Publications by authors named "Andreas Jansen"

157 Publications

COVID-19 Pandemic & Bureaucracy: The Crisis Inside the Crisis.

Front Public Health 2021 7;9:665323. Epub 2021 Oct 7.

Bundeswehr Medical Service Headquarters VI-2, Medical Intelligence & Information (MI2), Munich, Germany.

The Medical Intelligence and Information (MI2) Unit of the German Armed Forces (Bundeswehr) is experienced in crisis support in military missions since several years. It gained additional experiences during the current coronavirus 2019 (COVID-19) pandemic on different levels of the response to crisis and was requested to share the findings and expertise with the overloaded civil public health agencies inside Germany. Since the beginning of the pandemic, the unit is constantly developing new products for crisis communication, knowledge sharing techniques in new databases, dashboards for leadership, and training for laypersons in contact tracing. Hence, trying to innovate in crisis since the first severe acute respiratory syndrome coronavirus (SARS-CoV)-2-disease wave. During the second wave, the unit was requested to evaluate the outbreak management of different national civil public health agencies in southern Germany, and to support the development of dashboards in a comprehensive public health approach as a necessary start toward digitalization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpubh.2021.665323DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8528952PMC
October 2021

Developmental changes within the extended face processing network: A cross-sectional functional magnetic resonance imaging study.

Dev Neurobiol 2021 Oct 22. Epub 2021 Oct 22.

Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Germany.

In the field of face processing, the so-called "core network" has been intensively researched. Its neural activity can be reliably detected in children and adults using fMRI. However, the core networks counterpart, the so-called "extended network" has been less researched. In the present study, we compared children's and adults' brain activity in the extended system, in particular in the amygdala, the insula and the inferior frontal gyrus (IFG). Using functional magnetic resonance imaging (fMRI), we compared the brain activation pattern between children aged 7-9 years and adults during an emotional face processing task. On the one hand, children showed increased activity in the extended face processing system in relation to adults, particularly in the left amygdala, the right insula and the left IFG. On the other hand, lateralisation indices (LI) revealed a "leftward bias" in children's IFG compared to adults. These results suggest that brain activity associated with face processing is characterised by a developmental decrease in activity. They further show that the development is associated with a rightward migration of face-related IFG-activation, possibly due to the competition for neural space between several developing brain functions ("developmental competition hypothesis"). This article is protected by copyright. All rights reserved.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/dneu.22858DOI Listing
October 2021

Altered resting-state functional connectome in major depressive disorder: a mega-analysis from the PsyMRI consortium.

Transl Psychiatry 2021 10 7;11(1):511. Epub 2021 Oct 7.

Department of Psychology, Friedrich Schiller University Jena, Jena, Germany.

Major depressive disorder (MDD) is associated with abnormal neural circuitry. It can be measured by assessing functional connectivity (FC) at resting-state functional MRI, that may help identifying neural markers of MDD and provide further efficient diagnosis and monitor treatment outcomes. The main aim of the present study is to investigate, in an unbiased way, functional alterations in patients with MDD using a large multi-center dataset from the PsyMRI consortium including 1546 participants from 19 centers ( www.psymri.com ). After applying strict exclusion criteria, the final sample consisted of 606 MDD patients (age: 35.8 ± 11.9 y.o.; females: 60.7%) and 476 healthy participants (age: 33.3 ± 11.0 y.o.; females: 56.7%). We found significant relative hypoconnectivity within somatosensory motor (SMN), salience (SN) networks and between SMN, SN, dorsal attention (DAN), and visual (VN) networks in MDD patients. No significant differences were detected within the default mode (DMN) and frontoparietal networks (FPN). In addition, alterations in network organization were observed in terms of significantly lower network segregation of SMN in MDD patients. Although medicated patients showed significantly lower FC within DMN, FPN, and SN than unmedicated patients, there were no differences between medicated and unmedicated groups in terms of network organization in SMN. We conclude that the network organization of cortical networks, involved in processing of sensory information, might be a more stable neuroimaging marker for MDD than previously assumed alterations in higher-order neural networks like DMN and FPN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01619-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497531PMC
October 2021

Individuals at increased risk for development of bipolar disorder display structural alterations similar to people with manifest disease.

Transl Psychiatry 2021 09 20;11(1):485. Epub 2021 Sep 20.

Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany.

In psychiatry, there has been a growing focus on identifying at-risk populations. For schizophrenia, these efforts have led to the development of early recognition and intervention measures. Despite a similar disease burden, the populations at risk of bipolar disorder have not been sufficiently characterized. Within the BipoLife consortium, we used magnetic resonance imaging (MRI) data from a multicenter study to assess structural gray matter alterations in N = 263 help-seeking individuals from seven study sites. We defined the risk using the EPIbipolar assessment tool as no-risk, low-risk, and high-risk and used a region-of-interest approach (ROI) based on the results of two large-scale multicenter studies of bipolar disorder by the ENIGMA working group. We detected significant differences in the thickness of the left pars opercularis (Cohen's d = 0.47, p = 0.024) between groups. The cortex was significantly thinner in high-risk individuals compared to those in the no-risk group (p = 0.011). We detected no differences in the hippocampal volume. Exploratory analyses revealed no significant differences in other cortical or subcortical regions. The thinner cortex in help-seeking individuals at risk of bipolar disorder is in line with previous findings in patients with the established disorder and corresponds to the region of the highest effect size in the ENIGMA study of cortical alterations. Structural alterations in prefrontal cortex might be a trait marker of bipolar risk. This is the largest structural MRI study of help-seeking individuals at increased risk of bipolar disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01598-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452775PMC
September 2021

De-escalation strategies for non-pharmaceutical interventions following infectious disease outbreaks: a rapid review and a proposed dynamic de-escalation framework.

Global Health 2021 09 16;17(1):106. Epub 2021 Sep 16.

Centre for International Health Protection, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.

Background: The severity of COVID-19, as well as the speed and scale of its spread, has posed a global challenge. Countries around the world have implemented stringent non-pharmaceutical interventions (NPI) to control transmission and prevent health systems from being overwhelmed. These NPI have had profound negative social and economic impacts. With the timeline to worldwide vaccine roll-out being uncertain, governments need to consider to what extent they need to implement and how to de-escalate these NPI. This rapid review collates de-escalation criteria reported in the literature to provide a guide to criteria that could be used as part of de-escalation strategies globally.

Methods: We reviewed literature published since 2000 relating to pandemics and infectious disease outbreaks. The searches included Embase.com (includes Embase and Medline), LitCovid, grey literature searching, reference harvesting and citation tracking. Over 1,700 documents were reviewed, with 39 documents reporting de-escalation criteria included in the final analysis. Concepts retrieved through a thematic analysis of the included documents were interlinked to build a conceptual dynamic de-escalation framework.

Results: We identified 52 de-escalation criteria, the most common of which were clustered under surveillance (cited by 43 documents, 10 criteria e.g. ability to actively monitor confirmed cases and contact tracing), health system capacity (cited by 30 documents, 11 criteria, e.g. ability to treat all patients within normal capacity) and epidemiology (cited by 28 documents, 7 criteria, e.g. number or changes in case numbers). De-escalation is a gradual and bi-directional process, and resurgence of infections or emergence of variants of concerns can lead to partial or full re-escalation(s) of response and control measures in place. Hence, it is crucial to rely on a robust public health surveillance system.

Conclusions: This rapid review focusing on de-escalation within the context of COVID-19 provides a conceptual framework and a guide to criteria that countries can use to formulate de-escalation plans.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12992-021-00743-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8444163PMC
September 2021

"I Spy with my Little Eye, Something that is a Face…": A Brain Network for Illusory Face Detection.

Cereb Cortex 2021 Jul 29. Epub 2021 Jul 29.

Department of Psychiatry, Laboratory for Multimodal Neuroimaging, University of Marburg, Marburg, Germany.

The most basic aspect of face perception is simply detecting the presence of a face, which requires the extraction of features that it has in common with other faces. Putatively, it is caused by matching high-dimensional sensory input with internal face templates, achieved through a top-down mediated coupling between prefrontal regions and brain areas in the occipito-temporal cortex ("core system of face perception"). Illusory face detection tasks can be used to study these top-down influences. In the present functional magnetic resonance imaging study, we showed that illusory face perception activated just as real faces the core system, albeit with atypical left-lateralization of the occipital face area. The core system was coupled with two distinct brain regions in the lateral prefrontal (inferior frontal gyrus, IFG) and orbitofrontal cortex (OFC). A dynamic causal modeling (DCM) analysis revealed that activity in the core system during illusory face detection was upregulated by a modulatory face-specific influence of the IFG, not as previously assumed by the OFC. Based on these findings, we were able to develop the most comprehensive neuroanatomical framework of illusory face detection until now.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhab199DOI Listing
July 2021

Brain structural connectivity, anhedonia, and phenotypes of major depressive disorder: A structural equation model approach.

Hum Brain Mapp 2021 Oct 24;42(15):5063-5074. Epub 2021 Jul 24.

Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

Aberrant brain structural connectivity in major depressive disorder (MDD) has been repeatedly reported, yet many previous studies lack integration of different features of MDD with structural connectivity in multivariate modeling approaches. In n = 595 MDD patients, we used structural equation modeling (SEM) to test the intercorrelations between anhedonia, anxiety, neuroticism, and cognitive control in one comprehensive model. We then separately analyzed diffusion tensor imaging (DTI) connectivity measures in association with those clinical variables, and finally integrated brain connectivity associations, clinical/cognitive variables into a multivariate SEM. We first confirmed our clinical/cognitive SEM. DTI analyses (FWE-corrected) showed a positive correlation of anhedonia with fractional anisotropy (FA) in the right anterior thalamic radiation (ATR) and forceps minor/corpus callosum, while neuroticism was negatively correlated with axial diffusivity (AD) in the left uncinate fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF). An extended SEM confirmed the associations of ATR FA with anhedonia and UF/IFOF AD with neuroticism impacting on cognitive control. Our findings provide evidence for a differential impact of state and trait variables of MDD on brain connectivity and cognition. The multivariate approach shows feasibility of explaining heterogeneity within MDD and tracks this to specific brain circuits, thus adding to better understanding of heterogeneity on the biological level.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25600DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8449111PMC
October 2021

A genome-wide association study of the longitudinal course of executive functions.

Transl Psychiatry 2021 07 10;11(1):386. Epub 2021 Jul 10.

AMEOS Clinical Center Hildesheim, Hildesheim, 31135, Germany.

Executive functions are metacognitive capabilities that control and coordinate mental processes. In the transdiagnostic PsyCourse Study, comprising patients of the affective-to-psychotic spectrum and controls, we investigated the genetic basis of the time course of two core executive subfunctions: set-shifting (Trail Making Test, part B (TMT-B)) and updating (Verbal Digit Span backwards) in 1338 genotyped individuals. Time course was assessed with four measurement points, each 6 months apart. Compared to the initial assessment, executive performance improved across diagnostic groups. We performed a genome-wide association study to identify single nucleotide polymorphisms (SNPs) associated with performance change over time by testing for SNP-by-time interactions using linear mixed models. We identified nine genome-wide significant SNPs for TMT-B in strong linkage disequilibrium with each other on chromosome 5. These were associated with decreased performance on the continuous TMT-B score across time. Variant rs150547358 had the lowest P value = 7.2 × 10 with effect estimate beta = 1.16 (95% c.i.: 1.11, 1.22). Implementing data of the FOR2107 consortium (1795 individuals), we replicated these findings for the SNP rs150547358 (P value = 0.015), analyzing the difference of the two available measurement points two years apart. In the replication study, rs150547358 exhibited a similar effect estimate beta = 0.85 (95% c.i.: 0.74, 0.97). Our study demonstrates that longitudinally measured phenotypes have the potential to unmask novel associations, adding time as a dimension to the effects of genomics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-021-01510-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8272719PMC
July 2021

Interaction of developmental factors and ordinary stressful life events on brain structure in adults.

Neuroimage Clin 2021 21;30:102683. Epub 2021 Apr 21.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Marburg University Hospital - UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.

An interplay of early environmental and genetic risk factors with recent stressful life events (SLEs) in adulthood increases the risk for adverse mental health outcomes. The interaction of early risk and current SLEs on brain structure has hardly been investigated. Whole brain voxel-based morphometry analysis was performed in N = 786 (64.6% female, mean age = 33.39) healthy subjects to identify correlations of brain clusters with commonplace recent SLEs. Genetic and early environmental risk factors, operationalized as those for severe psychopathology (i.e., polygenic scores for neuroticism, childhood maltreatment, urban upbringing and paternal age) were assessed as modulators of the impact of SLEs on the brain. SLEs were negatively correlated with grey matter volume in the left medial orbitofrontal cortex (mOFC, FWE p = 0.003). This association was present for both, positive and negative, life events. Cognitive-emotional variables, i.e., neuroticism, perceived stress, trait anxiety, intelligence, and current depressive symptoms did not account for the SLE-mOFC association. Further, genetic and environmental risk factors were not correlated with grey matter volume in the left mOFC cluster and did not affect the association between SLEs and left mOFC grey matter volume. The orbitofrontal cortex has been implicated in stress-related psychopathology, particularly major depression in previous studies. We find that SLEs are associated with this area. Important early life risk factors do not interact with current SLEs on brain morphology in healthy subjects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2021.102683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102615PMC
July 2021

The Course of Disease in Major Depressive Disorder Is Associated With Altered Activity of the Limbic System During Negative Emotion Processing.

Biol Psychiatry Cogn Neurosci Neuroimaging 2021 Jun 5. Epub 2021 Jun 5.

Institute for Translational Psychiatry, University of Münster, Münster, Germany. Electronic address:

Background: Brain functional alterations during emotion processing in patients with major depressive disorder (MDD) compared with healthy control subjects (HCs) are frequently reported. However, evidence for functional correlates of emotion processing with regard to MDD trajectories is scarce. This study investigates the role of lifetime disease course for limbic brain activation during negative emotional face processing in patients with MDD.

Methods: In a large sample of patients with MDD (n = 333; 58.55% female) and HCs (n = 333; 60.06% female), brain activation was investigated during a negative emotional face-processing task within a cross-sectional design. Differences between HC and MDD groups were analyzed. Previous disease course, characterized by 2 components, namely hospitalization and duration of illness, was regressed on brain activation of the amygdala, (para-)hippocampus, and insula in patients with MDD.

Results: Patients with MDD showed increased activation in the amygdala, insula, and hippocampus compared with HCs (all p values corrected for familywise error [p] < .045). The hospitalization component showed negative associations with brain activation in the bilateral insula (right: p = .026, left: p = .019) and (para-)hippocampus (right: p = .038, left: p = .031). No significant association was found for the duration of illness component (all p > .057).

Conclusions: This study investigated negative emotion processing in a large sample of patients with MDD and HCs. Our results confirm limbic hyperactivation in patients with MDD during negative emotion processing; however, this hyperactivation may resolve with a more severe lifetime disease course in the insula and (para-)hippocampus-brain regions involved in emotion processing and regulation. These findings need further replication in longitudinal studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2021.05.008DOI Listing
June 2021

Seeing things differently: Gaze shapes neural signal during mentalizing according to emotional awareness.

Neuroimage 2021 09 4;238:118223. Epub 2021 Jun 4.

Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen; Core-Unit Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany.

Studies on social cognition often use complex visual stimuli to asses neural processes attributed to abilities like "mentalizing" or "Theory of Mind" (ToM). During the processing of these stimuli, eye gaze, however, shapes neural signal patterns. Individual differences in neural operations on social cognition may therefore be obscured if individuals' gaze behavior differs systematically. These obstacles can be overcome by the combined analysis of neural signal and natural viewing behavior. Here, we combined functional magnetic resonance imaging (fMRI) with eye-tracking to examine effects of unconstrained gaze on neural ToM processes in healthy individuals with differing levels of emotional awareness, i.e. alexithymia. First, as previously described for emotional tasks, people with higher alexithymia levels look less at eyes in both ToM and task-free viewing contexts. Further, we find that neural ToM processes are not affected by individual differences in alexithymia per se. Instead, depending on alexithymia levels, gaze on critical stimulus aspects reversely shapes the signal in medial prefrontal cortex (MPFC) and anterior temporoparietal junction (TPJ) as distinct nodes of the ToM system. These results emphasize that natural selective attention affects fMRI patterns well beyond the visual system. Our study implies that, whenever using a task with multiple degrees of freedom in scan paths, ignoring the latter might obscure important conclusions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2021.118223DOI Listing
September 2021

Social support and hippocampal volume are negatively associated in adults with previous experience of childhood maltreatment.

J Psychiatry Neurosci 2021 Apr 27;46(3):E328-E336. Epub 2021 Apr 27.

From the Department of Psychiatry, University of Münster, Münster, Germany (Förster, Danzer, Redlich, Opel, Grotegerd, Leehr, Dohm, Enneking, Meinert, Goltermann, Lemke, Waltemate, Thiel, Behnert, Hahn, Repple, Dannlowski); the Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, TU Dresden, Dresden, Germany (Förster); the Department of Clinical Psychology, University of Halle, Halle, Germany (Redlich); the Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany (Brosch, Stein, Meller, Ringwald, Schmitt, Steinsträter, Jansen, Krug, Nenadic, Kircher); the Core-Unit Brain Imaging, Faculty of Medicine, University of Marburg, Marburg, Germany (Jansen); the Department of Psychiatry, University of Bonn, Bonn, Germany (Krug); and the University Clinic for Clinical Radiology, University of Münster, Münster, Germany (Kugel, Heindel).

Background: Childhood maltreatment has been associated with reduced hippocampal volume in healthy individuals, whereas social support, a protective factor, has been positively associated with hippocampal volumes. In this study, we investigated how social support is associated with hippocampal volume in healthy people with previous experience of childhood maltreatment.

Methods: We separated a sample of 446 healthy participants into 2 groups using the Childhood Trauma Questionnaire: 265 people without maltreatment and 181 people with maltreatment. We measured perceived social support using a short version of the Social Support Questionnaire. We examined hippocampal volume using automated segmentation (Freesurfer). We conducted a social support × group analysis of covariance on hippocampal volumes controlling for age, sex, total intracranial volume, site and verbal intelligence.

Results: Our analysis revealed significantly lower left hippocampal volume in people with maltreatment (left F1,432 = 5.686, p = 0.018; right F1,433 = 3.371, p = 0.07), but no main effect of social support emerged. However, we did find a significant social support × group interaction for left hippocampal volume (left F1,432 = 5.712, p = 0.017; right F1,433 = 3.480, p = 0.06). In people without maltreatment, we observed a trend toward a positive association between social support and hippocampal volume. In contrast, social support was negatively associated with hippocampal volume in people with maltreatment.

Limitations: Because of the correlative nature of our study, we could not infer causal relationships between social support, maltreatment and hippocampal volume.

Conclusion: Our results point to a complex dynamic between environmental risk, protective factors and brain structure - in line with previous evidence - suggesting a detrimental effect of maltreatment on hippocampal development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1503/jpn.200162DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8327979PMC
April 2021

Psychopathological Syndromes Across Affective and Psychotic Disorders Correlate With Gray Matter Volumes.

Schizophr Bull 2021 Oct;47(6):1740-1750

Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

Introduction: More than a century of research on the neurobiological underpinnings of major psychiatric disorders (major depressive disorder [MDD], bipolar disorder [BD], schizophrenia [SZ], and schizoaffective disorder [SZA]) has been unable to identify diagnostic markers. An alternative approach is to study dimensional psychopathological syndromes that cut across categorical diagnoses. The aim of the current study was to identify gray matter volume (GMV) correlates of transdiagnostic symptom dimensions.

Methods: We tested the association of 5 psychopathological factors with GMV using multiple regression models in a sample of N = 1069 patients meeting Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) criteria for MDD (n = 818), BD (n = 132), and SZ/SZA (n = 119). T1-weighted brain images were acquired with 3-Tesla magnetic resonance imaging and preprocessed with CAT12. Interactions analyses (diagnosis × psychopathological factor) were performed to test whether local GMV associations were driven by DSM-IV diagnosis. We further tested syndrome specific regions of interest (ROIs).

Results: Whole brain analysis showed a significant negative association of the positive formal thought disorder factor with GMV in the right middle frontal gyrus, the paranoid-hallucinatory syndrome in the right fusiform, and the left middle frontal gyri. ROI analyses further showed additional negative associations, including the negative syndrome with bilateral frontal opercula, positive formal thought disorder with the left amygdala-hippocampus complex, and the paranoid-hallucinatory syndrome with the left angular gyrus. None of the GMV associations interacted with DSM-IV diagnosis.

Conclusions: We found associations between psychopathological syndromes and regional GMV independent of diagnosis. Our findings open a new avenue for neurobiological research across disorders, using syndrome-based approaches rather than categorical diagnoses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/schbul/sbab037DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530386PMC
October 2021

DLPFC volume is a neural correlate of resilience in healthy high-risk individuals with both childhood maltreatment and familial risk for depression.

Psychol Med 2021 Apr 16:1-7. Epub 2021 Apr 16.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Two prominent risk factors for major depressive disorder (MDD) are childhood maltreatment (CM) and familial risk for MDD. Despite having these risk factors, there are individuals who maintain mental health, i.e. are resilient, whereas others develop MDD. It is unclear which brain morphological alterations are associated with this kind of resilience. Interaction analyses of risk and diagnosis status are needed that can account for complex adaptation processes, to identify neural correlates of resilience.

Methods: We analyzed brain structural data (3T magnetic resonance imaging) by means of voxel-based morphometry (CAT12 toolbox), using a 2 × 2 design, comparing four groups (N = 804) that differed in diagnosis (healthy v. MDD) and risk profiles (low-risk, i.e. absence of CM and familial risk v. high-risk, i.e. presence of both CM and familial risk). Using regions of interest (ROIs) from the literature, we conducted an interaction analysis of risk and diagnosis status.

Results: Volume in the left middle frontal gyrus (MFG), part of the dorsolateral prefrontal cortex (DLPFC), was significantly higher in healthy high-risk individuals. There were no significant results for the bilateral superior frontal gyri, frontal poles, pars orbitalis of the inferior frontal gyri, and the right MFG.

Conclusions: The healthy high-risk group had significantly higher volumes in the left DLPFC compared to all other groups. The DLPFC is implicated in cognitive and emotional processes, and higher volume in this area might aid high-risk individuals in adaptive coping in order to maintain mental health. This increased volume might therefore constitute a neural correlate of resilience to MDD in high risk.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721001094DOI Listing
April 2021

A size-adaptive 32-channel array coil for awake infant neuroimaging at 3 Tesla MRI.

Magn Reson Med 2021 09 8;86(3):1773-1785. Epub 2021 Apr 8.

Institute of Medical Physics and Radiation Protection, Department of Life Science Engineering, TH Mittelhessen University of Applied Sciences, Giessen, Germany.

Purpose: Functional magnetic resonance imaging (fMRI) during infancy poses challenges due to practical, methodological, and analytical considerations. The aim of this study was to implement a hardware-related approach to increase subject compliance for fMRI involving awake infants. To accomplish this, we designed, constructed, and evaluated an adaptive 32-channel array coil.

Methods: To allow imaging with a close-fitting head array coil for infants aged 1-18 months, an adjustable head coil concept was developed. The coil setup facilitates a half-seated scanning position to improve the infant's overall scan compliance. Earmuff compartments are integrated directly into the coil housing to enable the usage of sound protection without losing a snug fit of the coil around the infant's head. The constructed array coil was evaluated from phantom data using bench-level metrics, signal-to-noise ratio (SNR) performances, and accelerated imaging capabilities for both in-plane and simultaneous multislice (SMS) reconstruction methodologies. Furthermore, preliminary fMRI data were acquired to evaluate the in vivo coil performance.

Results: Phantom data showed a 2.7-fold SNR increase on average when compared with a commercially available 32-channel head coil. At the center and periphery regions of the infant head phantom, the SNR gains were measured to be 1.25-fold and 3-fold, respectively. The infant coil further showed favorable encoding capabilities for undersampled k-space reconstruction methods and SMS techniques.

Conclusions: An infant-friendly head coil array was developed to improve sensitivity, spatial resolution, accelerated encoding, motion insensitivity, and subject tolerance in pediatric MRI. The adaptive 32-channel array coil is well-suited for fMRI acquisitions in awake infants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.28791DOI Listing
September 2021

Effects of polygenic risk for major mental disorders and cross-disorder on cortical complexity.

Psychol Med 2021 Apr 8:1-12. Epub 2021 Apr 8.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood.

Methods: We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness.

Results: The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing.

Conclusions: Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721001082DOI Listing
April 2021

Larger bilateral amygdalar volumes are associated with affective loss experiences.

J Neurosci Res 2021 Jul 31;99(7):1763-1779. Epub 2021 Mar 31.

Department of Psychiatry and Psychotherapy, Philipps University Marburg, Marburg, Germany.

Affective loss (AL) (i.e., bereavement, relationship breakup) is a stressful life event leading to a heightened risk of developing a psychiatric disorder, for example, depression and anxiety disorder. These disorders have been associated with altered subcortical brain volumes. Little is known though, how AL in healthy subjects is linked to subcortical volumes. In a study with 196 healthy young adults, we probed the association between AL across the individual entire life span, assessed via the List of Threatening Experiences Questionnaire, and magnetic resonance imaging brain gray matter volumes (a priori selected: bilateral amygdalae, hippocampi, thalami; exploratory analyses: nuclei accumbens, caudate, putamina), segmented by use of volBrain. AL was defined as death of a first-degree relative/spouse, close relative/friend, and breakup of a marriage or steady relationship. AL was associated with larger bilateral amygdalar volumes and, after taking into account the total number of ALs, with smaller right hippocampal volumes, both irrespective of sex. Exploratory analyses of striatal volumes yielded an association of AL with larger right nucleus accumbens volumes in men, and increased caudate volumes after the loss of a first-degree relative irrespective of sex. Our data suggest that AL engenders alterations in limbic structures that likely involve processes of chronic stress and amygdala- and hippocampus-dependent fear conditioning, and resemble those observed in general anxiety disorder, childhood maltreatment, and major depressive disorder. Our exploratory findings of striatal volume alterations hint at a modulation of reward processing by AL.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jnr.24835DOI Listing
July 2021

Association Between Genetic Risk for Type 2 Diabetes and Structural Brain Connectivity in Major Depressive Disorder.

Biol Psychiatry Cogn Neurosci Neuroimaging 2021 Mar 5. Epub 2021 Mar 5.

Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany.

Background: Major depressive disorder (MDD) and type 2 diabetes mellitus (T2D) are known to share clinical comorbidity and to have genetic overlap. Besides their shared genetics, both diseases seem to be associated with alterations in brain structural connectivity and impaired cognitive performance, but little is known about the mechanisms by which genetic risk of T2D might affect brain structure and function and if they do, how these effects could contribute to the disease course of MDD.

Methods: This study explores the association of polygenic risk for T2D with structural brain connectome topology and cognitive performance in 434 nondiabetic patients with MDD and 539 healthy control subjects.

Results: Polygenic risk score for T2D across MDD patients and healthy control subjects was found to be associated with reduced global fractional anisotropy, a marker of white matter microstructure, an effect found to be predominantly present in MDD-related fronto-temporo-parietal connections. A mediation analysis further suggests that this fractional anisotropy variation may mediate the association between polygenic risk score and cognitive performance.

Conclusions: Our findings provide preliminary evidence of a polygenic risk for T2D to be linked to brain structural connectivity and cognition in patients with MDD and healthy control subjects, even in the absence of a direct T2D diagnosis. This suggests an effect of T2D genetic risk on white matter integrity, which may mediate an association of genetic risk for diabetes and cognitive impairments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bpsc.2021.02.010DOI Listing
March 2021

Associations of subclinical autistic-like traits with brain structural variation using diffusion tensor imaging and voxel-based morphometry.

Eur Psychiatry 2021 Mar 3;64(1):e27. Epub 2021 Mar 3.

Cognitive Neuropsychiatry Lab, Department of Psychiatry and Psychotherapy, Philipps-University Marburg/Marburg University Hospital-UKGM, Marburg, Germany.

Background: Previous case-control studies of autistic spectrum disorder (ASD) have identified altered brain structure such as altered frontal and temporal cortex volumes, or decreased fractional anisotropy (FA) within the inferior fronto-occipital fasciculus in patients. It remains unclear whether subclinical autistic-like traits might also be related to variation in these brain structures.

Methods: In this study, we analyzed magnetic resonance imaging (MRI) data of 250 psychiatrically healthy subjects phenotyped for subclinical autistic-like traits using the Autism Spectrum Quotient (AQ). For data analysis, we used voxel-based morphometry of T1-MRIs (Computational Anatomy Toolbox) and tract-based spatial statistics for diffusion tensor imaging data.

Results: AQ attention switching subscale correlated negatively with FA values in the bilateral uncinate fasciculus as well as the bilateral inferior fronto-occipital fasciculus. Higher AQ attention switching subscale scores were associated with increased mean diffusivity and radial diffusivity values in the uncinate fasciculus, while axial diffusivity values within this tract show a negative correlation. AQ attention to detail subscale correlated positively with gray matter volume in the right pre- and postcentral gyrus.

Conclusions: We demonstrate that individuals with higher levels of autism-spectrum-like features show decreased white matter integrity in tracts associated with higher-level visual processing and increased cortical volume in areas linked to movement sequencing and working memory. Our results resemble regional brain structure alterations found in individuals with ASD. This offers opportunities to further understand the etiology and pathogenesis of the disorder and shows a subclinical continuum perspective.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1192/j.eurpsy.2021.15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8080214PMC
March 2021

Apolipoprotein E homozygous ε4 allele status: Effects on cortical structure and white matter integrity in a young to mid-age sample.

Eur Neuropsychopharmacol 2021 May 27;46:93-104. Epub 2021 Feb 27.

Department of Psychiatry, University of Münster, Münster, Germany. Electronic address:

Apolipoprotein E (APOE) genotype is the strongest single gene predictor of Alzheimer's disease (AD) and has been frequently associated with AD-related brain structural alterations before the onset of dementia. While previous research has primarily focused on hippocampal morphometry in relation to APOE, sporadic recent findings have questioned the specificity of the hippocampus and instead suggested more global effects on the brain. With the present study we aimed to investigate associations between homozygous APOE ε4 status and cortical gray matter structure as well as white matter microstructure. In our study, we contrasted n = 31 homozygous APOE ε4 carriers (age=34.47 years, including a subsample of n = 12 subjects with depression) with a demographically matched sample without an ε4 allele (resulting total sample: N = 62). Morphometry analyses included a) Freesurfer based cortical segmentations of thickness and surface area measures and b) tract based spatial statistics of DTI measures. We found pronounced and widespread reductions in cortical surface area of ε4 homozygotes in 57 out of 68 cortical brain regions. In contrast, no differences in cortical thickness were observed. Furthermore, APOE ε4 homozygous carriers showed significantly lower fractional anisotropy in the corpus callosum, the right internal and external capsule, the left corona radiata and the right fornix. The present findings support a global rather than regionally specific effect of homozygous APOE ε4 allele status on cortical surface area and white matter microstructure. Future studies should aim to delineate the clinical implications of these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2021.02.006DOI Listing
May 2021

The Trajectory of Hemispheric Lateralization in the Core System of Face Processing: A Cross-Sectional Functional Magnetic Resonance Imaging Pilot Study.

Front Psychol 2020 2;11:507199. Epub 2020 Oct 2.

Laboratory for Multimodal Neuroimaging, Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany.

Face processing is mediated by a distributed neural network commonly divided into a "core system" and an "extended system." The core system consists of several, typically right-lateralized brain regions in the occipito-temporal cortex, including the occipital face area (OFA), the fusiform face area (FFA) and the posterior superior temporal sulcus (pSTS). It was recently proposed that the face processing network is initially bilateral and becomes right-specialized in the course of the development of reading abilities due to the competition between language-related regions in the left occipito-temporal cortex (e.g., the visual word form area, VWFA) and the FFA for common neural resources. In the present pilot study, we assessed the neural face processing network in 12 children (aged 7-9 years) and 10 adults with functional magnetic resonance imaging (fMRI). The hemispheric lateralization of the core face regions was compared between both groups. The study had two goals: First, we aimed to establish an fMRI paradigm suitable for assessing activation in the core system of face processing in young children at the single subject level. Second, we planned to collect data for a power analysis to calculate the necessary group size for a large-scale cross-sectional imaging study assessing the ontogenetic development of the lateralization of the face processing network, with focus on the FFA. It was possible to detect brain activity in the core system of 75% of children at the single subject level. The average scan-to-scan motion of the included children was comparable to adults, ruling out that potential activation differences between groups are caused by unequal motion artifacts. Hemispheric lateralization of the FFA was 0.07 ± 0.48 in children (indicating bilateral activation) and -0.32 ± 0.52 in adults (indicating right-hemispheric dominance). These results thus showed, as expected, a trend for increased lateralization in adults. The estimated effect size for the FFA lateralization difference was = 0.78 (indicating medium to large effects). An adequately powered follow-up study (sensitivity 0.8) testing developmental changes of FFA lateralization would therefore require the inclusion of 18 children and 26 adults.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fpsyg.2020.507199DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566903PMC
October 2020

White matter fiber microstructure is associated with prior hospitalizations rather than acute symptomatology in major depressive disorder.

Psychol Med 2020 Sep 14:1-9. Epub 2020 Sep 14.

Department of Psychiatry, University of Münster, Münster, Germany.

Background: Eighty percent of all patients suffering from major depressive disorder (MDD) relapse at least once in their lifetime. Thus, understanding the neurobiological underpinnings of the course of MDD is of utmost importance. A detrimental course of illness in MDD was most consistently associated with superior longitudinal fasciculus (SLF) fiber integrity. As similar associations were, however, found between SLF fiber integrity and acute symptomatology, this study attempts to disentangle associations attributed to current depression from long-term course of illness.

Methods: A total of 531 patients suffering from acute (N = 250) or remitted (N = 281) MDD from the FOR2107-cohort were analyzed in this cross-sectional study using tract-based spatial statistics for diffusion tensor imaging. First, the effects of disease state (acute v. remitted), current symptom severity (BDI-score) and course of illness (number of hospitalizations) on fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity were analyzed separately. Second, disease state and BDI-scores were analyzed in conjunction with the number of hospitalizations to disentangle their effects.

Results: Disease state (pFWE < 0.042) and number of hospitalizations (pFWE< 0.032) were associated with decreased FA and increased MD and RD in the bilateral SLF. A trend was found for the BDI-score (pFWE > 0.067). When analyzed simultaneously only the effect of course of illness remained significant (pFWE < 0.040) mapping to the right SLF.

Conclusions: Decreased FA and increased MD and RD values in the SLF are associated with more hospitalizations when controlling for current psychopathology. SLF fiber integrity could reflect cumulative illness burden at a neurobiological level and should be targeted in future longitudinal analyses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291720002950DOI Listing
September 2020

Childhood maltreatment and cognitive functioning: the role of depression, parental education, and polygenic predisposition.

Neuropsychopharmacology 2021 04 14;46(5):891-899. Epub 2020 Aug 14.

Department of Psychiatry, University of Münster, Münster, Germany.

Childhood maltreatment is associated with cognitive deficits that in turn have been predictive for therapeutic outcome in psychiatric patients. However, previous studies have either investigated maltreatment associations with single cognitive domains or failed to adequately control for confounders such as depression, socioeconomic environment, and genetic predisposition. We aimed to isolate the relationship between childhood maltreatment and dysfunction in diverse cognitive domains, while estimating the contribution of potential confounders to this relationship, and to investigate gene-environment interactions. We included 547 depressive disorder and 670 healthy control participants (mean age: 34.7 years, SD = 13.2). Cognitive functioning was assessed for the domains of working memory, executive functioning, processing speed, attention, memory, and verbal intelligence using neuropsychological tests. Childhood maltreatment and parental education were assessed using self-reports, and psychiatric diagnosis was based on DSM-IV criteria. Polygenic scores for depression and for educational attainment were calculated. Multivariate analysis of cognitive domains yielded significant associations with childhood maltreatment (η² = 0.083, P < 0.001), depression (η² = 0.097, P < 0.001), parental education (η² = 0.085, P < 0.001), and polygenic scores for depression (η² = 0.021, P = 0.005) and educational attainment (η² = 0.031, P < 0.001). Each of these associations remained significant when including all of the predictors in one model. Univariate tests revealed that maltreatment was associated with poorer performance in all cognitive domains. Thus, environmental, psychopathological, and genetic risk factors each independently affect cognition. The insights of the current study may aid in estimating the potential impact of different loci of interventions for cognitive dysfunction. Future research should investigate if customized interventions, informed by individual risk profiles and related cognitive preconditions, might enhance response to therapeutic treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-00794-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115656PMC
April 2021

Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects.

Psychol Med 2020 Aug 6:1-11. Epub 2020 Aug 6.

Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood.

Methods: We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors.

Results: We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy.

Conclusions: This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291720002822DOI Listing
August 2020

What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group.

Hum Brain Mapp 2020 Jul 29. Epub 2020 Jul 29.

Division of Mental Health and Addicition, Oslo University Hospital, Oslo, Norway.

MRI-derived brain measures offer a link between genes, the environment and behavior and have been widely studied in bipolar disorder (BD). However, many neuroimaging studies of BD have been underpowered, leading to varied results and uncertainty regarding effects. The Enhancing Neuro Imaging Genetics through Meta-Analysis (ENIGMA) Bipolar Disorder Working Group was formed in 2012 to empower discoveries, generate consensus findings and inform future hypothesis-driven studies of BD. Through this effort, over 150 researchers from 20 countries and 55 institutions pool data and resources to produce the largest neuroimaging studies of BD ever conducted. The ENIGMA Bipolar Disorder Working Group applies standardized processing and analysis techniques to empower large-scale meta- and mega-analyses of multimodal brain MRI and improve the replicability of studies relating brain variation to clinical and genetic data. Initial BD Working Group studies reveal widespread patterns of lower cortical thickness, subcortical volume and disrupted white matter integrity associated with BD. Findings also include mapping brain alterations of common medications like lithium, symptom patterns and clinical risk profiles and have provided further insights into the pathophysiological mechanisms of BD. Here we discuss key findings from the BD working group, its ongoing projects and future directions for large-scale, collaborative studies of mental illness.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hbm.25098DOI Listing
July 2020

Improving early recognition and intervention in people at increased risk for the development of bipolar disorder: study protocol of a prospective-longitudinal, naturalistic cohort study (Early-BipoLife).

Int J Bipolar Disord 2020 Jul 1;8(1):22. Epub 2020 Jul 1.

Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Fetscherstraße 74, 01307, Dresden, Germany.

Background: Bipolar disorders (BD) belong to the most severe mental disorders, characterized by an early onset and recurrent, severe episodes or a chronic course with poor psychosocial functioning in a proportion of patients. Many patients with BD experience substantial symptomatology months or even years before full BD manifestation. Adequate diagnosis and treatment is often delayed, which is associated with a worse outcome. This study aims to prospectively evaluate and improve early recognition and intervention strategies for persons at-risk for BD.

Methods: Early-BipoLife is a prospective-longitudinal cohort study of 1419 participants (aged 15-35 years) with at least five waves of assessment over a period of at least 2 years (baseline, 6, 12, 18 and 24 months). A research consortium of ten university and teaching hospitals across Germany conducts this study. The following risk groups (RGs) were recruited: RG I: help-seeking youth and young adults consulting early recognition centres/facilities presenting ≥ 1 of the proposed risk factors for BD, RG II: in-/outpatients with unipolar depressive syndrome, and RG III: in-/outpatients with attention-deficit/hyperactivity disorder (ADHD). The reference cohort was selected from the German representative IMAGEN cohort. Over the study period, the natural course of risk and resilience factors, early symptoms of BD and changes of symptom severity (including conversion to manifest BD) are observed. Psychometric properties of recently developed, structured instruments on potential risk factors for conversion to BD and subsyndromal symptomatology (Bipolar Prodrome Symptom Scale, Bipolar at-risk criteria, EPIbipolar) and biomarkers that potentially improve prediction are investigated. Moreover, actual treatment recommendations are monitored in the participating specialized services and compared to recently postulated clinical categorization and treatment guidance in the field of early BD.

Discussion: Findings from this study will contribute to an improved knowledge about the natural course of BD, from the onset of first noticeable symptoms (precursors) to fully developed BD, and about mechanisms of conversion from subthreshold to manifest BD. Moreover, these generated data will provide information for the development of evidence-based guidelines for early-targeted detection and preventive intervention for people at risk for BD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40345-020-00183-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326843PMC
July 2020

Long-Term Neuroanatomical Consequences of Childhood Maltreatment: Reduced Amygdala Inhibition by Medial Prefrontal Cortex.

Front Syst Neurosci 2020 3;14:28. Epub 2020 Jun 3.

Department of Psychiatry and Psychotherapy, Department of Medicine, University of Marburg, Marburg, Germany.

Similar to patients with Major depressive disorder (MDD), healthy subjects at risk for depression show hyperactivation of the amygdala as a response to negative emotional expressions. The medial prefrontal cortex is responsible for amygdala control. Analyzing a large cohort of healthy subjects, we aimed to delineate malfunction in amygdala regulation by the medial prefrontal cortex in subjects at increased risk for depression, i.e., with a family history of affective disorders or a personal history of childhood maltreatment. We included a total of 342 healthy subjects from the cohort (www.for2107.de). An emotional face-matching task was used to identify the medial prefrontal cortex and right amygdala. Dynamic Causal Modeling (DCM) was conducted and neural coupling parameters were obtained for healthy controls with and without particular risk factors for depression. We assigned a if subjects had a first-degree relative with an affective disorder and an if subjects experienced childhood maltreatment. We then compared amygdala inhibition during emotion processing between groups. Amygdala inhibition by the medial prefrontal cortex was present in subjects without those two risk factors, as indicated by negative model parameter estimates. Having a (i.e., a family history) did not result in changes in amygdala inhibition compared to subjects. In contrast, childhood maltreatment as has led to a significant reduction of amygdala inhibition by the medial prefrontal cortex. We propose a mechanistic explanation for the amygdala hyperactivity in subjects with particular risk for depression, in particular childhood maltreatment, caused by a malfunctioned amygdala downregulation via the medial prefrontal cortex. As childhood maltreatment is a major factor for depression, we emphasize the importance of this potential early biomarker.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fnsys.2020.00028DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7283497PMC
June 2020

Brain structural correlates of schizotypal signs and subclinical schizophrenia nuclear symptoms in healthy individuals.

Psychol Med 2020 Jun 24:1-10. Epub 2020 Jun 24.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Subclinical psychotic-like experiences (PLE), resembling key symptoms of psychotic disorders, are common throughout the general population and possibly associated with psychosis risk. There is evidence that such symptoms are also associated with structural brain changes.

Methods: In 672 healthy individuals, we assessed PLE and associated distress with the symptom-checklist-90R (SCL-90R) scales 'schizotypal signs' (STS) and 'schizophrenia nuclear symptoms' (SNS) and analysed associations with voxel- and surfaced-based brain structural parameters derived from structural magnetic resonance imaging at 3 T with CAT12.

Results: For SNS, we found a positive correlation with the volume in the left superior parietal lobule and the precuneus, and a negative correlation with the volume in the right inferior temporal gyrus [p < 0.05 cluster-level Family Wise Error (FWE-corrected]. For STS, we found a negative correlation with the volume of the left and right precentral gyrus (p < 0.05 cluster-level FWE-corrected). Surface-based analyses did not detect any significant clusters with the chosen statistical threshold of p < 0.05. However, in exploratory analyses (p < 0.001, uncorrected), we found a positive correlation of SNS with gyrification in the left insula and rostral middle frontal gyrus and of STS with the left precuneus and insula, as well as a negative correlation of STS with gyrification in the left temporal pole.

Conclusions: Our results show that brain structures in areas implicated in schizophrenia are also related to PLE and its associated distress in healthy individuals. This pattern supports a dimensional model of the neural correlates of symptoms of the psychotic spectrum.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291720002044DOI Listing
June 2020

Replication of a hippocampus specific effect of the tescalcin regulating variant rs7294919 on gray matter structure.

Eur Neuropsychopharmacol 2020 07 23;36:10-17. Epub 2020 May 23.

Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany. Electronic address:

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.03.021DOI Listing
July 2020
-->