ((O(2),max)) than ancestral migratory marine populations. Here, we examined laboratory-bred stream-resident and marine crosses from two locations (West and Bonsall Creeks) to determine which steps in the oxygen transport and utilization cascade evolved in conjunction with, and thus have the potential to contribute to, these differences in (O(2),max). We found that West Creek stream-resident fish have larger muscle fibres (not measured in Bonsall fish), Bonsall Creek stream-resident fish have smaller ventricles, and both stream-resident populations have evolved smaller pectoral adductor and abductor muscles. However, many steps of the oxygen cascade did not evolve in stream-resident populations (gill surface area, hematocrit, mean cellular hemoglobin content and the activities of mitochondrial enzymes per gram ventricle and pectoral muscle), arguing against symmorphosis. We also studied F1 hybrids to determine which traits in the oxygen cascade have a genetic architecture similar to that of (O(2),max). In West Creek, (O(2),max), abductor and adductor size all showed dominance of marine alleles, whereas in Bonsall Creek, (O(2),max) and ventricle mass showed dominance of stream-resident alleles. We also found genetically based differences among marine populations in hematocrit, ventricle mass, pectoral muscle mass and pectoral muscle pyruvate kinase activity. Overall, reductions in pectoral muscle mass evolved in conjunction with reductions in (O(2),max) in both stream-resident populations, but the specific steps in the oxygen cascade that have a genetic basis similar to that of (O(2),max), and are thus predicted to have the largest impact on (O(2),max), differ among populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.065425DOI Listing
March 2012

Linking genotypes to phenotypes and fitness: how mechanistic biology can inform molecular ecology.

Mol Ecol 2009 Dec 11;18(24):4997-5017. Epub 2009 Nov 11.

Department of Zoology, University of British Columbia, Vancouver, Canada.

The accessibility of new genomic resources, high-throughput molecular technologies and analytical approaches such as genome scans have made finding genes contributing to fitness variation in natural populations an increasingly feasible task. Once candidate genes are identified, we argue that it is necessary to take a mechanistic approach and work up through the levels of biological organization to fully understand the impacts of genetic variation at these candidate genes. We demonstrate how this approach provides testable hypotheses about the causal links among levels of biological organization, and assists in designing relevant experiments to test the effects of genetic variation on phenotype, whole-organism performance capabilities and fitness. We review some of the research programs that have incorporated mechanistic approaches when examining naturally occurring genetic and phenotypic variation and use these examples to highlight the value of developing a comprehensive understanding of the relationship between genotype and fitness. We give suggestions to guide future research aimed at uncovering and understanding the genetic basis of adaptation and argue that further integration of mechanistic approaches will help molecular ecologists better understand the evolution of natural populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-294X.2009.04427.xDOI Listing
December 2009

Molecular evolution of cytochrome c oxidase in high-performance fish (teleostei: Scombroidei).

J Mol Evol 2006 Mar 13;62(3):319-31. Epub 2006 Feb 13.

Department of Biology, Queen's University, Kingston, Ontario, Canada.

The 13 peptides encoded by vertebrate mitochondrial DNA (mtDNA) are essential subunits of oxidative phosphorylation (OXPHOS) enzymes. These genes normally experience purifying selection and also coevolve with nuclear-encoded subunits of OXPHOS complexes. However, the role of positive selection on mtDNA evolution is still unclear, as most examples of intergenomic coevolution appear to be the result of compensation by nuclear-encoded genes for mildly deleterious mtDNA mutations, and not simultaneous positive selection in both genomes. Organisms that have experienced strong selective pressures to increase aerobic capacity or adapt to changes in thermal environment may be better candidates in which to examine the impact of positively selected changes on mtDNA evolution. The tuna (suborder Scombroidei, family Scombridae) and billfish (suborder Scombroidei, families Xiphiidae and Istiophoridae) are highly aerobic fish with multiple specializations in muscle energetics, including a high mitochondrial content and regional endothermy. We examined the role of positively selected mtDNA substitutions in the production of these unique phenotypes. Focusing on a catalytic subunit of cytochrome c oxidase (COX II), we found that the rate ratio of nonsynonymous (d(N); amino acid changing)-to-synonymous (d(S); silent) substitutions was not increased in lineages leading to the tuna but was significantly increased in the lineage preceding the billfish. Furthermore, there are a number of individual positively selected sites that, when mapped onto the COX crystal structure, appear to interact with other COX subunits and may affect OXPHOS function and regulation in billfish.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00239-005-0110-7DOI Listing
March 2006

Mitochondrial enzyme content in the muscles of high-performance fish: evolution and variation among fiber types.

Am J Physiol Regul Integr Comp Physiol 2005 Jan 16;288(1):R163-72. Epub 2004 Sep 16.

Department of Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.

Muscle mitochondrial content varies widely among fiber types and species. We investigated the origins of variation in the activity of the mitochondrial enzyme citrate synthase (CS), an index of mitochondrial abundance, among fiber types and species of high-performance fish (tunas and billfishes). CS activities varied up to 30-fold among muscles: lowest in billfish white muscle and highest in billfish heater organ. Among species, CS activities of red, white, and cardiac muscles of three tuna species were twofold greater than the homologous muscles of two billfish species. Because comparisons of CS amino acid sequences deduced from a combination of PCR methods argue against clade-specific differences in catalytic properties, CS activity reflects CS content among these five species. To assess the bases of these differences in CS activity, we looked at the relationship between CS activity (U/g muscle), nuclear content (DNA/g muscle), and CS transcript levels (CS mRNA/g RNA). Muscle CS activity differed by 10- to 30-fold when expressed per gram of muscle but only threefold when expressed per milligram of DNA. Thus it is nuclear DNA content, not fiber-type differences, in CS gene expression that may be the main determinant of CS activity in muscle. Conversely, evolutionary (tunas vs. billfishes) differences in CS arise from differences in posttranscriptional regulation, based on relationships between CS enzyme levels and CS mRNA assessed by quantitative competitive RT-PCR. These data argue that fiber-type differences can arise without major differences in fiber-type-specific regulation of the CS gene, whereas evolutionary differences may be largely due to posttranscriptional regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00152.2004DOI Listing
January 2005

Tissue-specific expression of male-transmitted mitochondrial DNA and its implications for rates of molecular evolution in Mytilus mussels (Bivalvia: Mytilidae).

Genome 2002 Apr;45(2):348-55

Biology Department, Acadia University, Wolfville, NS, Canada.

Mytilus and other bivalves exhibit an unusual system of mitochondrial DNA (mtDNA) transmission termed doubly uniparental inheritance (DUI). Specifically, males transmit the mtDNA they have received from their fathers to their sons. Females transmit their mother's mtDNA to both sons and daughters. Males are normally heteroplasmic and females are normally homoplasmic, but not exclusively. This system is associated with an unusual pattern of molecular evolution. Male-transmitted mtDNA (M type) evolves faster than female-transmitted (F type) mtDNA. Relatively relaxed selection on the M type has been proposed as an explanation for this phenomenon. To further evaluate the selective forces acting upon the M-type genome, we used RT-PCR to determine where it is expressed. M-type mtDNA expression was detected in all gonad samples and in 50% of somatic tissues of males, and in a single female tissue. F-type mtDNA expression was detected in all female tissues, all male somatic tissues, and all but one male gonad sample. We argue that the expression of M-type mtDNA in male somatic and male gonad tissues has implications for the strength of selection acting upon it.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1139/g01-159DOI Listing
April 2002
-->