Publications by authors named "Aneta Afelt"

9 Publications

  • Page 1 of 1

Monitoring of malaria vectors at the China-Myanmar border while approaching malaria elimination.

Parasit Vectors 2018 Sep 15;11(1):511. Epub 2018 Sep 15.

Interdisciplinary Center for Mathematical and Computational Modelling, University of Warsaw, Tyniecka 15/17, 02-630, Warsaw, Poland.

Background: Tengchong County was one of the counties located at the China-Myanmar border with high malaria incidence in the previous decades. As the pilot county for malaria elimination at the border area, Tengchong County is aiming to be the first county to achieve malaria elimination goal. A cross-sectional entomological survey was carried out to evaluate the feasibility of elimination approach and assess the receptivity of malaria reintroduction.

Methods: Light traps associated with live baits were used to investigate the abundance of adult mosquitoes in nine villages in Tengchong County. Light traps were set to collect adult mosquitoes in both human houses and cowsheds from dusk till dawn in each site.

Results: A total of 4948 adult Anopheles mosquitoes were collected from May to December in two villages. Of the mosquitoes were captured, 24.2% were in human houses and 75.8% in cowsheds. The peak of abundance occurred in July for An. sinensis and in September-October for An. minimus (s.l.) Ten Anopheles species were collected, the most prevalent being An. sinensis (50.3%), An. peditaeniatus (31.6%) and An. minimus (s.l.) (15.8%), contributing to 97.6% of the sample. Potential breeding sites were also investigated and a total of 407 larvae were collected, with An. sinensis (50.1%) and An. minimus (s.l.) (46.2%) as predominant species. Ponds and rice fields were the two preferred breeding sites for Anopheles mosquitoes; however, the difference between the number of adults and larvae captured suggest other breeding sites might exist. Both An. sinensis and An. minimus (s.l.) were found zoophilic with human blood index as 0.21 and 0.26, respectively. No Plasmodium positive Anopheles specimens were found by PCR among 4,000 trapped mosquitoes.

Conclusions: Although no indigenous malaria cases have been reported in Tengchong County since 2013, there is still a risk from the presence of vectors in the context of human population movements from neighboring malaria endemic areas. The presence of An. sinensis, associated to rice fields, is particularly worrying. Sustained entomological surveillance is strongly suggested even after malaria elimination certification.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13071-018-3073-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6139178PMC
September 2018

Japanese encephalitis in Indonesia: An update on epidemiology and transmission ecology.

Acta Trop 2018 Nov 15;187:240-247. Epub 2018 Aug 15.

National Institute of Health Research and Development, MoH, Indonesia.

The Japanese Encephalitis (JE) virus circulation in Indonesia was first documented in Lombok in 1960, and the virus was first isolated in 1972 from Culex tritaeniorhynchus in Bekasi, West Java and Kapuk, West Jakarta. Since then, Indonesia has been recognized as an endemic country for JE transmission. Up to now, JE cases have been found in at least 29 provinces, with Bali, West Kalimantan, East Nusa Tenggara, West Java and East Java, being the areas of highest incidence. However, routine surveillance on JE has not been established at the national level even though many surveys were conducted. JEV has been isolated from 10 mosquito species: Culex tritaeniorhynchus, Cx. gelidus, Cx. vishnui, Cx. fuscocephala, Cx. bitaeniorhynchus, Cx. quinquefasciatus, Anopheles vagus, An. kochi, An. annularis, and Armigeres subalbatus. Culex tritaeniorhynchus is the main JE vector in Indonesia. JE has been detected throughout the Indonesian archipelago from West to East. However, due to a lack of routine, systematic and standardized diagnostic approaches, the JE burden has still not been clearly established yet. Long term and systematic JE surveillance across Indonesia is a priority, the burden needs to be better assessed and appropriate control measures must be implemented.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actatropica.2018.08.017DOI Listing
November 2018

Bats, Coronaviruses, and Deforestation: Toward the Emergence of Novel Infectious Diseases?

Front Microbiol 2018 11;9:702. Epub 2018 Apr 11.

Aix Marseille Université, Centre National de la Recherche Scientifique, IRD, Institut National de la Santé et de la Recherche Médicale, AP-HM, URMITE, IHU-Méditerranée Infection, Marseille, France.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fmicb.2018.00702DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5904276PMC
April 2018

Distribution of bat-borne viruses and environment patterns.

Infect Genet Evol 2018 03 23;58:181-191. Epub 2017 Dec 23.

CIRAD, UMR 17, CIRAD-IRD, Montpellier, France; Université de Montpellier, IES, UMR 5214, CNRS-UM, Montpellier, France.

Environmental modifications are leading to biodiversity changes, loss and habitat disturbance. This in turn increases contacts between wildlife and hence the risk of transmission and emergence of zoonotic diseases. We analyzed the environment and land use using remote spatial data around the sampling locations of bats positive for coronavirus (21 sites) and astrovirus (11 sites) collected in 43 sites. A clear association between viruses and hosts was observed. Viruses associated to synanthropic bat genera, such as Myotis or Scotophilus were associated to highly transformed habitats with human presence while viruses associated to fruit bat genera were correlated with natural environments with dense forest, grassland areas and regions of high elevation. In particular, group C betacoronavirus were associated with mosaic habitats found in anthropized environments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2017.12.009DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106095PMC
March 2018

Incidence of dengue and chikungunya viruses in mosquitoes and human patients in border provinces of Vietnam.

Parasit Vectors 2017 Nov 9;10(1):556. Epub 2017 Nov 9.

Cirad, Intertryp, UMR 17, TA-A17/G, Campus International de Baillarguet, 34398 Cedex 5, Montpellier, France.

Background: Dengue virus remains a major threat in Vietnam, while chikungunya virus is expected to become one. Surveillance was conducted from 2012 to 2014 in Vietnam to assess the presence of dengue and chikungunya viruses in patients hospitalized with acute fever in five Vietnam provinces neighboring Lao PDR and Cambodia. Surveillance was extended to mosquitoes present in the vicinity of the patients' households.

Results: A total 558 human serum samples were collected along with 1104 adult mosquitoes and 12,041 larvae from 2250 households. Dengue virus was found in 17 (3%) human serum samples and in 9 (0.8%) adult mosquitoes. Chikungunya virus was detected in 2 adult mosquitoes (0.18%) while no chikungunya virus was detected in humans. Differing densities of mosquito populations were found, with the highest in the Long An Province border with Cambodia. Long An Province also displayed the lowest rate of infection, despite a very high Breteau Index, high human population density and presence of the main cross border road system. The highest incidence was found in Dac Nong Province, where the Breteau and Container indices were the second lowest. Dengue virus was detected in five Aedes albopictus, three Aedes aegypti and one Culex vishnui. Chikungunya virus was detected in two Ae. aegypti. All infected mosquitoes belonged to haplotypes described in other parts of the world and a number of novel haplotypes were found among uninfected mosquitoes.

Conclusions: Dengue is considered to be regularly introduced to Vietnam from Cambodia, mostly through human movement. The data reported here provides a complementary picture. Due to intensive international trade, long-distance transportation of mosquito populations may play a role in the regular importation of dengue in Vietnam through Ho Chi Minh City. It is important to decipher the movement of mosquitoes in Vietnam, not only at the Lao PDR and Cambodia borders but also through international trade routes. Mosquito surveillance programs should address and follow mosquito populations instead of mosquito species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13071-017-2422-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680899PMC
November 2017

Anopheles Vectors in Mainland China While Approaching Malaria Elimination.

Trends Parasitol 2017 11 19;33(11):889-900. Epub 2017 Jul 19.

Institut de Recherche pour le Développement (IRD France), LIPMC, UMR-MD3, Faculté de Pharmacie, 34093 Montpellier, France.

China is approaching malaria elimination; however, well-documented information on malaria vectors is still missing, which could hinder the development of appropriate surveillance strategies and WHO certification. This review summarizes the nationwide distribution of malaria vectors, their bionomic characteristics, control measures, and related studies. After several years of effort, the area of distribution of the principal malaria vectors was reduced, in particular for Anopheles lesteri (synonym: An. anthropophagus) and Anopheles dirus s.l., which nearly disappeared from their former endemic regions. Anopheles sinensis is becoming the predominant species in southwestern China. The bionomic characteristics of these species have changed, and resistance to insecticides was reported. There is a need to update surveillance tools and investigate the role of secondary vectors in malaria transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pt.2017.06.010DOI Listing
November 2017

Valine/isoleucine variants drive selective pressure in the VP1 sequence of EV-A71 enteroviruses.

BMC Infect Dis 2017 05 8;17(1):333. Epub 2017 May 8.

Cirad, UMR 17, Intertryp, TA-A17/G, Campus International de Baillarguet, 34398, Montpellier Cedex 5, France.

Background: In 2011-2012, Northern Vietnam experienced its first large scale hand foot and mouth disease (HFMD) epidemic. In 2011, a major HFMD epidemic was also reported in South Vietnam with fatal cases. This 2011-2012 outbreak was the first one to occur in North Vietnam providing grounds to study the etiology, origin and dynamic of the disease. We report here the analysis of the VP1 gene of strains isolated throughout North Vietnam during the 2011-2012 outbreak and before.

Methods: The VP1 gene of 106 EV-A71 isolates from North Vietnam and 2 from Central Vietnam were sequenced. Sequence alignments were analyzed at the nucleic acid and protein level. Gene polymorphism was also analyzed. A Factorial Correspondence Analysis was performed to correlate amino acid mutations with clinical parameters.

Results: The sequences were distributed into four phylogenetic clusters. Three clusters corresponded to the subgenogroup C4 and the last one corresponded to the subgenogroup C5. Each cluster displayed different polymorphism characteristics. Proteins were highly conserved but three sites bearing only Isoleucine (I) or Valine (V) were characterized. The isoleucine/valine variability matched the clusters. Spatiotemporal analysis of the I/V variants showed that all variants which emerged in 2011 and then in 2012 were not the same but were all present in the region prior to the 2011-2012 outbreak. Some correlation was found between certain I/V variants and ethnicity and severity.

Conclusions: The 2011-2012 outbreak was not caused by an exogenous strain coming from South Vietnam or elsewhere but by strains already present and circulating at low level in North Vietnam. However, what triggered the outbreak remains unclear. A selective pressure is applied on I/V variants which matches the genetic clusters. I/V variants were shown on other viruses to correlate with pathogenicity. This should be investigated in EV-A71. I/V variants are an easy and efficient way to survey and identify circulating EV-A71 strains.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12879-017-2427-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422960PMC
May 2017

Genetic diversity of coronaviruses in bats in Lao PDR and Cambodia.

Infect Genet Evol 2017 03 6;48:10-18. Epub 2016 Dec 6.

Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia; GSK Vaccines R&D, 150 Beach road, # 22-00, 189720, Singapore. Electronic address:

South-East Asia is a hot spot for emerging zoonotic diseases, and bats have been recognized as hosts for a large number of zoonotic viruses such as Severe Acute Respiratory Syndrome (SARS), responsible for acute respiratory syndrome outbreaks. Thus, it is important to expand our knowledge of the presence of viruses in bats which could represent a risk to humans. Coronaviruses (CoVs) have been reported in bat species from Thailand, China, Indonesia, Taiwan and the Philippines. However no such work was conducted in Cambodia or Lao PDR. Between 2010 and 2013, 1965 bats were therefore sampled at interfaces with human populations in these two countries. They were tested for the presence of coronavirus by consensus reverse transcription-PCR assay. A total of 93 samples (4.7%) from 17 genera of bats tested positive. Sequence analysis revealed the presence of potentially 37 and 56 coronavirus belonging to alpha-coronavirus (αCoV) and beta-CoV (βCoV), respectively. The βCoVs group is known to include some coronaviruses highly pathogenic to human, such as SARS-CoV and MERS-CoV. All coronavirus sequences generated from frugivorous bats (family Pteropodidae) (n=55) clustered with other bat βCoVs of lineage D, whereas one coronavirus from Pipistrellus coromandra fell in the lineage C of βCoVs which also includes the MERS-CoV. αCoVs were all detected in various genera of insectivorous bats and clustered with diverse bat αCoV sequences previously published. A closely related strain of PEDV, responsible for severe diarrhea in pigs (PEDV-CoV), was detected in 2 Myotis bats. We highlighted the presence and the high diversity of coronaviruses circulating in bats from Cambodia and Lao PDR. Three new bat genera and species were newly identified as host of coronaviruses, namely Macroglossus sp., Megaerops niphanae and Myotis horsfieldii.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2016.11.029DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106194PMC
March 2017

Diversity of bat astroviruses in Lao PDR and Cambodia.

Infect Genet Evol 2017 01 15;47:41-50. Epub 2016 Nov 15.

Institut Pasteur du Cambodge, Virology Unit, Phnom Penh, Cambodia; GSK Vaccines R&D, 150 Beach road, # 22-00, 189720, Singapore. Electronic address:

Astroviruses are known to infect humans and a wide range of animal species, and can cause gastroenteritis in their hosts. Recent studies have reported astroviruses in bats in Europe and in several locations in China. We sampled 1876 bats from 17 genera at 45 sites from 14 and 13 provinces in Cambodia and Lao PDR respectively, and tested them for astroviruses. Our study revealed a high diversity of astroviruses among various Yangochiroptera and Yinpterochiroptera bats. Evidence for varying degrees of host restriction for astroviruses in bats was found. Furthermore, additional Pteropodid hosts were detected. The astroviruses formed distinct phylogenetic clusters within the genus Mamastrovirus, most closely related to other known bat astroviruses. The astrovirus sequences were found to be highly saturated indicating that phylogenetic relationships should be interpreted carefully. An astrovirus clustering in a group with other viruses from diverse hosts, including from ungulates and porcupines, was found in a Rousettus bat. These findings suggest that diverse astroviruses can be found in many species of mammals, including bats.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meegid.2016.11.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106329PMC
January 2017