Publications by authors named "Andy Lan"

2 Publications

  • Page 1 of 1

Current-Smoking alters Gene Expression and DNA Methylation in the Nasal Epithelium of Asthmatics.

Am J Respir Cell Mol Biol 2021 May 14. Epub 2021 May 14.

University of Technology Sydney, 1994, Respiratory Bioinformatics and Molecular Biology (RBMB), School of Life Sciences, Sydney, New South Wales, Australia.

Current-smoking contributes to worsened asthma prognosis, more severe symptoms and limits the beneficial effects of corticosteroids. As the nasal epithelium can reflect smoking-induced changes in the lower airways, it is a relevant source to investigate changes in gene expression and DNA methylation. This study explores gene expression and DNA methylation changes in current and ex-smokers with asthma. Matched gene expression and epigenome-wide DNA methylation samples collected from nasal brushings of 55 patients enrolled in a clinical trial investigation of current and ex-smoker asthma patients were analysed. Differential gene expression and DNA methylation analyses were conducted comparing current- vs ex-smokers. Expression quantitative trait methylation (eQTM) analysis was completed to explore smoking relevant genes by CpG sites that differ between current and ex-smokers. To investigate the relevance of the smoking-associated DNA methylation changes for the lower airways, significant CpG sites were explored in bronchial biopsies from patients who had stopped smoking. 809 genes and 18,814 CpG sites were differentially associated with current-smoking in the nose. The cis-eQTM analysis uncovered 171 CpG sites whose methylation status associated with smoking-related gene expression, including AHRR, ALDH3A1, CYP1A1 and CYP1B1. Methylation status of CpG sites altered by current-smoking reversed with one-year smoking cessation. We confirm current-smoking alters epigenetic patterns and affects gene expression in the nasal epithelium of asthma patients, which is partially reversible in bronhcial biopsies after smoking cessation. We demonstrate the ability to discern molecular changes in the nasal epithelium, presenting this as a tool in future investigations into disease-relevant effects of tobacco smoke.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1165/rcmb.2020-0553OCDOI Listing
May 2021