Publications by authors named "Andrew J Dolgert"

4 Publications

  • Page 1 of 1

Measuring the accuracy of gridded human population density surfaces: A case study in Bioko Island, Equatorial Guinea.

PLoS One 2021 1;16(9):e0248646. Epub 2021 Sep 1.

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, United States of America.

Background: Geospatial datasets of population are becoming more common in models used for health policy. Publicly-available maps of human population make a consistent picture from inconsistent census data, and the techniques they use to impute data makes each population map unique. Each mapping model explains its methods, but it can be difficult to know which map is appropriate for which policy work. High quality census datasets, where available, are a unique opportunity to characterize maps by comparing them with truth.

Methods: We use census data from a bed-net mass-distribution campaign on Bioko Island, Equatorial Guinea, conducted by the Bioko Island Malaria Elimination Program as a gold standard to evaluate LandScan (LS), WorldPop Constrained (WP-C) and WorldPop Unconstrained (WP-U), Gridded Population of the World (GPW), and the High-Resolution Settlement Layer (HRSL). Each layer is compared to the gold-standard using statistical measures to evaluate distribution, error, and bias. We investigated how map choice affects burden estimates from a malaria prevalence model.

Results: Specific population layers were able to match the gold-standard distribution at different population densities. LandScan was able to most accurately capture highly urban distribution, HRSL and WP-C matched best at all other lower population densities. GPW and WP-U performed poorly everywhere. Correctly capturing empty pixels is key, and smaller pixel sizes (100 m vs 1 km) improve this. Normalizing areas based on known district populations increased performance. The use of differing population layers in a malaria model showed a disparity in results around transition points between endemicity levels.

Discussion: The metrics in this paper, some of them novel in this context, characterize how these population maps differ from the gold standard census and from each other. We show that the metrics help understand the performance of a population map within a malaria model. The closest match to the census data would combine LandScan within urban areas and the HRSL for rural areas. Researchers should prefer particular maps if health calculations have a strong dependency on knowing where people are not, or if it is important to categorize variation in density within a city.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0248646PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8409626PMC
September 2021

MGDrivE 2: A simulation framework for gene drive systems incorporating seasonality and epidemiological dynamics.

PLoS Comput Biol 2021 05 21;17(5):e1009030. Epub 2021 May 21.

Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, United States of America.

Interest in gene drive technology has continued to grow as promising new drive systems have been developed in the lab and discussions are moving towards implementing field trials. The prospect of field trials requires models that incorporate a significant degree of ecological detail, including parameters that change over time in response to environmental data such as temperature and rainfall, leading to seasonal patterns in mosquito population density. Epidemiological outcomes are also of growing importance, as: i) the suitability of a gene drive construct for release will depend on its expected impact on disease transmission, and ii) initial field trials are expected to have a measured entomological outcome and a modeled epidemiological outcome. We present MGDrivE 2 (Mosquito Gene Drive Explorer 2): a significant development from the MGDrivE 1 simulation framework that investigates the population dynamics of a variety of gene drive architectures and their spread through spatially-explicit mosquito populations. Key strengths and fundamental improvements of the MGDrivE 2 framework are: i) the ability of parameters to vary with time and induce seasonal population dynamics, ii) an epidemiological module accommodating reciprocal pathogen transmission between humans and mosquitoes, and iii) an implementation framework based on stochastic Petri nets that enables efficient model formulation and flexible implementation. Example MGDrivE 2 simulations are presented to demonstrate the application of the framework to a CRISPR-based split gene drive system intended to drive a disease-refractory gene into a population in a confinable and reversible manner, incorporating time-varying temperature and rainfall data. The simulations also evaluate impact on human disease incidence and prevalence. Further documentation and use examples are provided in vignettes at the project's CRAN repository. MGDrivE 2 is freely available as an open-source R package on CRAN (https://CRAN.R-project.org/package=MGDrivE2). We intend the package to provide a flexible tool capable of modeling gene drive constructs as they move closer to field application and to infer their expected impact on disease transmission.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1009030DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186770PMC
May 2021

Comparing metapopulation dynamics of infectious diseases under different models of human movement.

Proc Natl Acad Sci U S A 2021 May;118(18)

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98121.

Newly available datasets present exciting opportunities to investigate how human population movement contributes to the spread of infectious diseases across large geographical distances. It is now possible to construct realistic models of infectious disease dynamics for the purposes of understanding global-scale epidemics. Nevertheless, a remaining unanswered question is how best to leverage the new data to parameterize models of movement, and whether one's choice of movement model impacts modeled disease outcomes. We adapt three well-studied models of infectious disease dynamics, the susceptible-infected-recovered model, the susceptible-infected-susceptible model, and the Ross-Macdonald model, to incorporate either of two candidate movement models. We describe the effect that the choice of movement model has on each disease model's results, finding that in all cases, there are parameter regimes where choosing one movement model instead of another has a profound impact on epidemiological outcomes. We further demonstrate the importance of choosing an appropriate movement model using the applied case of malaria transmission and importation on Bioko Island, Equatorial Guinea, finding that one model produces intelligible predictions of , whereas the other produces nonsensical results.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1073/pnas.2007488118DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8106338PMC
May 2021

Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study.

Lancet 2020 10 14;396(10258):1285-1306. Epub 2020 Jul 14.

Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA; Department of Health Metrics Sciences, School of Medicine, University of Washington, Seattle, WA, USA. Electronic address:

Background: Understanding potential patterns in future population levels is crucial for anticipating and planning for changing age structures, resource and health-care needs, and environmental and economic landscapes. Future fertility patterns are a key input to estimation of future population size, but they are surrounded by substantial uncertainty and diverging methodologies of estimation and forecasting, leading to important differences in global population projections. Changing population size and age structure might have profound economic, social, and geopolitical impacts in many countries. In this study, we developed novel methods for forecasting mortality, fertility, migration, and population. We also assessed potential economic and geopolitical effects of future demographic shifts.

Methods: We modelled future population in reference and alternative scenarios as a function of fertility, migration, and mortality rates. We developed statistical models for completed cohort fertility at age 50 years (CCF50). Completed cohort fertility is much more stable over time than the period measure of the total fertility rate (TFR). We modelled CCF50 as a time-series random walk function of educational attainment and contraceptive met need. Age-specific fertility rates were modelled as a function of CCF50 and covariates. We modelled age-specific mortality to 2100 using underlying mortality, a risk factor scalar, and an autoregressive integrated moving average (ARIMA) model. Net migration was modelled as a function of the Socio-demographic Index, crude population growth rate, and deaths from war and natural disasters; and use of an ARIMA model. The model framework was used to develop a reference scenario and alternative scenarios based on the pace of change in educational attainment and contraceptive met need. We estimated the size of gross domestic product for each country and territory in the reference scenario. Forecast uncertainty intervals (UIs) incorporated uncertainty propagated from past data inputs, model estimation, and forecast data distributions.

Findings: The global TFR in the reference scenario was forecasted to be 1·66 (95% UI 1·33-2·08) in 2100. In the reference scenario, the global population was projected to peak in 2064 at 9·73 billion (8·84-10·9) people and decline to 8·79 billion (6·83-11·8) in 2100. The reference projections for the five largest countries in 2100 were India (1·09 billion [0·72-1·71], Nigeria (791 million [594-1056]), China (732 million [456-1499]), the USA (336 million [248-456]), and Pakistan (248 million [151-427]). Findings also suggest a shifting age structure in many parts of the world, with 2·37 billion (1·91-2·87) individuals older than 65 years and 1·70 billion (1·11-2·81) individuals younger than 20 years, forecasted globally in 2100. By 2050, 151 countries were forecasted to have a TFR lower than the replacement level (TFR <2·1), and 183 were forecasted to have a TFR lower than replacement by 2100. 23 countries in the reference scenario, including Japan, Thailand, and Spain, were forecasted to have population declines greater than 50% from 2017 to 2100; China's population was forecasted to decline by 48·0% (-6·1 to 68·4). China was forecasted to become the largest economy by 2035 but in the reference scenario, the USA was forecasted to once again become the largest economy in 2098. Our alternative scenarios suggest that meeting the Sustainable Development Goals targets for education and contraceptive met need would result in a global population of 6·29 billion (4·82-8·73) in 2100 and a population of 6·88 billion (5·27-9·51) when assuming 99th percentile rates of change in these drivers.

Interpretation: Our findings suggest that continued trends in female educational attainment and access to contraception will hasten declines in fertility and slow population growth. A sustained TFR lower than the replacement level in many countries, including China and India, would have economic, social, environmental, and geopolitical consequences. Policy options to adapt to continued low fertility, while sustaining and enhancing female reproductive health, will be crucial in the years to come.

Funding: Bill & Melinda Gates Foundation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S0140-6736(20)30677-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561721PMC
October 2020
-->