Publications by authors named "Andrea Lombardi Borgia"

4 Publications

  • Page 1 of 1

Discovery of Entrectinib: A New 3-Aminoindazole As a Potent Anaplastic Lymphoma Kinase (ALK), c-ros Oncogene 1 Kinase (ROS1), and Pan-Tropomyosin Receptor Kinases (Pan-TRKs) inhibitor.

J Med Chem 2016 Apr 30;59(7):3392-408. Epub 2016 Mar 30.

Oncology, Nerviano Medical Sciences Srl , Viale Pasteur 10, 20014 Nerviano, Milan, Italy.

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase responsible for the development of different tumor types. Despite the remarkable clinical activity of crizotinib (Xalkori), the first ALK inhibitor approved in 2011, the emergence of resistance mutations and of brain metastases frequently causes relapse in patients. Within our ALK drug discovery program, we identified compound 1, a novel 3-aminoindazole active on ALK in biochemical and in cellular assays. Its optimization led to compound 2 (entrectinib), a potent orally available ALK inhibitor active on ALK-dependent cell lines, efficiently penetrant the blood-brain barrier (BBB) in different animal species and highly efficacious in in vivo xenograft models. Moreover, entrectinib resulted to be strictly potent on the closely related tyrosine kinases ROS1 and TRKs recently found constitutively activated in several tumor types. Entrectinib is currently undergoing phase I/II clinical trial for the treatment of patients affected by ALK-, ROS1-, and TRK-positive tumors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b00064DOI Listing
April 2016

The TPM3-NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition.

Mol Oncol 2014 Dec 12;8(8):1495-507. Epub 2014 Jun 12.

Nerviano Medical Sciences S.r.l., Nerviano (Milan), Italy.

The NTRK1 gene encodes Tropomyosin-related kinase A (TRKA), the high-affinity Nerve Growth Factor Receptor. NTRK1 was originally isolated from a colorectal carcinoma (CRC) sample as component of a somatic rearrangement (TPM3-NTRK1) resulting in expression of the oncogenic chimeric protein TPM3-TRKA, but there has been no subsequent report regarding the relevance of this oncogene in CRC. The KM12 human CRC cell line expresses the chimeric TPM3-TRKA protein and is hypersensitive to TRKA kinase inhibition. We report the detailed characterization of the TPM3-NTRK1 genomic rearrangement in KM12 cells and through a cellular screening approach, the identification of NMS-P626, a novel highly potent and selective TRKA inhibitor. NMS-P626 suppressed TPM3-TRKA phosphorylation and downstream signaling in KM12 cells and showed remarkable antitumor activity in mice bearing KM12 tumors. Finally, using quantitative reverse transcriptase PCR and immunohistochemistry (IHC) we identified the TPM3-NTRK1 rearrangement in a CRC clinical sample, therefore suggesting that this chromosomal translocation is indeed a low frequency recurring event in CRC and that such patients might benefit from therapy with TRKA kinase inhibitors.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molonc.2014.06.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5528583PMC
December 2014

Crystal structures of anaplastic lymphoma kinase in complex with ATP competitive inhibitors.

Biochemistry 2010 Aug;49(32):6813-25

Nerviano Medical Sciences S.r.l., Viale Pasteur 10, 20014 Nerviano (MI), Italy.

Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase involved in the development of several human cancers and, as a result, is a recognized target for the development of small-molecule inhibitors for the treatment of ALK-positive malignancies. Here, we present the crystal structures of the unphosphorylated human ALK kinase domain in complex with the ATP competitive ligands PHA-E429 and NVP-TAE684. Analysis of these structures provides valuable information concerning the specific characteristics of the ALK active site as well as giving indications about how to obtain selective ALK inhibitors. In addition, the ALK-KD-PHA-E429 structure led to the identification of a potential regulatory mechanism involving a link made between a short helical segment immediately following the DFG motif and an N-terminal two-stranded beta-sheet. Finally, mapping of the activating mutations associated with neuroblastoma onto our structures may explain the roles these residues have in the activation process.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi1005514DOI Listing
August 2010