Publications by authors named "Andrea S Ogston"

3 Publications

  • Page 1 of 1

Amazon Sediment Transport and Accumulation Along the Continuum of Mixed Fluvial and Marine Processes.

Ann Rev Mar Sci 2021 01 7;13:501-536. Epub 2020 Jul 7.

School of Oceanography, University of Washington, Seattle, Washington 98195, USA; email:

Sediment transfer from land to ocean begins in coastal settings and, for large rivers such as the Amazon, has dramatic impacts over thousands of kilometers covering diverse environmental conditions. In the relatively natural Amazon tidal river, combinations of fluvial and marine processes transition toward the ocean, affecting the transport and accumulation of sediment in floodplains and tributary mouths. The enormous discharge of Amazon fresh water causes estuarine processes to occur on the continental shelf, where much sediment accumulation creates a large clinoform structure and where additional sediment accumulates along its shoreward boundary in tidal flats and mangrove forests. Some remaining Amazon sediment is transported beyond the region near the river mouth, and fluvial forces on it diminish. Numerous perturbations to Amazon sediment transport and accumulation occur naturally, but human actions will likely dominate future change, and now is the time to document, understand, and mitigate their impacts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1146/annurev-marine-010816-060457DOI Listing
January 2021

Morphodynamic evolution following sediment release from the world's largest dam removal.

Sci Rep 2018 09 5;8(1):13279. Epub 2018 Sep 5.

School of Oceanography, University of Washington, Seattle, WA, USA.

Sediment pulses can cause widespread, complex changes to rivers and coastal regions. Quantifying landscape response to sediment-supply changes is a long-standing problem in geomorphology, but the unanticipated nature of most sediment pulses rarely allows for detailed measurement of associated landscape processes and evolution. The intentional removal of two large dams on the Elwha River (Washington, USA) exposed ~30 Mt of impounded sediment to fluvial erosion, presenting a unique opportunity to quantify source-to-sink river and coastal responses to a massive sediment-source perturbation. Here we evaluate geomorphic evolution during and after the sediment pulse, presenting a 5-year sediment budget and morphodynamic analysis of the Elwha River and its delta. Approximately 65% of the sediment was eroded, of which only ~10% was deposited in the fluvial system. This restored fluvial supply of sand, gravel, and wood substantially changed the channel morphology. The remaining ~90% of the released sediment was transported to the coast, causing ~60 ha of delta growth. Although metrics of geomorphic change did not follow simple time-coherent paths, many signals peaked 1-2 years after the start of dam removal, indicating combined impulse and step-change disturbance responses.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-30817-8DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6125403PMC
September 2018

Increased sediment load during a large-scale dam removal changes nearshore subtidal communities.

PLoS One 2017 8;12(12):e0187742. Epub 2017 Dec 8.

Environmental Protection Agency, Regional 10, Seattle, Washington, United States of America.

The coastal marine ecosystem near the Elwha River was altered by a massive sediment influx-over 10 million tonnes-during the staged three-year removal of two hydropower dams. We used time series of bathymetry, substrate grain size, remotely sensed turbidity, scuba dive surveys, and towed video observations collected before and during dam removal to assess responses of the nearshore subtidal community (3 m to 17 m depth). Biological changes were primarily driven by sediment deposition and elevated suspended sediment concentrations. Macroalgae, predominantly kelp and foliose red algae, were abundant before dam removal with combined cover levels greater than 50%. Where persistent sediment deposits formed, macroalgae decreased greatly or were eliminated. In areas lacking deposition, macroalgae cover decreased inversely to suspended sediment concentration, suggesting impacts from light reduction or scour. Densities of most invertebrate and fish taxa decreased in areas with persistent sediment deposition; however, bivalve densities increased where mud deposited over sand, and flatfish and Pacific sand lance densities increased where sand deposited over gravel. In areas without sediment deposition, most invertebrate and fish taxa were unaffected by increased suspended sediment or the loss of algae cover associated with it; however, densities of tubeworms and flatfish, and primary cover of sessile invertebrates increased suggesting benefits of increased particulate matter or relaxed competition with macroalgae for space. As dam removal neared completion, we saw evidence of macroalgal recovery that likely owed to water column clearing, indicating that long-term recovery from dam removal effects may be starting. Our results are relevant to future dam removal projects in coastal areas and more generally to understanding effects of increased sedimentation on nearshore subtidal benthic communities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0187742PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5722376PMC
December 2017
-->