Publications by authors named "Anna A Nushtaeva"

7 Publications

  • Page 1 of 1

Cytotoxic and Antitumor Activity of Lactaptin in Combination with Autophagy Inducers and Inhibitors.

Biomed Res Int 2019 17;2019:4087160. Epub 2019 Jun 17.

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia.

Autophagy is a degradative process in which cellular organelles and proteins are recycled to restore homeostasis and cellular metabolism. Autophagy can be either a prosurvival or a prodeath process and remains one of the most fundamental processes for cell vitality. Thus autophagy modulation is an important approach for reinforcement anticancer therapeutics. Earlier we have demonstrated that recombinant analog of human milk protein lactaptin (RL2) induced apoptosis of various cultured cancer cells and activated lipidation of microtubule-associated protein 1 light chain 3 (LC3). In this study we investigated whether autophagy inhibitors-chloroquine (CQ), Ku55933 (Ku), and 3-methyladenine (3MA)-or inducer-rapamycin (Rap)-can enhance cytotoxic activity of lactaptin analog in cancer cells and its anticancer activity in the mice model. Western Blot analysis revealed that RL2 induced short-term autophagy in MDA-MB-231 and MCF-7 cells at early stages of incubation and that these data were confirmed by the transmission electron microscopy of autophagosome/autophagolysosome formation. RL2 stimulates reactive oxygen species (ROS) production, autophagosomes accumulation, upregulation of ATG5 with processing of LC3I to LC3II, and downregulation of p62/sequestosome 1 (p62). We have shown that autophagy modulators, CQ, Ku, and Rap, synergistically increased cytotoxicity of RL2, and RL2 with CQ induced autophagic cell death. In addition, CQ, Ku, and Rap in combination with RL2 decreased activity of lysosomal protease Cathepsin D. More importantly, combining RL2 with CQ, we improved antitumor effect in mice. Detected synergistic cytotoxic effects of both types of autophagy regulators, inhibitors, and inducers with RL2 against cancer cells allow us to believe that these combinations can be a basis for the new anticancer approach. Finally, we suppose that CQ and Rap promoting of short-term RL2-induced autophagy interlinks with final autophagic cell death.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/4087160DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6601476PMC
December 2019

Establishment of primary human breast cancer cell lines using "pulsed hypoxia" method and development of metastatic tumor model in immunodeficient mice.

Cancer Cell Int 2019 28;19:46. Epub 2019 Feb 28.

1Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, Novosibirsk, 630090 Russia.

Background: Among breast cancer (BC) patients the outcomes of anticancer therapy vary dramatically due to the highly heterogeneous molecular characteristics of BC. Therefore, an extended panel of BC cell lines are required for in vitro and in vivo studies to find out new characteristic of carcinogenesis and metastasis. The purpose of this study was to develop patient-derived BC cell cultures and metastatic tumor models representing a tool for personal therapy and translational research.

Methods: Breast cancer cells were prepared by optimizing technique from tumor samples. We used real-time RT-PCR, flow cytometry, western blotting, cytotoxicity assay, karyotyping and fluorescent and electron microscopy analyses to characterize the established cell lines. BC xenografts in mice were used for in vivo tumorigenicity studies.

Results: The technique of preparing primary cells was optimized and this resulted in a high output of viable and active proliferated cells of nine patient-derived breast cancer cell lines and one breast non-malignant cell line. High E-cadherine and EpCAM expression correlated positively with epithelial phenotype while high expression of N-cadherine and Vimentin were shown in cells with mesenchymal phenotype. All mesenchymal-like cell lines were high HER3-positive-up to 90%. More interesting than that, is that two cell lines under specific culturing conditions (pulsed hypoxia and conditioned media) progressively transformed from mesenchymal to epithelial phenotypes displaying the expression of respective molecular markers proving that the mesenchymal-to-epithelial transition occurred. Becoming epithelial, these cells have lost HER3 and decreased HER2 membrane receptors. Three of the established epithelial cancer cell lines were tumorigenic in SCID mice and the generated tumors exhibited lobules-like structures. Ultrastructure analysis revealed low-differentiate phenotype of tumorigenic cell lines. These cells were in near-triploid range with multiple chromosome rearrangements. Tumorigenic BrCCh4e cells, originated from the patient of four-course chemotherapy, initiated metastasis when they were grafted subcutaneous with colonization of mediastinum lymph nodes.

Conclusions: The developed BC cells metastasizing to mediastinum lymph nodes are a relevant model for downstream applications. Moreover, our findings demonstrate that pulsed hypoxia induces transformation of primary fibroblastoid breast cancer cells to epithelial-like cells and both of these cultures-induced and original-don't show tumor initiating capacity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12935-019-0766-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6394017PMC
February 2019

Characterization of primary normal and malignant breast cancer cell and their response to chemotherapy and immunostimulatory agents.

BMC Cancer 2018 Jul 9;18(1):728. Epub 2018 Jul 9.

Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Lavrentiev Avenue, 8, 630090, Novosibirsk, Russia.

Background: The phenomenon of chemotherapy-resistant cancers has necessitated the development of new therapeutics as well as the identification of specific prognostic markers to predict the response to novel drugs. Primary cancer cells provide a model to study the multiplicity of tumourigenic transformation, to investigate alterations of the cellular response to various molecular stimuli, and to test therapeutics for cancer treatment.

Methods: Here, we developed primary cultures of human breast tissue - normal cells (BN1), cancer cells (BC5), and cells from a chemotherapy-treated tumour (BrCCh1) to compare their response to conventional chemotherapeutics and to innate immunity stimulators with that of the immortalized breast cells MCF7, MDA-MB-231, and MCF10A. Expression of the progesterone receptor (PGR), oestrogen receptor (ER) α and β, human epidermal growth factor receptor (HER) 2 and 3 and aromatase CYP19, as well as expression of interferon-induced protein with tetratricopeptide repeats 3 (IFIT3) mRNA in human breast cells were characterized.

Results: We revealed that BC5 carcinoma cells were PGR/ERb/ERa/Cyp19, the BrCCh1 cells that originated from the recurrent tumour were PGR/ERb/ERa/Cyp19, and normal BN cells were PGR/ERb/ERa/Cyp19. The treatment of primary culture cells with antitumour therapeutics revealed that BrCCh1 cells were doxorubicine-resistant and sensitive to cisplatin. BC5 cells exhibited low sensitivity to tamoxifen and cisplatin. The innate immunity activators interferon-α and an artificial small nucleolar RNA analogue increased expression of IFIT3 at different levels in primary cells and in the immortalized breast cells MCF7, MDA-MB-231, and MCF10A. The relative level of activation of IFIT3 expression was inversely correlated with the baseline level of IFIT3 mRNA expression in breast cell lines.

Conclusion: Our data demonstrated that primary cancer cells are a useful model for the development of novel cancer treatments. Our findings suggest that expression of IFIT3 mRNA can be used as a prognostic marker of breast cancer cell sensitivity to immunostimulating therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12885-018-4635-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6038312PMC
July 2018

Artificial Analogues of Circulating Box C/D RNAs Induce Strong Innate Immune Response and MicroRNA Activation in Human Adenocarcinoma Cells.

Adv Exp Med Biol 2016 ;924:121-125

Institute of Chemical Biology and Fundamental Medicine SB of RAS, Lavrentiev ave. 8, Novosibirsk, 630090, Russia.

Fragments of small nucleolar RNAs (snoRNAs) were found among various non-coding RNAs (ncRNAs) circulating in human blood. Currently, the function of such cell-free sno-derived-RNAs is not clearly defined. This work is aimed at identifying regulatory pathways controlled by extracellular snoRNAs. In order to determine the molecular targets and pathways affected by artificial snoRNAs, we performed Illumina array analysis of MCF-7 human adenocarcinoma cells transfected with box C/D RNAs. The genes related to the innate immune response and apoptotic cascades were found to be activated in transfected cells compared with control cells. Intriguingly, the transfection of MCF-7 cells with artificial box C/D snoRNAs also increased the transcription of several microRNAs, such as mir-574, mir-599 and mir-21. Our data demonstrated that extracellular snoRNAs introduced into human cells may function as gene expression modulators, with activation of microRNA genes being one of the regulatory mechanisms.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-3-319-42044-8_24DOI Listing
September 2017

Tumor-Specific Peptide, Selected from a Phage Peptide Library, Enhances Antitumor Activity of Lactaptin.

PLoS One 2016 11;11(8):e0160980. Epub 2016 Aug 11.

Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia.

A recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, induces apoptosis in cultured tumor cells. The tumor suppression efficacy of RL2 was shown against mouse hepatoma-1 cells and MDA-MB-231 human breast adenocarcinoma cells. The RL2-based therapeutic drug lactaptin is distributed evenly throughout the organism, which reduces its antitumor efficacy. In the current study, we obtained a genetic construct that allows production of the recombinant fusion protein T3-RL2, consisting of RL2 and T3 peptide (YTYDPWLIFPAN), in E. coli cells. T3 peptide was selected from a phage peptide library as a result of two screenings: in vitro using MDA-MB-231 cell culture and in vivo using a mouse xenograft model of breast cancer MDA-MB-231. It was shown that the displayed peptide T3 provides binding and internalization of phage particles by MDA-MB-231 cells and their specific accumulation in MDA-MB-231 tumor tissue. In addition, based on the nucleotide sequences coding RL2 and the known tumor-targeting peptide iRGD, we obtained genetic constructs that provide synthesis of fusion proteins RL2-iRGD and RL-iRGD-His. We studied the cytotoxic activity of fusion proteins T3-RL2, RL2-iRGD and RL-iRGD-His in vitro using MDA-MB-231 and MCF-7 human adenocarcinoma cells. The in vitro results showed that the fusion proteins inhibit proliferation of both cell cultures, and their cytotoxic activity is higher than that of RL2. In vivo experiments on the study of the antitumor efficacy of the obtained fusion proteins demonstrated that T3-RL2 protein significantly inhibits MDA-MB-231 tumor growth in a xenograft model compared with RL2, while the antitumor effect of RL2-iRGD and RL-iRGD-His proteins is comparable to the effect of RL2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0160980PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4981335PMC
August 2017

Sensitivity of endometrial cancer cells from primary human tumor samples to new potential anticancer peptide lactaptin.

J Cancer Res Ther 2015 Apr-Jun;11(2):345-51

Institute of Chemical Biology and Fundamental Medicine SB RAS; Novosibirsk State University, Novosibirsk, Russia.

Purpose: Endometrial carcinoma is the most common gynecologic malignancy which is associated with a poor prognosis when diagnosed at an advanced stage; therefore, the discovery of efficacious new drugs is required to reinforce conventional chemotherapy. Short-term cultures of primary cells from endometrial tumors could be used for testing new anticancer therapeutics as well as for the development of personalized cancer therapy strategy. Here, the antitumor effect of a recombinant analogue of lactaptin (RL2), a new potential anticancer molecule, was examined against primary human endometrial cancer cells.

Materials And Methods: Primary cell cultures of malignant and normal human endometrium were performed by enzymatic digestion of endometrial tissue from biopsy material. Real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) was performed to determine the messenger ribonucleic acid (mRNA) state of estrogen (ERs) and progesterone (PRs) hormone receptors and aromatase (Cyp 19) in cell cultures. Dynamic monitoring of cell adhesion and proliferation was made using the iCELLigence system (ASEA Biosciences). The sensitivity of cell cultures to conventional anticancer drugs and the lactaptin analog was estimated by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, flow cytometry, and the iCELLligence system.

Results: Established short-term primary cultures of endometrial cancer cells were ERα/ERβ/PR-positive and sensitive for RL2. The IC 50 values of doxorubicin and cisplatin were determined for all of the primary cultures designed. KE normal cells displaying low Cyp19 mRNA levels and high ERβ and PR mRNA levels were more resistant to RL2 treatment as well as to cisplatin and doxorubicin.

Conclusions: Our results indicate that the recombinant analog of lactaptin, RL2, exerts cytotoxic effects against primary hormone-dependent endometrial tumor cells in vitro with features of apoptosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/0973-1482.157301DOI Listing
March 2016

Lactaptin induces p53-independent cell death associated with features of apoptosis and autophagy and delays growth of breast cancer cells in mouse xenografts.

PLoS One 2014 7;9(4):e93921. Epub 2014 Apr 7.

Institute of Chemical Biology and Fundamental Medicine SB RUS, Novosibirsk, Russia.

Lactaptin, the proteolytic fragment of human milk kappa-casein, induces the death of various cultured cancer cells. The mechanisms leading to cell death after lactaptin treatment have not been well characterized. In this study the in vivo and in vitro effects of a recombinant analogue of lactaptin (RL2) were examined. Following treatment with the recombinant analogue of lactaptin strong caspase -3, -7 activation was detected. As a consequence of caspase activation we observed the appearance of a sub-G1 population of cells with subdiploid DNA content. Dynamic changes in the mRNA and protein levels of apoptosis-related genes were estimated. No statistically reliable differences in p53 mRNA level or protein level were found between control and RL2-treated cells. We observed that RL2 constitutively suppressed bcl-2 mRNA expression and down regulated Bcl-2 protein expression in MDA-MB-231 cells. We demonstrated that RL2 penetrates cancer and non-transformed cells. Identification of the cellular targets of the lactaptin analogue revealed that α/β-tubulin and α-actinin-1 were RL2-bound proteins. As the alteration in cellular viability in response to protein stimulus can be realized not only by way of apoptosis but also by autophagy, we examined the implications of autophagy in RL2-dependent cell death. We also found that RL2 treatment induces LC3-processing, which is a hallmark of autophagy. The autophagy inhibitor chloroquine enhanced RL2 cytotoxicity to MDA-MB-231 cells, indicating the pro-survival effect of RL2-dependent autophagy. The antitumour potential of RL2 was investigated in vivo in mouse xenografts bearing MDA-MB-231 cells. We demonstrated that the recombinant analogue of lactaptin significantly suppressed the growth of solid tumours. Our results indicate that lactaptin could be a new molecule for the development of anticancer drugs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093921PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978064PMC
January 2015