Publications by authors named "Anna Clocchiatti"

2 Publications

  • Page 1 of 1

Volatile-mediated antagonism of soil bacterial communities against fungi.

Environ Microbiol 2020 03 4;22(3):1025-1035. Epub 2019 Nov 4.

Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, 6708 PB, The Netherlands.

Competition is a major type of interaction between fungi and bacteria in soil and is also an important factor in suppression of plant diseases caused by soil-borne fungal pathogens. There is increasing attention for the possible role of volatiles in competitive interactions between bacteria and fungi. However, knowledge on the actual role of bacterial volatiles in interactions with fungi within soil microbial communities is lacking. Here, we examined colonization of sterile agricultural soils by fungi and bacteria from non-sterile soil inoculums during exposure to volatiles emitted by soil-derived bacterial communities. We found that colonization of soil by fungi was negatively affected by exposure to volatiles emitted by bacterial communities whereas that of bacteria was barely changed. Furthermore, there were strong effects of bacterial community volatiles on the assembly of fungal soil colonizers. Identification of volatile composition produced by bacterial communities revealed several compounds with known fungistatic activity. Our results are the first to reveal a collective volatile-mediated antagonism of soil bacteria against fungi. Given the better exploration abilities of filamentous fungi in unsaturated soils, this may be an important strategy for bacteria to defend occupied nutrient patches against invading fungi. Another implication of our research is that bacterial volatiles in soil atmospheres can have a major contribution to soil fungistasis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/1462-2920.14808DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7064993PMC
March 2020

Beneficial Bacteria Isolated from Grapevine Inner Tissues Shape Arabidopsis thaliana Roots.

PLoS One 2015 16;10(10):e0140252. Epub 2015 Oct 16.

Dipartimento di Biologia, Universita degli Studi di Padova, Padova, Italy.

We investigated the potential plant growth-promoting traits of 377 culturable endophytic bacteria, isolated from Vitis vinifera cv. Glera, as good biofertilizer candidates in vineyard management. Endophyte ability in promoting plant growth was assessed in vitro by testing ammonia production, phosphate solubilization, indole-3-acetic acid (IAA) and IAA-like molecule biosynthesis, siderophore and lytic enzyme secretion. Many of the isolates were able to mobilize phosphate (33%), release ammonium (39%), secrete siderophores (38%) and a limited part of them synthetized IAA and IAA-like molecules (5%). Effects of each of the 377 grapevine beneficial bacteria on Arabidopsis thaliana root development were also analyzed to discern plant growth-promoting abilities (PGP) of the different strains, that often exhibit more than one PGP trait. A supervised model-based clustering analysis highlighted six different classes of PGP effects on root architecture. A. thaliana DR5::GUS plantlets, inoculated with IAA-producing endophytes, resulted in altered root growth and enhanced auxin response. Overall, the results indicate that the Glera PGP endospheric culturable microbiome could contribute, by structural root changes, to obtain water and nutrients increasing plant adaptation and survival. From the complete cultivable collection, twelve promising endophytes mainly belonging to the Bacillus but also to Micrococcus and Pantoea genera, were selected for further investigations in the grapevine host plants towards future application in sustainable management of vineyards.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0140252PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4652591PMC
June 2016