Publications by authors named "Ann-Kathrin McCall"

13 Publications

  • Page 1 of 1

Investigating in-sewer transformation products formed from synthetic cathinones and phenethylamines using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry.

Sci Total Environ 2018 Sep 6;634:331-340. Epub 2018 Apr 6.

Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.

Recent studies have demonstrated the role of biofilms on the stability of drug residues in wastewater. These factors are pertinent in wastewater-based epidemiology (WBE) when estimating community-level drug use. However, there is scarce information on the biotransformation of drug residues in the presence of biofilms and the potential use of transformation products (TPs) as biomarkers in WBE. The purpose of this work was to investigate the formation of TPs in sewage reactors in the presence of biofilm mimicking conditions during in-sewer transport. Synthetic cathinones (methylenedioxypyrovalerone, methylone, mephedrone) and phenethylamines (4-methoxy-methamphetamine and 4-methoxyamphetamine) were incubated in individual reactors over a 24h period. Analysis of parent species and TPs was carried out using liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (LC-QToFMS). Identification of TPs was done using suspect and non-target workflows. In total, 18 TPs were detected and identified with reduction of β-keto group, demethylenation, demethylation, and hydroxylation reactions observed for the synthetic cathinones. For the phenethylamines, N- and O-demethylation reactions were identified. Overall, the experiments showed varying stability for the parent species in wastewater in the presence of biofilms. The newly identified isomeric forms of TPs particularly for methylone and mephedrone can be used as potential target biomarkers for WBE studies due to their specificity and detectability within a 24h residence time.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2018.03.253DOI Listing
September 2018

Comparison of phosphodiesterase type V inhibitors use in eight European cities through analysis of urban wastewater.

Environ Int 2018 06 3;115:279-284. Epub 2018 Apr 3.

KWR Watercycle Research Institute, Chemical Water Quality and Health, P.O. Box 1072, 3430 BB Nieuwegein, The Netherlands; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94248, 1090 GE Amsterdam, The Netherlands. Electronic address:

In this work a step forward in investigating the use of prescription drugs, namely erectile dysfunction products, at European level was taken by applying the wastewater-based epidemiology approach. 24-h composite samples of untreated wastewater were collected at the entrance of eight wastewater treatment plants serving the catchment within the cities of Bristol, Brussels, Castellón, Copenhagen, Milan, Oslo, Utrecht and Zurich. A validated analytical procedure with direct injection of filtered aliquots by liquid chromatography-tandem mass spectrometry was applied. The target list included the three active pharmaceutical ingredients (sildenafil, tadalafil and vardenafil) together with (bio)transformation products and other analogues. Only sildenafil and its two human urinary metabolites desmethyl- and desethylsildenafil were detected in the samples with concentrations reaching 60 ng L. The concentrations were transformed into normalized measured loads and the estimated actual consumption of sildenafil was back-calculated from these loads. In addition, national prescription data from five countries was gathered in the form of the number of prescribed daily doses and transformed into predicted loads for comparison. This comparison resulted in the evidence of a different spatial trend across Europe. In Utrecht and Brussels, prescription data could only partly explain the total amount found in wastewater; whereas in Bristol, the comparison was in agreement; and in Milan and Oslo a lower amount was found in wastewater than expected from the prescription data. This study illustrates the potential of wastewater-based epidemiology to investigate the use of counterfeit medication and rogue online pharmacy sales.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envint.2018.03.039DOI Listing
June 2018

Enantiomeric profiling of chiral illicit drugs in a pan-European study.

Water Res 2018 03 1;130:151-160. Epub 2017 Dec 1.

Department of Chemistry, Faculty of Science, University of Bath, Bath, BA2 7AY, UK. Electronic address:

The aim of this paper is to present the first study on spatial and temporal variation in the enantiomeric profile of chiral drugs in eight European cities. Wastewater-based epidemiology (WBE) and enantioselective analysis were combined to evaluate trends in illicit drug use in the context of their consumption vs direct disposal as well as their synthetic production routes. Spatial variations in amphetamine loads were observed with higher use in Northern European cities. Enantioselective analysis showed a general enrichment of amphetamine with the R-(-)-enantiomer in wastewater indicating its abuse. High loads of racemic methamphetamine were detected in Oslo (EF = 0.49 ± 0.02). This is in contrast to other European cities where S-(+)-methamphetamine was the predominant enantiomer. This indicates different methods of methamphetamine synthesis and/or trafficking routes in Oslo, compared with the other cities tested. An enrichment of MDMA with the R-(-)-enantiomer was observed in European wastewaters indicating MDMA consumption rather than disposal of unused drug. MDA's chiral signature indicated its enrichment with the S-(+)-enantiomer, which confirms its origin from MDMA metabolism in humans. HMMA was also detected at quantifiable concentrations in wastewater and was found to be a suitable biomarker for MDMA consumption. Mephedrone was only detected in wastewater from the United Kingdom with population-normalised loads up to 47.7 mg 1000 people day. The enrichment of mephedrone in the R-(+)-enantiomer in wastewater suggests stereoselective metabolism in humans, hence consumption, rather than direct disposal of the drug. The investigation of drug precursors, such as ephedrine, showed that their presence was reasonably ascribed to their medical use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.11.051DOI Listing
March 2018

Improving wastewater-based epidemiology to estimate cannabis use: focus on the initial aspects of the analytical procedure.

Anal Chim Acta 2017 Oct 18;988:27-33. Epub 2017 Aug 18.

Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071, Castellón, Spain. Electronic address:

Wastewater-based epidemiology is a promising and complementary tool for estimating drug use by the general population, based on the quantitative analysis of specific human metabolites of illicit drugs in urban wastewater. Cannabis is the most commonly used illicit drug and of high interest for epidemiologists. However, the inclusion of its main human urinary metabolite 11-nor-9-carboxy-Δ-tetrahydrocannabinol (THC-COOH) in wastewater-based epidemiology has presented several challenges and concentrations seem to depend heavily on environmental factors, sample preparation and analyses, commonly resulting in an underestimation. The aim of the present study is to investigate, identify and diminish the source of bias when analysing THC-COOH in wastewater. Several experiments were performed to individually assess different aspects of THC-COOH determination in wastewater, such as the number of freeze-thaw cycles, filtration, sorption to different container materials and in-sample stability, and the most suitable order of preparatory steps. Results highlighted the filtration step and adjustment of the sample pH as the most critical parameters to take into account when analysing THC-COOH in wastewater. Furthermore, the order of these initial steps of the analytical procedure is crucial. Findings were translated into a recommended best-practice protocol and an inter-laboratory study was organized with eight laboratories that tested the performance of the proposed procedure. Results were found satisfactory with z-scores ≤ 2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2017.08.011DOI Listing
October 2017

Estimation of caffeine intake from analysis of caffeine metabolites in wastewater.

Sci Total Environ 2017 Dec 8;609:1582-1588. Epub 2017 Aug 8.

IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156 Milan, Italy. Electronic address:

Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further information is needed to standardize this approach. Wastewater analysis proved useful to providing additional local information on caffeine use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2017.07.258DOI Listing
December 2017

Modeling in-sewer transformations at catchment scale - implications on drug consumption estimates in wastewater-based epidemiology.

Water Res 2017 10 20;122:655-668. Epub 2017 May 20.

Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600, Dübendorf, Switzerland. Electronic address:

To which extent illicit drugs are transformed during in-sewer transport, depends on a number of factors: i) substance-specific transformation rates, ii) environmental conditions, iii) point of discharge (location of drug user) and iv) sewer network properties, primarily hydraulic residence time (HRT) and the ratio of biofilm contact area to wastewater volume (A/V). Assessing associated uncertainties typically requires numerous simulations. Therefore, we propose a new two-step modeling framework: 1) Quantify hydrodynamic conditions. This computationally demanding step was performed once in SWMM to derive HRT and A/V for each potential point of discharge (node) in three catchments of different size. 2) Estimate biomarker loss. In this step, Monte Carlo simulations were performed for defined scenarios. Depending on assumptions about drug user distribution and prevalence, a number of nodes was sampled. For each node an empirical first-order transformation model was applied with flow-path-corresponding HRT and A/V from step 1. Biotic and abiotic transformation rates were sampled from distributions combining variability of different biofilms. In our modeling study, median losses were >30% for amphetamine, 6-monoacetylmorphine and 6-acetylcodeine in all three catchments with high uncertainty (5%-100% loss), which would imply a systematic underestimation of consumption when neglecting in-sewer processes. Median losses for 21 other investigated biomarkers were <10% with different uncertainty ranges - "no substantial transformation" was confirmed for nine substances in a real sewer segment with a 2-h residence time. Transferability of these results must be tested for other catchments. To further reduce uncertainty, mainly additional knowledge on transformation rates, particularly in biofilm, and their distribution across a sewer network is needed to update model input objectively. Our approach allows efficient testing and, furthermore, can be expanded for many other human biomarkers. Accounting for biomarker stability during in-sewer transport will avoid biased estimates and further improve wastewater-based epidemiology.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.05.034DOI Listing
October 2017

Wastewater-based epidemiology to assess pan-European pesticide exposure.

Water Res 2017 09 21;121:270-279. Epub 2017 May 21.

IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Department of Environmental Health Sciences, Via La Masa 19, 20156, Milan, Italy. Electronic address:

Human biomonitoring, i.e. the determination of chemicals and/or their metabolites in human specimens, is the most common and potent tool for assessing human exposure to pesticides, but it suffers from limitations such as high costs and biases in sampling. Wastewater-based epidemiology (WBE) is an innovative approach based on the chemical analysis of specific human metabolic excretion products (biomarkers) in wastewater, and provides objective and real-time information on xenobiotics directly or indirectly ingested by a population. This study applied the WBE approach for the first time to evaluate human exposure to pesticides in eight cities across Europe. 24 h-composite wastewater samples were collected from the main wastewater treatment plants and analyzed for urinary metabolites of three classes of pesticides, namely triazines, organophosphates and pyrethroids, by liquid chromatography-tandem mass spectrometry. The mass loads (mg/day/1000 inhabitants) were highest for organophosphates and lowest for triazines. Different patterns were observed among the cities and for the various classes of pesticides. Population weighted loads of specific biomarkers indicated higher exposure in Castellon, Milan, Copenhagen and Bristol for pyrethroids, and in Castellon, Bristol and Zurich for organophosphates. The lowest mass loads (mg/day/1000 inhabitants) were found in Utrecht and Oslo. These results were in agreement with several national statistics related to pesticides exposure such as pesticides sales. The daily intake of pyrethroids was estimated in each city and it was found to exceed the acceptable daily intake (ADI) only in one city (Castellon, Spain). This was the first large-scale application of WBE to monitor population exposure to pesticides. The results indicated that WBE can give new information about the "average exposure" of the population to pesticides, and is a useful complementary biomonitoring tool to study population-wide exposure to pesticides.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.05.044DOI Listing
September 2017

Influence of Different Sewer Biofilms on Transformation Rates of Drugs.

Environ Sci Technol 2016 12 8;50(24):13351-13360. Epub 2016 Dec 8.

Swiss Federal Institute of Aquatic Science and Technology (Eawag) , 8600 Dübendorf, Switzerland.

To estimate drug consumption more reliably, wastewater-based epidemiology would benefit from a better understanding of drug residue stability during in-sewer transport. We conducted batch experiments with real, fresh wastewater and sewer biofilms. Experimental conditions mimic small to medium-sized gravity sewers with a relevant ratio of biofilm surface area to wastewater volume (33 m m). The influences of biological, chemical, and physical processes on the transformation of 30 illicit drug and pharmaceutical residues were quantified. Rates varied among locations and over time. Three substances were not stable-that is, >20% transformation, mainly due to biological processes-at least for one type of tested biofilm for a residence time ≤2 h: amphetamine, 6-acetylcodeine, and 6-monoacetylmorphine. Cocaine, ecgonine methyl ester, norcocaine, cocaethylene, and mephedrone were mainly transformed by chemical hydrolysis and, hence, also unstable in sewers. In contrast, ketamine, norketamine, O-desmethyltramadol, diclofenac, carbamazepine, and methoxetamine were not substantially affected by in-sewer processes under all tested conditions and residence times up to 12 h. Our transformation rates include careful quantification of uncertainty and can be used to identify situations in which specific compounds are not stable. This will improve accuracy and uncertainty estimates of drug consumption when applied to the back-calculation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.6b04200DOI Listing
December 2016

Increased levels of the oxidative stress biomarker 8-iso-prostaglandin F in wastewater associated with tobacco use.

Sci Rep 2016 12 15;6:39055. Epub 2016 Dec 15.

Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.

Wastewater analysis has been demonstrated to be a complementary approach for assessing the overall patterns of drug use by a population while the full potential of wastewater-based epidemiology has yet to be explored. F-isoprostanes are a prototype wastewater biomarker to study the cumulative oxidative stress at a community level. In this work, 8-iso-prostaglandin F (8-iso-PGF) was analysed in raw 24 h-composite wastewater samples collected from 4 Norwegian and 7 other European cities in 2014 and 2015. Using the same samples, biomarkers of alcohol (ethyl sulfate) and tobacco (trans-3'-hydroxycotinine) use were also analysed to investigate any possible correlation between 8-iso-PGF and the consumption of the two drugs. The estimated per capita daily loads of 8-iso-PGF in the 11 cities ranged between 2.5 and 9.9 mg/day/1000 inhabitants with a population-weighted mean of 4.8 mg/day/1000 inhabitants. There were no temporal trends observed in the levels of 8-iso-PGF, however, spatial differences were found at the inter-city level correlating to the degree of urbanisation. The 8-iso-PGF mass load was found to be strongly associated with that of trans-3'-hydroxycotinine while it showed no correlation with ethyl sulfate. The present study shows the potential for 8-iso-PGF as a wastewater biomarker for the assessment of community public health.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/srep39055DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5157025PMC
December 2016

Liquid chromatography-tandem mass spectrometry determination of synthetic cathinones and phenethylamines in influent wastewater of eight European cities.

Chemosphere 2017 Feb 1;168:1032-1041. Epub 2016 Nov 1.

Research Institute for Pesticides and Water, University Jaume I, Avda. Sos Baynat s/n, E-12071 Castellón, Spain. Electronic address:

The popularity of new psychoactive substances (NPS) has grown in recent years, with certain NPS commonly and preferentially consumed even following the introduction of preventative legislation. With the objective to improve the knowledge on the use of NPS, a rapid and very sensitive method was developed for the determination of ten priority NPS (N-ethylcathinone, methylenedioxypyrovalerone (MDPV), methylone, butylone, methedrone, mephedrone, naphyrone, 25-C-NBOMe, 25-I-NBOMe and 25-B-NBOMe) in influent wastewater. Sample clean-up and pre-concentration was made by off-line solid phase extraction (SPE) with Oasis MCX cartridges. Isotopically labelled internal standards were used to correct for matrix effects and potential SPE losses. Following chromatographic separation on a C column within 6 min, the compounds were measured by tandem mass spectrometry in positive ionization mode. The method was optimised and validated for all compounds. Limits of quantification were evaluated by spiking influent wastewater samples at 1 or 5 ng/L. An investigation into the stability of these compounds in influent wastewater was also performed, showing that, following acidification at pH 2, all compounds were relatively stable for up to 7 days. The method was then applied to influent wastewater samples from eight European countries, in which mephedrone, methylone and MDPV were detected. This work reveals that although NPS use is not as extensive as for classic illicit drugs, the application of a highly sensitive analytical procedure makes their detection in wastewater possible. The developed analytical methodology forms the basis of a subsequent model-based back-calculation of abuse rate in urban areas (i.e. wastewater-based epidemiology).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.10.107DOI Listing
February 2017

Comparison of pharmaceutical, illicit drug, alcohol, nicotine and caffeine levels in wastewater with sale, seizure and consumption data for 8 European cities.

BMC Public Health 2016 10 1;16(1):1035. Epub 2016 Oct 1.

Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo, NO-0349, Norway.

Background: Monitoring the scale of pharmaceuticals, illicit and licit drugs consumption is important to assess the needs of law enforcement and public health, and provides more information about the different trends within different countries. Community drug use patterns are usually described by national surveys, sales and seizure data. Wastewater-based epidemiology (WBE) has been shown to be a reliable approach complementing such surveys.

Method: This study aims to compare and correlate the consumption estimates of pharmaceuticals, illicit drugs, alcohol, nicotine and caffeine from wastewater analysis and other sources of information. Wastewater samples were collected in 2015 from 8 different European cities over a one week period, representing a population of approximately 5 million people. Published pharmaceutical sale, illicit drug seizure and alcohol, tobacco and caffeine use data were used for the comparison.

Results: High agreement was found between wastewater and other data sources for pharmaceuticals and cocaine, whereas amphetamines, alcohol and caffeine showed a moderate correlation. methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) and nicotine did not correlate with other sources of data. Most of the poor correlations were explained as part of the uncertainties related with the use estimates and were improved with other complementary sources of data.

Conclusions: This work confirms the promising future of WBE as a complementary approach to obtain a more accurate picture of substance use situation within different communities. Our findings suggest further improvements to reduce the uncertainties associated with both sources of information in order to make the data more comparable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045646PMC
http://dx.doi.org/10.1186/s12889-016-3686-5DOI Listing
October 2016

Critical review on the stability of illicit drugs in sewers and wastewater samples.

Water Res 2016 Jan 21;88:933-947. Epub 2015 Oct 21.

Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH 8600 Dübendorf, Switzerland. Electronic address:

Wastewater-based epidemiology (WBE) applies advanced analytical methods to quantify drug residues in wastewater with the aim to estimate illicit drug use at the population level. Transformation processes during transport in sewers (chemical and biological reactors) and storage of wastewater samples before analysis are expected to change concentrations of different drugs to varying degrees. Ignoring transformation for drugs with low to medium stability will lead to an unknown degree of systematic under- or overestimation of drug use, which should be avoided. This review aims to summarize the current knowledge related to the stability of commonly investigated drugs and, furthermore, suggest a more effective approach to future experiments. From over 100 WBE studies, around 50 mentioned the importance of stability and 24 included tests in wastewater. Most focused on in-sample stability (i.e., sample preparation, preservation and storage) and some extrapolated to in-sewer stability (i.e., during transport in real sewers). While consistent results were reported for rather stable compounds (e.g., MDMA and methamphetamine), a varying range of stability under different or similar conditions was observed for other compounds (e.g., cocaine, amphetamine and morphine). Wastewater composition can vary considerably over time, and different conditions prevail in different sewer systems. In summary, this indicates that more systematic studies are needed to: i) cover the range of possible conditions in sewers and ii) compare results more objectively. To facilitate the latter, we propose a set of parameters that should be reported for in-sewer stability experiments. Finally, a best practice of sample collection, preservation, and preparation before analysis is suggested in order to minimize transformation during these steps.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2015.10.040DOI Listing
January 2016

Sewage-based epidemiology in monitoring the use of new psychoactive substances: Validation and application of an analytical method using LC-MS/MS.

Drug Test Anal 2015 Sep 6;7(9):812-8. Epub 2015 Feb 6.

Toxicological Center, Department of Pharmaceutical Sciences, Campus Drie Eiken, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.

Sewage-based epidemiology (SBE) employs the analysis of sewage to detect and quantify drug use within a community. While SBE has been applied repeatedly for the estimation of classical illicit drugs, only few studies investigated new psychoactive substances (NPS). These compounds mimic effects of illicit drugs by introducing slight modifications to chemical structures of controlled illicit drugs. We describe the optimization, validation, and application of an analytical method using liquid chromatography coupled to positive electrospray tandem mass spectrometry (LC-ESI-MS/MS) for the determination of seven NPS in sewage: methoxetamine (MXE), butylone, ethylone, methylone, methiopropamine (MPA), 4-methoxymethamphetamine (PMMA), and 4-methoxyamphetamine (PMA). Sample preparation was performed using solid-phase extraction (SPE) with Oasis MCX cartridges. The LC separation was done with a HILIC (150 x 3 mm, 5 µm) column which ensured good resolution of the analytes with a total run time of 19 min. The lower limit of quantification (LLOQ) was between 0.5 and 5 ng/L for all compounds. The method was validated by evaluating the following parameters: sensitivity, selectivity, linearity, accuracy, precision, recoveries and matrix effects. The method was applied on sewage samples collected from sewage treatment plants in Belgium and Switzerland in which all investigated compounds were detected, except MPA and PMA. Furthermore, a consistent presence of MXE has been observed in most of the sewage samples at levels higher than LLOQ.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dta.1777DOI Listing
September 2015