Publications by authors named "Andreas J Forstner"

89 Publications

HLA-DRB1 and HLA-DQB1 genetic diversity modulates response to lithium in bipolar affective disorders.

Sci Rep 2021 Sep 8;11(1):17823. Epub 2021 Sep 8.

Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan.

Bipolar affective disorder (BD) is a severe psychiatric illness, for which lithium (Li) is the gold standard for acute and maintenance therapies. The therapeutic response to Li in BD is heterogeneous and reliable biomarkers allowing patients stratification are still needed. A GWAS performed by the International Consortium on Lithium Genetics (ConLiGen) has recently identified genetic markers associated with treatment responses to Li in the human leukocyte antigens (HLA) region. To better understand the molecular mechanisms underlying this association, we have genetically imputed the classical alleles of the HLA region in the European patients of the ConLiGen cohort. We found our best signal for amino-acid variants belonging to the HLA-DRB1*11:01 classical allele, associated with a better response to Li (p < 1 × 10; FDR < 0.09 in the recessive model). Alanine or Leucine at position 74 of the HLA-DRB1 heavy chain was associated with a good response while Arginine or Glutamic acid with a poor response. As these variants have been implicated in common inflammatory/autoimmune processes, our findings strongly suggest that HLA-mediated low inflammatory background may contribute to the efficient response to Li in BD patients, while an inflammatory status overriding Li anti-inflammatory properties would favor a weak response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-021-97140-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8426488PMC
September 2021

Interaction of developmental factors and ordinary stressful life events on brain structure in adults.

Neuroimage Clin 2021 21;30:102683. Epub 2021 Apr 21.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, Hans-Meerwein-Str. 6, 35032 Marburg, Germany; Marburg University Hospital - UKGM, Rudolf-Bultmann-Str. 8, 35039 Marburg, Germany.

An interplay of early environmental and genetic risk factors with recent stressful life events (SLEs) in adulthood increases the risk for adverse mental health outcomes. The interaction of early risk and current SLEs on brain structure has hardly been investigated. Whole brain voxel-based morphometry analysis was performed in N = 786 (64.6% female, mean age = 33.39) healthy subjects to identify correlations of brain clusters with commonplace recent SLEs. Genetic and early environmental risk factors, operationalized as those for severe psychopathology (i.e., polygenic scores for neuroticism, childhood maltreatment, urban upbringing and paternal age) were assessed as modulators of the impact of SLEs on the brain. SLEs were negatively correlated with grey matter volume in the left medial orbitofrontal cortex (mOFC, FWE p = 0.003). This association was present for both, positive and negative, life events. Cognitive-emotional variables, i.e., neuroticism, perceived stress, trait anxiety, intelligence, and current depressive symptoms did not account for the SLE-mOFC association. Further, genetic and environmental risk factors were not correlated with grey matter volume in the left mOFC cluster and did not affect the association between SLEs and left mOFC grey matter volume. The orbitofrontal cortex has been implicated in stress-related psychopathology, particularly major depression in previous studies. We find that SLEs are associated with this area. Important early life risk factors do not interact with current SLEs on brain morphology in healthy subjects.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nicl.2021.102683DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8102615PMC
July 2021

Identification of transdiagnostic psychiatric disorder subtypes using unsupervised learning.

Neuropsychopharmacology 2021 10 14;46(11):1895-1905. Epub 2021 Jun 14.

Max Planck Institute of Psychiatry, Munich, Germany.

Psychiatric disorders show heterogeneous symptoms and trajectories, with current nosology not accurately reflecting their molecular etiology and the variability and symptomatic overlap within and between diagnostic classes. This heterogeneity impedes timely and targeted treatment. Our study aimed to identify psychiatric patient clusters that share clinical and genetic features and may profit from similar therapies. We used high-dimensional data clustering on deep clinical data to identify transdiagnostic groups in a discovery sample (N = 1250) of healthy controls and patients diagnosed with depression, bipolar disorder, schizophrenia, schizoaffective disorder, and other psychiatric disorders. We observed five diagnostically mixed clusters and ordered them based on severity. The least impaired cluster 0, containing most healthy controls, showed general well-being. Clusters 1-3 differed predominantly regarding levels of maltreatment, depression, daily functioning, and parental bonding. Cluster 4 contained most patients diagnosed with psychotic disorders and exhibited the highest severity in many dimensions, including medication load. Depressed patients were present in all clusters, indicating that we captured different disease stages or subtypes. We replicated all but the smallest cluster 1 in an independent sample (N = 622). Next, we analyzed genetic differences between clusters using polygenic scores (PGS) and the psychiatric family history. These genetic variables differed mainly between clusters 0 and 4 (prediction area under the receiver operating characteristic curve (AUC) = 81%; significant PGS: cross-disorder psychiatric risk, schizophrenia, and educational attainment). Our results confirm that psychiatric disorders consist of heterogeneous subtypes sharing molecular factors and symptoms. The identification of transdiagnostic clusters advances our understanding of the heterogeneity of psychiatric disorders and may support the development of personalized treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-021-01051-0DOI Listing
October 2021

Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders.

Biol Psychiatry 2021 Mar 23. Epub 2021 Mar 23.

Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois.

Background: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk.

Methods: We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH.

Results: Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10; rs73033497, p = 8.8 × 10; rs7914279, p = 6.4 × 10), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05).

Conclusions: In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2021.02.972DOI Listing
March 2021

Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology.

Nat Genet 2021 06 17;53(6):817-829. Epub 2021 May 17.

Department of Neuroscience, Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Bipolar disorder is a heritable mental illness with complex etiology. We performed a genome-wide association study of 41,917 bipolar disorder cases and 371,549 controls of European ancestry, which identified 64 associated genomic loci. Bipolar disorder risk alleles were enriched in genes in synaptic signaling pathways and brain-expressed genes, particularly those with high specificity of expression in neurons of the prefrontal cortex and hippocampus. Significant signal enrichment was found in genes encoding targets of antipsychotics, calcium channel blockers, antiepileptics and anesthetics. Integrating expression quantitative trait locus data implicated 15 genes robustly linked to bipolar disorder via gene expression, encoding druggable targets such as HTR6, MCHR1, DCLK3 and FURIN. Analyses of bipolar disorder subtypes indicated high but imperfect genetic correlation between bipolar disorder type I and II and identified additional associated loci. Together, these results advance our understanding of the biological etiology of bipolar disorder, identify novel therapeutic leads and prioritize genes for functional follow-up studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00857-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8192451PMC
June 2021

Dendritic Cells: Neglected Modulators of Peripheral Immune Responses and Neuroinflammation in Mood Disorders?

Cells 2021 04 19;10(4). Epub 2021 Apr 19.

Department of Mental Health, University of Münster, 48149 Münster, Germany.

Affective disorders (AD) including major depressive disorder (MDD) and bipolar disorder (BD) are common mood disorders associated with increased disability and poor health outcomes. Altered immune responses characterized by increased serum levels of pro-inflammatory cytokines and neuroinflammation are common findings in patients with AD and in corresponding animal models. Dendritic cells (DCs) represent a heterogeneous population of myeloid cells that orchestrate innate and adaptive immune responses and self-tolerance. Upon sensing exogenous and endogenous danger signals, mature DCs secrete proinflammatory factors, acquire migratory and antigen presenting capacities and thus contribute to neuroinflammation in trauma, autoimmunity, and neurodegenerative diseases. However, little is known about the involvement of DCs in the pathogenesis of AD. In this review, we summarize the current knowledge on DCs in peripheral immune responses and neuroinflammation in MDD and BD. In addition, we consider the impact of DCs on neuroinflammation and behavior in animal models of AD. Finally, we will discuss therapeutic perspectives targeting DCs and their effector molecules in mood disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/cells10040941DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8072712PMC
April 2021

Effects of polygenic risk for major mental disorders and cross-disorder on cortical complexity.

Psychol Med 2021 Apr 8:1-12. Epub 2021 Apr 8.

Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: MRI-derived cortical folding measures are an indicator of largely genetically driven early developmental processes. However, the effects of genetic risk for major mental disorders on early brain development are not well understood.

Methods: We extracted cortical complexity values from structural MRI data of 580 healthy participants using the CAT12 toolbox. Polygenic risk scores (PRS) for schizophrenia, bipolar disorder, major depression, and cross-disorder (incorporating cumulative genetic risk for depression, schizophrenia, bipolar disorder, autism spectrum disorder, and attention-deficit hyperactivity disorder) were computed and used in separate general linear models with cortical complexity as the regressand. In brain regions that showed a significant association between polygenic risk for mental disorders and cortical complexity, volume of interest (VOI)/region of interest (ROI) analyses were conducted to investigate additional changes in their volume and cortical thickness.

Results: The PRS for depression was associated with cortical complexity in the right orbitofrontal cortex (right hemisphere: p = 0.006). A subsequent VOI/ROI analysis showed no association between polygenic risk for depression and either grey matter volume or cortical thickness. We found no associations between cortical complexity and polygenic risk for either schizophrenia, bipolar disorder or psychiatric cross-disorder when correcting for multiple testing.

Conclusions: Changes in cortical complexity associated with polygenic risk for depression might facilitate well-established volume changes in orbitofrontal cortices in depression. Despite the absence of psychopathology, changed cortical complexity that parallels polygenic risk for depression might also change reward systems, which are also structurally affected in patients with depressive syndrome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291721001082DOI Listing
April 2021

Apolipoprotein E homozygous ε4 allele status: Effects on cortical structure and white matter integrity in a young to mid-age sample.

Eur Neuropsychopharmacol 2021 May 27;46:93-104. Epub 2021 Feb 27.

Department of Psychiatry, University of Münster, Münster, Germany. Electronic address:

Apolipoprotein E (APOE) genotype is the strongest single gene predictor of Alzheimer's disease (AD) and has been frequently associated with AD-related brain structural alterations before the onset of dementia. While previous research has primarily focused on hippocampal morphometry in relation to APOE, sporadic recent findings have questioned the specificity of the hippocampus and instead suggested more global effects on the brain. With the present study we aimed to investigate associations between homozygous APOE ε4 status and cortical gray matter structure as well as white matter microstructure. In our study, we contrasted n = 31 homozygous APOE ε4 carriers (age=34.47 years, including a subsample of n = 12 subjects with depression) with a demographically matched sample without an ε4 allele (resulting total sample: N = 62). Morphometry analyses included a) Freesurfer based cortical segmentations of thickness and surface area measures and b) tract based spatial statistics of DTI measures. We found pronounced and widespread reductions in cortical surface area of ε4 homozygotes in 57 out of 68 cortical brain regions. In contrast, no differences in cortical thickness were observed. Furthermore, APOE ε4 homozygous carriers showed significantly lower fractional anisotropy in the corpus callosum, the right internal and external capsule, the left corona radiata and the right fornix. The present findings support a global rather than regionally specific effect of homozygous APOE ε4 allele status on cortical surface area and white matter microstructure. Future studies should aim to delineate the clinical implications of these findings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2021.02.006DOI Listing
May 2021

Significance of anger suppression and preoccupied attachment in social anxiety disorder: a cross-sectional study.

BMC Psychiatry 2021 02 22;21(1):116. Epub 2021 Feb 22.

Department of Psychosomatic Medicine and Psychotherapy, University Hospital Bonn, Venusberg Campus 1, 53127, Bonn, Germany.

Background: There is evidence for the relevance of attachment style and anger expression for the manifestation of social anxiety disorder (SAD).

Method: In a cross-sectional study 321 individuals with social anxiety disorder (41% men, age 38.8 ± 13.9) were compared with 94 healthy controls (37% men, age 35.8 ± 15.1) on several questionnaires (Attachment Styles Questionnaire, State Trait Anger Inventory, Social Phobia Inventory, Beck Depression Inventory).

Results: Individuals with SAD showed moderate-sized reduced levels of secure and large-sized increased levels of fearful and preoccupied attachment style compared to healthy controls (all p < 0.001) as well as small-sized increased levels of trait anger (p = 0.03) and moderate-sized increased levels of anger-in (p < 0.001). Attachment style and anger regulation could predict 21% (R = 0.21, p < 0.001) of the extent of social anxiety (SPIN) in SAD; secure (β = - 0.196, p < 0.01) and preoccupied attachment style (β = 0.117, p < 0.05), as well as anger-in (β = 0.199, p < 0.01) were significant cross-sectional predictors. Further analysis revealed that the relationship between preoccupied attachment and social anxiety is partially mediated by anger-in.

Conclusion: Study findings confirm the relevance of preoccupied attachment style and anger suppression for social anxiety. Disentangling the role of anger regulation in early attachment patterns has significant therapeutic implications in SAD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s12888-021-03098-1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7898747PMC
February 2021

"The Heidelberg Five" personality dimensions: Genome-wide associations, polygenic risk for neuroticism, and psychopathology 20 years after assessment.

Am J Med Genet B Neuropsychiatr Genet 2021 03 15;186(2):77-89. Epub 2021 Feb 15.

Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.

HeiDE is a longitudinal population-based study that started in the 1990s and, at baseline, assessed an array of health-related personality questionnaires in 5133 individuals. Five latent personality dimensions (The Heidelberg Five) were identified and interpreted as Emotional Lability (ELAB), Lack of Behavioral Control (LBCN), Type A Behavior (TYAB), Locus of Control over Disease (LOCC), and Psychoticism (PSYC). At follow-up, 3268 HeiDE participants (post-QC) were genotyped on single nucleotide polymorphism (SNP) arrays. To further characterize The Heidelberg Five, we analyzed genomic underpinnings, their relations to the genetic basis of the Big Five trait Neuroticism, and longitudinal associations with psychiatric symptoms at follow-up. SNP-based heritability was significant for ELAB (34%) and LBCN (29%). A genome-wide association study for each personality dimension was conducted; only the phenotype PSYC yielded a genome-wide significant finding (p < 5 × 10 , top SNP rs138223660). Gene-based analyses identified significant findings for ELAB, TYAB, and PSYC. Polygenic risk scores for Neuroticism were only associated with ELAB. Each of The Heidelberg Five was related to depressive symptoms at follow-up. ELAB, LBCN, and PSYC were also associated with lifetime anxiety symptoms. These results highlight the clinical importance of health-related personality traits and identify LBCN as a heritable "executive function" personality trait.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.b.32837DOI Listing
March 2021

Prediction of lithium response using genomic data.

Sci Rep 2021 01 13;11(1):1155. Epub 2021 Jan 13.

Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.

Predicting lithium response prior to treatment could both expedite therapy and avoid exposure to side effects. Since lithium responsiveness may be heritable, its predictability based on genomic data is of interest. We thus evaluate the degree to which lithium response can be predicted with a machine learning (ML) approach using genomic data. Using the largest existing genomic dataset in the lithium response literature (n = 2210 across 14 international sites; 29% responders), we evaluated the degree to which lithium response could be predicted based on 47,465 genotyped single nucleotide polymorphisms using a supervised ML approach. Under appropriate cross-validation procedures, lithium response could be predicted to above-chance levels in two constituent sites (Halifax, Cohen's kappa 0.15, 95% confidence interval, CI [0.07, 0.24]; and Würzburg, kappa 0.2 [0.1, 0.3]). Variants with shared importance in these models showed over-representation of postsynaptic membrane related genes. Lithium response was not predictable in the pooled dataset (kappa 0.02 [- 0.01, 0.04]), although non-trivial performance was achieved within a restricted dataset including only those patients followed prospectively (kappa 0.09 [0.04, 0.14]). Genomic classification of lithium response remains a promising but difficult task. Classification performance could potentially be improved by further harmonization of data collection procedures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-020-80814-zDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806976PMC
January 2021

Exemplar scoring identifies genetically separable phenotypes of lithium responsive bipolar disorder.

Transl Psychiatry 2021 01 11;11(1):36. Epub 2021 Jan 11.

Department of Psychiatry, Charles University, Prague, Czech Republic.

Predicting lithium response (LiR) in bipolar disorder (BD) may inform treatment planning, but phenotypic heterogeneity complicates discovery of genomic markers. We hypothesized that patients with "exemplary phenotypes"-those whose clinical features are reliably associated with LiR and non-response (LiNR)-are more genetically separable than those with less exemplary phenotypes. Using clinical data collected from people with BD (n = 1266 across 7 centers; 34.7% responders), we computed a "clinical exemplar score," which measures the degree to which a subject's clinical phenotype is reliably predictive of LiR/LiNR. For patients whose genotypes were available (n = 321), we evaluated whether a subgroup of responders/non-responders with the top 25% of clinical exemplar scores (the "best clinical exemplars") were more accurately classified based on genetic data, compared to a subgroup with the lowest 25% of clinical exemplar scores (the "poor clinical exemplars"). On average, the best clinical exemplars of LiR had a later illness onset, completely episodic clinical course, absence of rapid cycling and psychosis, and few psychiatric comorbidities. The best clinical exemplars of LiR and LiNR were genetically separable with an area under the receiver operating characteristic curve of 0.88 (IQR [0.83, 0.98]), compared to 0.66 [0.61, 0.80] (p = 0.0032) among poor clinical exemplars. Variants in the Alzheimer's amyloid-secretase pathway, along with G-protein-coupled receptor, muscarinic acetylcholine, and histamine H1R signaling pathways were informative predictors. This study must be replicated on larger samples and extended to predict response to other mood stabilizers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-01148-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801503PMC
January 2021

Clinical and genetic differences between bipolar disorder type 1 and 2 in multiplex families.

Transl Psychiatry 2021 01 11;11(1):31. Epub 2021 Jan 11.

Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.

The two major subtypes of bipolar disorder (BD), BD-I and BD-II, are distinguished based on the presence of manic or hypomanic episodes. Historically, BD-II was perceived as a less severe form of BD-I. Recent research has challenged this concept of a severity continuum. Studies in large samples of unrelated patients have described clinical and genetic differences between the subtypes. Besides an increased schizophrenia polygenic risk load in BD-I, these studies also observed an increased depression risk load in BD-II patients. The present study assessed whether such clinical and genetic differences are also found in BD patients from multiplex families, which exhibit reduced genetic and environmental heterogeneity. Comparing 252 BD-I and 75 BD-II patients from the Andalusian Bipolar Family (ABiF) study, the clinical course, symptoms during depressive and manic episodes, and psychiatric comorbidities were analyzed. Furthermore, polygenic risk scores (PRS) for BD, schizophrenia, and depression were assessed. BD-I patients not only suffered from more severe symptoms during manic episodes but also more frequently showed incapacity during depressive episodes. A higher BD PRS was significantly associated with suicidal ideation. Moreover, BD-I cases exhibited lower depression PRS. In line with a severity continuum from BD-II to BD-I, our results link BD-I to a more pronounced clinical presentation in both mania and depression and indicate that the polygenic risk load of BD predisposes to more severe disorder characteristics. Nevertheless, our results suggest that the genetic risk burden for depression also shapes disorder presentation and increases the likelihood of BD-II subtype development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-01146-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801527PMC
January 2021

[Interactive Health Literacy, Sociodemographic Characteristics and the Uptake of Psychotherapeutic or Pharmacological Interventions - are there Social Inequalities in the Treatment of Social Anxiety Disorder?]

Psychiatr Prax 2021 May 24;48(4):201-207. Epub 2020 Nov 24.

Klinik und Poliklinik für Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Bonn.

Aim: The aim is to investigate the association between sociodemographic characteristics and the interactive health literacy and the time to treatment of social anxiety disorder.

Methods: An online survey of N = 311 patients was carried out (response rate 54.1 %). Descriptive statistical analysis and a logistic regression analysis were carried out.

Results: The respondents are on average 46 years old (20-81), 59 % are women. Older age (OR 2,579), not living in partnership (OR 1,963), fear of personal contact (OR 5,716) and low (OR 3,585) or moderate (OR 3,144) interactive health literacy were significantly associated with the time to treatment.

Conclusion: The data suggest that social inequalities exist regarding the use of psychotherapeutic or pharmacological interventions in people with social anxiety disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1055/a-1294-0950DOI Listing
May 2021

Childhood maltreatment and cognitive functioning: the role of depression, parental education, and polygenic predisposition.

Neuropsychopharmacology 2021 04 14;46(5):891-899. Epub 2020 Aug 14.

Department of Psychiatry, University of Münster, Münster, Germany.

Childhood maltreatment is associated with cognitive deficits that in turn have been predictive for therapeutic outcome in psychiatric patients. However, previous studies have either investigated maltreatment associations with single cognitive domains or failed to adequately control for confounders such as depression, socioeconomic environment, and genetic predisposition. We aimed to isolate the relationship between childhood maltreatment and dysfunction in diverse cognitive domains, while estimating the contribution of potential confounders to this relationship, and to investigate gene-environment interactions. We included 547 depressive disorder and 670 healthy control participants (mean age: 34.7 years, SD = 13.2). Cognitive functioning was assessed for the domains of working memory, executive functioning, processing speed, attention, memory, and verbal intelligence using neuropsychological tests. Childhood maltreatment and parental education were assessed using self-reports, and psychiatric diagnosis was based on DSM-IV criteria. Polygenic scores for depression and for educational attainment were calculated. Multivariate analysis of cognitive domains yielded significant associations with childhood maltreatment (η² = 0.083, P < 0.001), depression (η² = 0.097, P < 0.001), parental education (η² = 0.085, P < 0.001), and polygenic scores for depression (η² = 0.021, P = 0.005) and educational attainment (η² = 0.031, P < 0.001). Each of these associations remained significant when including all of the predictors in one model. Univariate tests revealed that maltreatment was associated with poorer performance in all cognitive domains. Thus, environmental, psychopathological, and genetic risk factors each independently affect cognition. The insights of the current study may aid in estimating the potential impact of different loci of interventions for cognitive dysfunction. Future research should investigate if customized interventions, informed by individual risk profiles and related cognitive preconditions, might enhance response to therapeutic treatments.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41386-020-00794-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8115656PMC
April 2021

Polygenic risk for schizophrenia and schizotypal traits in non-clinical subjects.

Psychol Med 2020 Aug 6:1-11. Epub 2020 Aug 6.

Department of Psychiatry and Psychotherapy, Philipps-University and University Hospital Marburg, UKGM, Rudolf-Bultmann-Str. 8, 35039Marburg, Germany.

Background: Schizotypy is a putative risk phenotype for psychosis liability, but the overlap of its genetic architecture with schizophrenia is poorly understood.

Methods: We tested the hypothesis that dimensions of schizotypy (assessed with the SPQ-B) are associated with a polygenic risk score (PRS) for schizophrenia in a sample of 623 psychiatrically healthy, non-clinical subjects from the FOR2107 multi-centre study and a second sample of 1133 blood donors.

Results: We did not find correlations of schizophrenia PRS with either overall SPQ or specific dimension scores, nor with adjusted schizotypy scores derived from the SPQ (addressing inter-scale variance). Also, PRS for affective disorders (bipolar disorder and major depression) were not significantly associated with schizotypy.

Conclusions: This important negative finding demonstrates that despite the hypothesised continuum of schizotypy and schizophrenia, schizotypy might share less genetic risk with schizophrenia than previously assumed (and possibly less compared to psychotic-like experiences).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0033291720002822DOI Listing
August 2020

Advanced paternal age as a risk factor for neurodevelopmental disorders: a translational study.

Mol Autism 2020 06 23;11(1):54. Epub 2020 Jun 23.

Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039, Marburg, Germany.

Advanced paternal age (APA) is a risk factor for several neurodevelopmental disorders, including autism and schizophrenia. The potential mechanisms conferring this risk are poorly understood. Here, we show that the personality traits schizotypy and neuroticism correlated with paternal age in healthy subjects (N = 677). Paternal age was further positively associated with gray matter volume (VBM, N = 342) in the right prefrontal and the right medial temporal cortex. The integrity of fiber tracts (DTI, N = 222) connecting these two areas correlated positively with paternal age. Genome-wide methylation analysis in humans showed differential methylation in APA individuals, linking APA to epigenetic mechanisms. A corresponding phenotype was obtained in our rat model. APA rats displayed social-communication deficits and emitted fewer pro-social ultrasonic vocalizations compared to controls. They further showed repetitive and stereotyped patterns of behavior, together with higher anxiety during early development. At the neurobiological level, microRNAs miR-132 and miR-134 were both differentially regulated in rats and humans depending on APA. This study demonstrates associations between APA and social behaviors across species. They might be driven by changes in the expression of microRNAs and/or epigenetic changes regulating neuronal plasticity, leading to brain morphological changes and fronto-hippocampal connectivity, a network which has been implicated in social interaction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13229-020-00345-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7310295PMC
June 2020

Replication of a hippocampus specific effect of the tescalcin regulating variant rs7294919 on gray matter structure.

Eur Neuropsychopharmacol 2020 07 23;36:10-17. Epub 2020 May 23.

Department of Psychiatry, University of Münster, Albert-Schweitzer-Campus 1, Building A9, 48149 Münster, Germany. Electronic address:

While the hippocampus remains a region of high interest for neuropsychiatric research, the precise contributors to hippocampal morphometry are still not well understood. We and others previously reported a hippocampus specific effect of a tescalcin gene (TESC) regulating single nucleotide polymorphism (rs7294919) on gray matter volume. Here we aimed to replicate and extend these findings. Two complementary morphometric approaches (voxel based morphometry (VBM) and automated volumetric segmentation) were applied in a well-powered cohort from the Marburg-Münster Affective Disorder Cohort Study (MACS) including N=1137 participants (n=636 healthy controls, n=501 depressed patients). rs7294919 homozygous T-allele genotype was significantly associated with lower hippocampal gray matter density as well as with reduced hippocampal volume. Exploratory whole brain VBM analyses revealed no further associations with gray matter volume outside the hippocampus. No interaction effects of rs7294919 with depression nor with childhood trauma on hippocampal morphometry could be detected. Hippocampal subfield analyses revealed similar effects of rs7294919 in all hippocampal subfields. In sum, our results replicate a hippocampus specific effect of rs7294919 on brain structure. Due to the robust evidence for a pronounced association between the reported polymorphism and hippocampal morphometry, future research should consider investigating the potential clinical and functional relevance of the reported association.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.euroneuro.2020.03.021DOI Listing
July 2020

Minimal phenotyping yields genome-wide association signals of low specificity for major depression.

Nat Genet 2020 04 30;52(4):437-447. Epub 2020 Mar 30.

Department of Psychiatry, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, USA.

Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for disease case identification, increasingly used in genome-wide association studies (GWAS). Here we report differences in genetic architecture between depression defined by minimal phenotyping and strictly defined major depressive disorder (MDD): the former has a lower genotype-derived heritability that cannot be explained by inclusion of milder cases and a higher proportion of the genome contributing to this shared genetic liability with other conditions than for strictly defined MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not specific to MDD, and, although it generates highly predictive polygenic risk scores, the predictive power can be explained entirely by large sample sizes rather than by specificity for MDD. Our results show that reliance on results from minimal phenotyping may bias views of the genetic architecture of MDD and impede the ability to identify pathways specific to MDD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-0594-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906795PMC
April 2020

Association of polygenic score for major depression with response to lithium in patients with bipolar disorder.

Mol Psychiatry 2021 Jun 16;26(6):2457-2470. Epub 2020 Mar 16.

Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.

Lithium is a first-line medication for bipolar disorder (BD), but only one in three patients respond optimally to the drug. Since evidence shows a strong clinical and genetic overlap between depression and bipolar disorder, we investigated whether a polygenic susceptibility to major depression is associated with response to lithium treatment in patients with BD. Weighted polygenic scores (PGSs) were computed for major depression (MD) at different GWAS p value thresholds using genetic data obtained from 2586 bipolar patients who received lithium treatment and took part in the Consortium on Lithium Genetics (ConLiGen) study. Summary statistics from genome-wide association studies in MD (135,458 cases and 344,901 controls) from the Psychiatric Genomics Consortium (PGC) were used for PGS weighting. Response to lithium treatment was defined by continuous scores and categorical outcome (responders versus non-responders) using measurements on the Alda scale. Associations between PGSs of MD and lithium treatment response were assessed using a linear and binary logistic regression modeling for the continuous and categorical outcomes, respectively. The analysis was performed for the entire cohort, and for European and Asian sub-samples. The PGSs for MD were significantly associated with lithium treatment response in multi-ethnic, European or Asian populations, at various p value thresholds. Bipolar patients with a low polygenic load for MD were more likely to respond well to lithium, compared to those patients with high polygenic load [lowest vs highest PGS quartiles, multi-ethnic sample: OR = 1.54 (95% CI: 1.18-2.01) and European sample: OR = 1.75 (95% CI: 1.30-2.36)]. While our analysis in the Asian sample found equivalent effect size in the same direction: OR = 1.71 (95% CI: 0.61-4.90), this was not statistically significant. Using PGS decile comparison, we found a similar trend of association between a high genetic loading for MD and lower response to lithium. Our findings underscore the genetic contribution to lithium response in BD and support the emerging concept of a lithium-responsive biotype in BD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0689-5DOI Listing
June 2021

The genetic architecture of the human cerebral cortex.

Science 2020 03;367(6484)

The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aay6690DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7295264PMC
March 2020

Whole-exome sequencing of 81 individuals from 27 multiply affected bipolar disorder families.

Transl Psychiatry 2020 02 4;10(1):57. Epub 2020 Feb 4.

Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt am Main, Frankfurt am Main, Germany.

Bipolar disorder (BD) is a highly heritable neuropsychiatric disease characterized by recurrent episodes of depression and mania. Research suggests that the cumulative impact of common alleles explains 25-38% of phenotypic variance, and that rare variants may contribute to BD susceptibility. To identify rare, high-penetrance susceptibility variants for BD, whole-exome sequencing (WES) was performed in three affected individuals from each of 27 multiply affected families from Spain and Germany. WES identified 378 rare, non-synonymous, and potentially functional variants. These spanned 368 genes, and were carried by all three affected members in at least one family. Eight of the 368 genes harbored rare variants that were implicated in at least two independent families. In an extended segregation analysis involving additional family members, five of these eight genes harbored variants showing full or nearly full cosegregation with BD. These included the brain-expressed genes RGS12 and NCKAP5, which were considered the most promising BD candidates on the basis of independent evidence. Gene enrichment analysis for all 368 genes revealed significant enrichment for four pathways, including genes reported in de novo studies of autism (p < 0.006) and schizophrenia (p = 0.015). These results suggest a possible genetic overlap with BD for autism and schizophrenia at the rare-sequence-variant level. The present study implicates novel candidate genes for BD development, and may contribute to an improved understanding of the biological basis of this common and often devastating disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-020-0732-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7026119PMC
February 2020

Shared genetic risk between eating disorder- and substance-use-related phenotypes: Evidence from genome-wide association studies.

Addict Biol 2021 01 16;26(1):e12880. Epub 2020 Feb 16.

Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH Aachen University, Aachen, Germany.

Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa and problem alcohol use (genetic correlation [r ], twin-based = 0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge eating, AN without binge eating, and a bulimia nervosa factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder and schizophrenia. Total study sample sizes per phenotype ranged from ~2400 to ~537 000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder- and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (r = 0.18; false discovery rate q = 0.0006), cannabis initiation and AN (r = 0.23; q < 0.0001), and cannabis initiation and AN with binge eating (r = 0.27; q = 0.0016). Conversely, significant negative genetic correlations were observed between three nondiagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge eating (r = -0.19 to -0.23; qs < 0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for major depressive disorder loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships among these behaviors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/adb.12880DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429266PMC
January 2021

An Investigation of Psychosis Subgroups With Prognostic Validation and Exploration of Genetic Underpinnings: The PsyCourse Study.

JAMA Psychiatry 2020 05;77(5):523-533

Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany.

Importance: Identifying psychosis subgroups could improve clinical and research precision. Research has focused on symptom subgroups, but there is a need to consider a broader clinical spectrum, disentangle illness trajectories, and investigate genetic associations.

Objective: To detect psychosis subgroups using data-driven methods and examine their illness courses over 1.5 years and polygenic scores for schizophrenia, bipolar disorder, major depression disorder, and educational achievement.

Design, Setting, And Participants: This ongoing multisite, naturalistic, longitudinal (6-month intervals) cohort study began in January 2012 across 18 sites. Data from a referred sample of 1223 individuals (765 in the discovery sample and 458 in the validation sample) with DSM-IV diagnoses of schizophrenia, bipolar affective disorder (I/II), schizoaffective disorder, schizophreniform disorder, and brief psychotic disorder were collected from secondary and tertiary care sites. Discovery data were extracted in September 2016 and analyzed from November 2016 to January 2018, and prospective validation data were extracted in October 2018 and analyzed from January to May 2019.

Main Outcomes And Measures: A clinical battery of 188 variables measuring demographic characteristics, clinical history, symptoms, functioning, and cognition was decomposed using nonnegative matrix factorization clustering. Subtype-specific illness courses were compared with mixed models and polygenic scores with analysis of covariance. Supervised learning was used to replicate results in validation data with the most reliably discriminative 45 variables.

Results: Of the 765 individuals in the discovery sample, 341 (44.6%) were women, and the mean (SD) age was 42.7 (12.9) years. Five subgroups were found and labeled as affective psychosis (n = 252), suicidal psychosis (n = 44), depressive psychosis (n = 131), high-functioning psychosis (n = 252), and severe psychosis (n = 86). Illness courses with significant quadratic interaction terms were found for psychosis symptoms (R2 = 0.41; 95% CI, 0.38-0.44), depression symptoms (R2 = 0.28; 95% CI, 0.25-0.32), global functioning (R2 = 0.16; 95% CI, 0.14-0.20), and quality of life (R2 = 0.20; 95% CI, 0.17-0.23). The depressive and severe psychosis subgroups exhibited the lowest functioning and quadratic illness courses with partial recovery followed by reoccurrence of severe illness. Differences were found for educational attainment polygenic scores (mean [SD] partial η2 = 0.014 [0.003]) but not for diagnostic polygenic risk. Results were largely replicated in the validation cohort.

Conclusions And Relevance: Psychosis subgroups were detected with distinctive clinical signatures and illness courses and specificity for a nondiagnostic genetic marker. New data-driven clinical approaches are important for future psychosis taxonomies. The findings suggest a need to consider short-term to medium-term service provision to restore functioning in patients stratified into the depressive and severe psychosis subgroups.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamapsychiatry.2019.4910DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7042925PMC
May 2020

The role of environmental stress and DNA methylation in the longitudinal course of bipolar disorder.

Int J Bipolar Disord 2020 Feb 12;8(1). Epub 2020 Feb 12.

Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 68159, Mannheim, Germany.

Background: Stressful life events influence the course of affective disorders, however, the mechanisms by which they bring about phenotypic change are not entirely known.

Methods: We explored the role of DNA methylation in response to recent stressful life events in a cohort of bipolar patients from the longitudinal PsyCourse study (n = 96). Peripheral blood DNA methylomes were profiled at two time points for over 850,000 methylation sites. The association between impact ratings of stressful life events and DNA methylation was assessed, first by interrogating methylation sites in the vicinity of candidate genes previously implicated in the stress response and, second, by conducting an exploratory epigenome-wide association analysis. Third, the association between epigenetic aging and change in stress and symptom measures over time was investigated.

Results: Investigation of methylation signatures over time revealed just over half of the CpG sites tested had an absolute difference in methylation of at least 1% over a 1-year period. Although not a single CpG site withstood correction for multiple testing, methylation at one site (cg15212455) was suggestively associated with stressful life events (p < 1.0 × 10). Epigenetic aging over a 1-year period was not associated with changes in stress or symptom measures.

Conclusions: To the best of our knowledge, our study is the first to investigate epigenome-wide methylation across time in bipolar patients and in relation to recent, non-traumatic stressful life events. Limited and inconclusive evidence warrants future longitudinal investigations in larger samples of well-characterized bipolar patients to give a complete picture regarding the role of DNA methylation in the course of bipolar disorder.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s40345-019-0176-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7013010PMC
February 2020

Predictive power of the ADHD GWAS 2019 polygenic risk scores in independent samples of bipolar patients with childhood ADHD.

J Affect Disord 2020 03 23;265:651-659. Epub 2019 Nov 23.

Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom. Electronic address:

Background: Although there is evidence of genetic correlation between bipolar disorder (BP) and ADHD, the extent of the shared genetic risk and whether childhood ADHD (cADHD) influences the characteristics of the adult BP remain unclear. Our objectives were: (i) to test the ability of polygenic risk scores (PRS) derived from the latest PGC ADHD-GWAS (Demontis et al., 2019) to predict the presence of cADHD in BP patients; (ii) to examine the hypothesis that BP preceded by cADHD is a BP subtype with particular clinical traits and (iii) partially shares its molecular basis with ADHD.

Method: PRS derived from the ADHD-GWAS-2019 were tested in BP patients (N = 942) assessed for cADHD with the Wender Utah Rating Scale and in controls from Romania and UK (N = 1616).

Results: The ADHD-PRS differentiated BP cases with cADHD from controls. Proband sex and BP age-of-onset significantly influenced the discriminative power of the ADHD-PRS. The ADHD-PRS predicted the cADHD score only in males and in BP cases with early age-of-onset (≤21 years). Bipolar patients with cADHD had a younger age-of-onset of mania/depression than patients without cADHD. The ADHD-PRS predicted the BP-affection status in the comparison of early-onset BP cases with controls suggesting a partial molecular overlap between early-onset BP and ADHD.

Limitations: Retrospective diagnosis of cADHD, small sample size.

Conclusions: The PRS-analysis indicated an acceptable predictive ability of the ADHD-SNP-set 2019 in independent BP samples. The best prediction of both cADHD and BP-affection status was found in the early-onset BP cases. The results may have impact on the individual disease monitoring.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jad.2019.11.109DOI Listing
March 2020

Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders.

Mol Psychiatry 2021 04 11;26(4):1286-1298. Epub 2019 Nov 11.

Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany.

Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0558-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7985020PMC
April 2021

Genome-wide association study of panic disorder reveals genetic overlap with neuroticism and depression.

Mol Psychiatry 2019 Nov 11. Epub 2019 Nov 11.

Department of Psychology, Humboldt-University Berlin, Berlin, Germany.

Panic disorder (PD) has a lifetime prevalence of 2-4% and heritability estimates of 40%. The contributory genetic variants remain largely unknown, with few and inconsistent loci having been reported. The present report describes the largest genome-wide association study (GWAS) of PD to date comprising genome-wide genotype data of 2248 clinically well-characterized PD patients and 7992 ethnically matched controls. The samples originated from four European countries (Denmark, Estonia, Germany, and Sweden). Standard GWAS quality control procedures were conducted on each individual dataset, and imputation was performed using the 1000 Genomes Project reference panel. A meta-analysis was then performed using the Ricopili pipeline. No genome-wide significant locus was identified. Leave-one-out analyses generated highly significant polygenic risk scores (PRS) (explained variance of up to 2.6%). Linkage disequilibrium (LD) score regression analysis of the GWAS data showed that the estimated heritability for PD was 28.0-34.2%. After correction for multiple testing, a significant genetic correlation was found between PD and major depressive disorder, depressive symptoms, and neuroticism. A total of 255 single-nucleotide polymorphisms (SNPs) with p < 1 × 10 were followed up in an independent sample of 2408 PD patients and 228,470 controls from Denmark, Iceland and the Netherlands. In the combined analysis, SNP rs144783209 showed the strongest association with PD (pcomb = 3.10  × 10). Sign tests revealed a significant enrichment of SNPs with a discovery p-value of <0.0001 in the combined follow up cohort (p = 0.048). The present integrative analysis represents a major step towards the elucidation of the genetic susceptibility to PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-019-0590-2DOI Listing
November 2019

Classical Human Leukocyte Antigen Alleles and C4 Haplotypes Are Not Significantly Associated With Depression.

Biol Psychiatry 2020 03 5;87(5):419-430. Epub 2019 Aug 5.

Max Planck Institute of Psychiatry, Munich, Germany.

Background: The prevalence of depression is higher in individuals with autoimmune diseases, but the mechanisms underlying the observed comorbidities are unknown. Shared genetic etiology is a plausible explanation for the overlap, and in this study we tested whether genetic variation in the major histocompatibility complex (MHC), which is associated with risk for autoimmune diseases, is also associated with risk for depression.

Methods: We fine-mapped the classical MHC (chr6: 29.6-33.1 Mb), imputing 216 human leukocyte antigen (HLA) alleles and 4 complement component 4 (C4) haplotypes in studies from the Psychiatric Genomics Consortium Major Depressive Disorder Working Group and the UK Biobank. The total sample size was 45,149 depression cases and 86,698 controls. We tested for association between depression status and imputed MHC variants, applying both a region-wide significance threshold (3.9 × 10) and a candidate threshold (1.6 × 10).

Results: No HLA alleles or C4 haplotypes were associated with depression at the region-wide threshold. HLA-B*08:01 was associated with modest protection for depression at the candidate threshold for testing in HLA genes in the meta-analysis (odds ratio = 0.98, 95% confidence interval = 0.97-0.99).

Conclusions: We found no evidence that an increased risk for depression was conferred by HLA alleles, which play a major role in the genetic susceptibility to autoimmune diseases, or C4 haplotypes, which are strongly associated with schizophrenia. These results suggest that any HLA or C4 variants associated with depression either are rare or have very modest effect sizes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopsych.2019.06.031DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7001040PMC
March 2020

The genetic relationship between educational attainment and cognitive performance in major psychiatric disorders.

Transl Psychiatry 2019 08 28;9(1):210. Epub 2019 Aug 28.

Asklepios Specialized Hospital, Göttingen, 37081, Germany.

Cognitive deficits are a core feature of psychiatric disorders like schizophrenia and bipolar disorder. Evidence supports a genome-wide polygenic score (GPS) for educational attainment (GPS) can be used to explain variability in cognitive performance. We aimed to identify different cognitive domains associated with GPS in a transdiagnostic clinical cohort of chronic psychiatric patients with known cognitive deficits. Bipolar and schizophrenia patients from the PsyCourse cohort (N = 730; 43% female) were used. Likewise, we tested whether GPSs for schizophrenia (GPS) and bipolar disorder (GPS) were associated with cognitive outcomes. GPS explained 1.5% of variance in the backward verbal digit span, 1.9% in the number of correctly recalled words of the Verbal Learning and Memory Test, and 1.1% in crystallized intelligence. These effects were robust to the influences of treatment and diagnosis. No significant associations between GPS or GPS with cognitive outcomes were found. Furthermore, these risk scores did not confound the effect of GPS on cognitive outcomes. GPS explains a small fraction of cognitive performance in adults with psychiatric disorders, specifically for domains related to linguistic learning and working memory. Investigating such a proxy-phenotype longitudinally, could give intriguing insight into the disease course, highlighting at what time genes play a more influential role on cognitive performance. Better understanding the origin of these deficits might help identify those patients at risk for lower levels of functioning and poor social outcomes. Polygenic estimates may in the future be part of predictive models for more personalized interventions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-019-0547-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6713703PMC
August 2019
-->