Publications by authors named "Angela K Robinson"

8 Publications

  • Page 1 of 1

KDM2B Recruitment of the Polycomb Group Complex, PRC1.1, Requires Cooperation between PCGF1 and BCORL1.

Structure 2016 Oct 25;24(10):1795-1801. Epub 2016 Aug 25.

Department of Biochemistry, Midwestern University, 19555 North 59(th) Avenue, Glendale, AZ 85308, USA. Electronic address:

KDM2B recruits H2A-ubiquitinating activity of a non-canonical Polycomb Repression Complex 1 (PRC1.1) to CpG islands, facilitating gene repression. We investigated the molecular basis of recruitment using in vitro assembly assays to identify minimal components, subcomplexes, and domains required for recruitment. A minimal four-component PRC1.1 complex can be assembled by combining two separately isolated subcomplexes: the DNA-binding KDM2B/SKP1 heterodimer and the heterodimer of BCORL1 and PCGF1, a core component of PRC1.1. The crystal structure of the KDM2B/SKP1/BCORL1/PCGF1 complex illustrates the crucial role played by the PCGF1/BCORL1 heterodimer. The BCORL1 PUFD domain positions residues preceding the RAWUL domain of PCGF1 to create an extended interface for interaction with KDM2B, which is unique to the PCGF1-containing PRC1.1 complex. The structure also suggests how KDM2B might simultaneously function in PRC1.1 and an SCF ubiquitin ligase complex and the possible molecular consequences of BCOR PUFD internal tandem duplications found in pediatric kidney and brain tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5088048PMC
http://dx.doi.org/10.1016/j.str.2016.07.011DOI Listing
October 2016

Multiple polymer architectures of human polyhomeotic homolog 3 sterile alpha motif.

Proteins 2014 Oct 5;82(10):2823-30. Epub 2014 Aug 5.

Department of Biochemistry, The University of Texas Health Science Center San Antonio, MSC 7760, 7703 Floyd Curl Dr., San Antonio, Texas, 78229.

The self-association of sterile alpha motifs (SAMs) into a helical polymer architecture is a critical functional component of many different and diverse array of proteins. For the Drosophila Polycomb group (PcG) protein Polyhomeotic (Ph), its SAM polymerization serves as the structural foundation to cluster multiple PcG complexes, helping to maintain a silenced chromatin state. Ph SAM shares 64% sequence identity with its human ortholog, PHC3 SAM, and both SAMs polymerize. However, in the context of their larger protein regions, PHC3 SAM forms longer polymers compared with Ph SAM. Motivated to establish the precise structural basis for the differences, if any, between Ph and PHC3 SAM, we determined the crystal structure of the PHC3 SAM polymer. PHC3 SAM uses the same SAM-SAM interaction as the Ph SAM sixfold repeat polymer. Yet, PHC3 SAM polymerizes using just five SAMs per turn of the helical polymer rather than the typical six per turn observed for all SAM polymers reported to date. Structural analysis suggested that malleability of the PHC3 SAM would allow formation of not just the fivefold repeat structure but also possibly others. Indeed, a second PHC3 SAM polymer in a different crystal form forms a sixfold repeat polymer. These results suggest that the polymers formed by PHC3 SAM, and likely others, are dynamic. The functional consequence of the variable PHC3 SAM polymers may be to create different chromatin architectures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/prot.24645DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4198450PMC
October 2014

Human polyhomeotic homolog 3 (PHC3) sterile alpha motif (SAM) linker allows open-ended polymerization of PHC3 SAM.

Biochemistry 2012 Jul 28;51(27):5379-86. Epub 2012 Jun 28.

Department of Biochemistry and CTRC, University of Texas Health Science Center at San Antonio, 78229-3990, United States.

Sterile alpha motifs (SAMs) are frequently found in eukaryotic genomes. An intriguing property of many SAMs is their ability to self-associate, forming an open-ended polymer structure whose formation has been shown to be essential for the function of the protein. What remains largely unresolved is how polymerization is controlled. Previously, we had determined that the stretch of unstructured residues N-terminal to the SAM of a Drosophila protein called polyhomeotic (Ph), a member of the polycomb group (PcG) of gene silencers, plays a key role in controlling Ph SAM polymerization. Ph SAM with its native linker created shorter polymers compared to Ph SAM attached to either a random linker or no linker. Here, we show that the SAM linker for the human Ph ortholog, polyhomeotic homolog 3 (PHC3), also controls PHC3 SAM polymerization but does so in the opposite fashion. PHC3 SAM with its native linker allows longer polymers to form compared to when attached to a random linker. Attaching the PHC3 SAM linker to Ph SAM also resulted in extending Ph SAM polymerization. Moreover, in the context of full-length Ph protein, replacing the SAM linker with PHC3 SAM linker, intended to create longer polymers, resulted in greater repressive ability for the chimera compared to wild-type Ph. These findings show that polymeric SAM linkers evolved to modulate a wide dynamic range of SAM polymerization abilities and suggest that rationally manipulating the function of SAM containing proteins through controlling their SAM polymerization may be possible.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi3004318DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4045017PMC
July 2012

The growth-suppressive function of the polycomb group protein polyhomeotic is mediated by polymerization of its sterile alpha motif (SAM) domain.

J Biol Chem 2012 Mar 24;287(12):8702-13. Epub 2012 Jan 24.

Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3990, USA.

Polyhomeotic (Ph), a member of the Polycomb Group (PcG), is a gene silencer critical for proper development. We present a previously unrecognized way of controlling Ph function through modulation of its sterile alpha motif (SAM) polymerization leading to the identification of a novel target for tuning the activities of proteins. SAM domain containing proteins have been shown to require SAM polymerization for proper function. However, the role of the Ph SAM polymer in PcG-mediated gene silencing was uncertain. Here, we first show that Ph SAM polymerization is indeed required for its gene silencing function. Interestingly, the unstructured linker sequence N-terminal to Ph SAM can shorten the length of polymers compared with when Ph SAM is individually isolated. Substituting the native linker with a random, unstructured sequence (RLink) can still limit polymerization, but not as well as the native linker. Consequently, the increased polymeric Ph RLink exhibits better gene silencing ability. In the Drosophila wing disc, Ph RLink expression suppresses growth compared with no effect for wild-type Ph, and opposite to the overgrowth phenotype observed for polymer-deficient Ph mutants. These data provide the first demonstration that the inherent activity of a protein containing a polymeric SAM can be enhanced by increasing SAM polymerization. Because the SAM linker had not been previously considered important for the function of SAM-containing proteins, our finding opens numerous opportunities to manipulate linker sequences of hundreds of polymeric SAM proteins to regulate a diverse array of intracellular functions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M111.336115DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3308824PMC
March 2012

Identification of nucleic acid binding residues in the FCS domain of the polycomb group protein polyhomeotic.

Biochemistry 2011 Jun 12;50(22):4998-5007. Epub 2011 May 12.

Department of Biochemistry, University of Texas Health Science Center at San Antonio, MSC 7760, San Antonio, Texas 78229-3990, United States.

Polycomb group (PcG) proteins maintain the silent state of developmentally important genes. Recent evidence indicates that noncoding RNAs also play an important role in targeting PcG proteins to chromatin and PcG-mediated chromatin organization, although the molecular basis for how PcG and RNA function in concert remains unclear. The Phe-Cys-Ser (FCS) domain, named for three consecutive residues conserved in this domain, is a 30-40-residue Zn(2+) binding motif found in a number of PcG proteins. The FCS domain has been shown to bind RNA in a non-sequence specific manner, but how it does so is not known. Here, we present the three-dimensional structure of the FCS domain from human Polyhomeotic homologue 1 (HPH1, also known as PHC1) determined using multidimensional nuclear magnetic resonance methods. Chemical shift perturbations upon addition of RNA and DNA resulted in the identification of Lys 816 as a potentially important residue required for nucleic acid binding. The role played by this residue in Polyhomeotic function was demonstrated in a transcription assay conducted in Drosophila S2 cells. Mutation of the Arg residue to Ala in the Drosophila Polyhomeotic (Ph) protein, which is equivalent to Lys 816 in HPH1, was unable to repress transcription of a reporter gene to the level of wild-type Ph. These results suggest that direct interaction between the Ph FCS domain and nucleic acids is required for Ph-mediated repression.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi101487sDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3938326PMC
June 2011

Polycomb group targeting through different binding partners of RING1B C-terminal domain.

Structure 2010 Aug;18(8):966-75

Department of Biochemistry, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, TX 78229-3990, USA.

RING1B, a Polycomb Group (PcG) protein, binds methylated chromatin through its association with another PcG protein called Polycomb (Pc). However, RING1B can associate with nonmethylated chromatin suggesting an alternate mechanism for RING1B interaction with chromatin. Here, we demonstrate that two proteins with little sequence identity between them, the Pc cbox domain and RYBP, bind the same surface on the C-terminal domain of RING1B (C-RING1B). Pc cbox and RYBP each fold into a nearly identical, intermolecular beta sheet with C-RING1B and a loop structure which are completely different in the two proteins. Both the beta sheet and loop are required for stable binding and transcription repression. Further, a mutation engineered to disrupt binding on the Drosophila dRING1 protein prevents chromatin association and PcG function in vivo. These results suggest that PcG targeting to different chromatin locations relies, in part, on binding partners of C-RING1B that are diverse in sequence and structure.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2010.04.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4445678PMC
August 2010

Structural transitions of the RING1B C-terminal region upon binding the polycomb cbox domain.

Biochemistry 2008 Aug 11;47(31):8007-15. Epub 2008 Jul 11.

Department of Biochemistry, University of Texas Health Science Center at San Antonio, MSC 7760, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA.

Polycomb group (PcG) proteins are required for maintaining cell identity and stem cell self-renewal. RING1B and Polycomb (Pc) are two components of a multiprotein complex called polycomb repression complex 1 (PRC1) that is essential for establishing and maintaining long-term repressed gene states. Here we characterize the interaction between the C-terminal region of RING1B (C-RING1B) and the Pc cbox domain. The C-RING1B-cbox interaction displays a 1:1 stoichiometry with dissociation constants ranging from 9.2 to 180 nM for the different Pc orthologues. NMR analysis of C-RING1B alone reveals line broadening. However, when it is in complex with the cbox domain, there is a striking change to the NMR spectrum indicative of conformational tightening. This conformational change may arise from the organization of the C-RING1B subdomains. The C-terminal regions of all PcG RING1 proteins are composed of two stretches of conserved sequences separated by a variable linker sequence. While the entire C-RING1B region is required for cbox binding, the N- and C-terminal halves of C-RING1B can be separated and are able to interact, suggesting the presence of an intramolecular interaction within C-RING1B. The flexibility within the C-RING1B structure allowing transitions between the intramolecular bound and unbound states may cause the broadened peaks of the C-RING1B NMR spectrum. Binding the cbox domain stabilizes C-RING1B, whereby broadening is eliminated. The presence of flexible regions could allow C-RING1B to bind a variety of different factors, ultimately recruiting RING1B and its associated PcG proteins to different genomic loci.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi800857fDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442619PMC
August 2008

Phosphorylation of the human Fhit tumor suppressor on tyrosine 114 in Escherichia coli and unexpected steady state kinetics of the phosphorylated forms.

Biochemistry 2005 Apr;44(16):6286-92

Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA.

The human tumor suppressor Fhit is a homodimeric histidine triad (HIT) protein of 147 amino acids which has Ap(3)A hydrolase activity. We have recently discovered that Fhit is phosphorylated in vivo and is phosphorylated in vitro by Src kinase [Pekarsky, Y., Garrison, P. N., Palamarchuk, A., Zanesi, N., Aqeilan, R. I., Huebner, K., Barnes, L. D., and Croce, C. M. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 3775-3779]. Now we have coexpressed Fhit with the elk tyrosine kinase in Escherichia coli to generate phosphorylated forms of Fhit. Unphosphorylated Fhit, Fhit phosphorylated on one subunit, and Fhit phosphorylated on both subunits were purified to apparent homogeneity by column chromatography on anion-exchange and gel filtration resins. MALDI-TOF and HPLC-ESI tandem mass spectrometry of intact Fhit and proteolytic peptides of Fhit demonstrated that Fhit is phosphorylated on Y(114) on either one or both subunits. Monophosphorylated Fhit exhibited monophasic kinetics with K(m) and k(cat) values approximately 2- and approximately 7-fold lower, respectively, than the corresponding values for unphosphorylated Fhit. Diphosphorylated Fhit exhibited biphasic kinetics. One site had K(m) and k(cat) values approximately 2- and approximately 140-fold lower, respectively, than the corresponding values for unphosphorylated Fhit. The second site had a K(m) approximately 60-fold higher and a k(cat) approximately 6-fold lower than the corresponding values for unphosphorylated Fhit. The unexpected kinetic patterns for the phosphorylated forms suggest the system may be enzymologically novel. The decreases in the values of K(m) and k(cat) for the phosphorylated forms in comparison to those of unphosphorylated Fhit favor the formation and lifetime of the Fhit-Ap(3)A complex, which may enhance the tumor suppressor activity of Fhit.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi047670sDOI Listing
April 2005