Publications by authors named "Anna L Sandström"

4 Publications

  • Page 1 of 1

BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via β-adrenoceptors without causing classical receptor desensitization.

Am J Physiol Regul Integr Comp Physiol 2019 05 20;316(5):R666-R677. Epub 2019 Mar 20.

Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University , Stockholm , Sweden.

The type 2 diabetes epidemic makes it important to find insulin-independent ways to improve glucose homeostasis. This study examines the mechanisms activated by a dual β-/β-adrenoceptor agonist, BRL37344, to increase glucose uptake in skeletal muscle and its effects on glucose homeostasis in vivo. We measured the effect of BRL37344 on glucose uptake, glucose transporter 4 (GLUT4) translocation, cAMP levels, β-adrenoceptor desensitization, β-arrestin recruitment, Akt, AMPK, and mammalian target of rapamycin (mTOR) phosphorylation using L6 skeletal muscle cells as a model. We further tested the ability of BRL37344 to modulate skeletal muscle glucose metabolism in animal models (glucose tolerance tests and in vivo and ex vivo skeletal muscle glucose uptake). In L6 cells, BRL37344 increased GLUT4 translocation and glucose uptake only by activation of β-adrenoceptors, with a similar potency and efficacy to that of the nonselective β-adrenoceptor agonist isoprenaline, despite being a partial agonist with respect to cAMP generation. GLUT4 translocation occurred independently of Akt and AMPK phosphorylation but was dependent on mTORC2. Furthermore, in contrast to isoprenaline, BRL37344 did not promote agonist-mediated desensitization and failed to recruit β-arrestin1/2 to the β-adrenoceptor. In conclusion, BRL37344 improved glucose tolerance and increased glucose uptake into skeletal muscle in vivo and ex vivo through a β-adrenoceptor-mediated mechanism independently of Akt. BRL37344 was a partial agonist with respect to cAMP, but a full agonist for glucose uptake, and importantly did not cause classical receptor desensitization or internalization of the receptor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00285.2018DOI Listing
May 2019

α-Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes.

Biochem Pharmacol 2018 02 24;148:27-40. Epub 2017 Nov 24.

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden. Electronic address:

The capacity of G protein-coupled receptors to modulate mechanistic target of rapamycin (mTOR) activity is a newly emerging paradigm with the potential to link cell surface receptors with cell survival. Cardiomyocyte viability is linked to signalling pathways involving Akt and mTOR, as well as increased glucose uptake and utilization. Our aim was to determine whether the α-adrenoceptor (AR) couples to these protective pathways, and increased glucose uptake. We characterised α-AR signalling in CHO-K1 cells co-expressing the human α-AR and GLUT4 (CHOαGLUT4myc) and in neonatal rat ventricular cardiomyocytes (NRVM), and measured glucose uptake, intracellular Ca mobilization, and phosphorylation of mTOR, Akt, 5' adenosine monophosphate-activated kinase (AMPK) and S6 ribosomal protein (S6rp). In both systems, noradrenaline and the α-AR selective agonist A61603 stimulated glucose uptake by parallel pathways involving mTOR and AMPK, whereas another α-AR agonist oxymetazoline increased glucose uptake predominantly by mTOR. All agonists promoted phosphorylation of mTOR at Ser2448 and Ser2481, indicating activation of both mTORC1 and mTORC2, but did not increase Akt phosphorylation. In CHOαGLUT4myc cells, siRNA directed against rictor but not raptor suppressed α-AR mediated glucose uptake. We have thus identified mTORC2 as a key component in glucose uptake stimulated by α-AR agonists. Our findings identify a novel link between the α-AR, mTORC2 and glucose uptake, that have been implicated separately in cardiomyocyte survival. Our studies provide an improved framework for examining the utility of α-AR selective agonists as tools in the treatment of cardiac dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bcp.2017.11.016DOI Listing
February 2018

Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation.

J Cell Biol 2014 Nov;207(3):365-74

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE -0691 Stockholm, Sweden

Brown adipose tissue is the primary site for thermogenesis and can consume, in addition to free fatty acids, a very high amount of glucose from the blood, which can both acutely and chronically affect glucose homeostasis. Here, we show that mechanistic target of rapamycin (mTOR) complex 2 has a novel role in β3-adrenoceptor-stimulated glucose uptake in brown adipose tissue. We show that β3-adrenoceptors stimulate glucose uptake in brown adipose tissue via a signaling pathway that is comprised of two different parts: one part dependent on cAMP-mediated increases in GLUT1 transcription and de novo synthesis of GLUT1 and another part dependent on mTOR complex 2-stimulated translocation of newly synthesized GLUT1 to the plasma membrane, leading to increased glucose uptake. Both parts are essential for β3-adrenoceptor-stimulated glucose uptake. Importantly, the effect of β3-adrenoceptor on mTOR complex 2 is independent of the classical insulin-phosphoinositide 3-kinase-Akt pathway, highlighting a novel mechanism of mTOR complex 2 activation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1083/jcb.201403080DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4226734PMC
November 2014

Improving type 2 diabetes through a distinct adrenergic signaling pathway involving mTORC2 that mediates glucose uptake in skeletal muscle.

Diabetes 2014 Dec 9;63(12):4115-29. Epub 2014 Jul 9.

Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden

There is an increasing worldwide epidemic of type 2 diabetes that poses major health problems. We have identified a novel physiological system that increases glucose uptake in skeletal muscle but not in white adipocytes. Activation of this system improves glucose tolerance in Goto-Kakizaki rats or mice fed a high-fat diet, which are established models for type 2 diabetes. The pathway involves activation of β2-adrenoceptors that increase cAMP levels and activate cAMP-dependent protein kinase, which phosphorylates mammalian target of rapamycin complex 2 (mTORC2) at S2481. The active mTORC2 causes translocation of GLUT4 to the plasma membrane and glucose uptake without the involvement of Akt or AS160. Stimulation of glucose uptake into skeletal muscle after activation of the sympathetic nervous system is likely to be of high physiological relevance because mTORC2 activation was observed at the cellular, tissue, and whole-animal level in rodent and human systems. This signaling pathway provides new opportunities for the treatment of type 2 diabetes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db13-1860DOI Listing
December 2014