Publications by authors named "André G Uitterlinden"

912 Publications

Epigenome-wide association meta-analysis of DNA methylation with coffee and tea consumption.

Nat Commun 2021 May 14;12(1):2830. Epub 2021 May 14.

Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands.

Coffee and tea are extensively consumed beverages worldwide which have received considerable attention regarding health. Intake of these beverages is consistently linked to, among others, reduced risk of diabetes and liver diseases; however, the mechanisms of action remain elusive. Epigenetics is suggested as a mechanism mediating the effects of dietary and lifestyle factors on disease onset. Here we report the results from epigenome-wide association studies (EWAS) on coffee and tea consumption in 15,789 participants of European and African-American ancestries from 15 cohorts. EWAS meta-analysis of coffee consumption reveals 11 CpGs surpassing the epigenome-wide significance threshold (P-value <1.1×10), which annotated to the AHRR, F2RL3, FLJ43663, HDAC4, GFI1 and PHGDH genes. Among them, cg14476101 is significantly associated with expression of the PHGDH and risk of fatty liver disease. Knockdown of PHGDH expression in liver cells shows a correlation with expression levels of genes associated with circulating lipids, suggesting a role of PHGDH in hepatic-lipid metabolism. EWAS meta-analysis on tea consumption reveals no significant association, only two CpGs annotated to CACNA1A and PRDM16 genes show suggestive association (P-value <5.0×10). These findings indicate that coffee-associated changes in DNA methylation levels may explain the mechanism of action of coffee consumption in conferring risk of diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22752-6DOI Listing
May 2021

Genetic analysis in European ancestry individuals identifies 517 loci associated with liver enzymes.

Nat Commun 2021 May 10;12(1):2579. Epub 2021 May 10.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Serum concentration of hepatic enzymes are linked to liver dysfunction, metabolic and cardiovascular diseases. We perform genetic analysis on serum levels of alanine transaminase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) using data on 437,438 UK Biobank participants. Replication in 315,572 individuals from European descent from the Million Veteran Program, Rotterdam Study and Lifeline study confirms 517 liver enzyme SNPs. Genetic risk score analysis using the identified SNPs is strongly associated with serum activity of liver enzymes in two independent European descent studies (The Airwave Health Monitoring study and the Northern Finland Birth Cohort 1966). Gene-set enrichment analysis using the identified SNPs highlights involvement in liver development and function, lipid metabolism, insulin resistance, and vascular formation. Mendelian randomization analysis shows association of liver enzyme variants with coronary heart disease and ischemic stroke. Genetic risk score for elevated serum activity of liver enzymes is associated with higher fat percentage of body, trunk, and liver and body mass index. Our study highlights the role of molecular pathways regulated by the liver in metabolic disorders and cardiovascular disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-22338-2DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8110798PMC
May 2021

Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.

Mol Psychiatry 2021 Apr 15. Epub 2021 Apr 15.

Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.

Long and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups in two stages using 2 degree of freedom (df) joint test followed by 1df test of interaction effects. Primary multi-ancestry analysis in 62,969 individuals in stage 1 identified three novel gene by sleep interactions that were replicated in an additional 59,296 individuals in stage 2 (stage 1 + 2 P < 5 × 10), including rs7955964 (FIGNL2/ANKRD33) that increases BP among long sleepers, and rs73493041 (SNORA26/C9orf170) and rs10406644 (KCTD15/LSM14A) that increase BP among short sleepers (P < 5 × 10). Secondary ancestry-specific analysis identified another novel gene by long sleep interaction at rs111887471 (TRPC3/KIAA1109) in individuals of African ancestry (P = 2 × 10). Combined stage 1 and 2 analyses additionally identified significant gene by long sleep interactions at 10 loci including MKLN1 and RGL3/ELAVL3 previously associated with BP, and significant gene by short sleep interactions at 10 loci including C2orf43 previously associated with BP (P < 10). 2df test also identified novel loci for BP after modeling sleep that has known functions in sleep-wake regulation, nervous and cardiometabolic systems. This study indicates that sleep and primary mechanisms regulating BP may interact to elevate BP level, suggesting novel insights into sleep-related BP regulation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-021-01087-0DOI Listing
April 2021

Genome-wide association study in almost 195,000 individuals identifies 50 previously unidentified genetic loci for eye color.

Sci Adv 2021 Mar 10;7(11). Epub 2021 Mar 10.

Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.

Human eye color is highly heritable, but its genetic architecture is not yet fully understood. We report the results of the largest genome-wide association study for eye color to date, involving up to 192,986 European participants from 10 populations. We identify 124 independent associations arising from 61 discrete genomic regions, including 50 previously unidentified. We find evidence for genes involved in melanin pigmentation, but we also find associations with genes involved in iris morphology and structure. Further analyses in 1636 Asian participants from two populations suggest that iris pigmentation variation in Asians is genetically similar to Europeans, albeit with smaller effect sizes. Our findings collectively explain 53.2% (95% confidence interval, 45.4 to 61.0%) of eye color variation using common single-nucleotide polymorphisms. Overall, our study outcomes demonstrate that the genetic complexity of human eye color considerably exceeds previous knowledge and expectations, highlighting eye color as a genetically highly complex human trait.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/sciadv.abd1239DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7946369PMC
March 2021

Possible modification of BRSK1 on the risk of alkylating chemotherapy-related reduced ovarian function.

Hum Reprod 2021 Mar;36(4):1120-1133

German Childhood Cancer Registry, Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Mainz, Germany.

Study Question: Do genetic variations in the DNA damage response pathway modify the adverse effect of alkylating agents on ovarian function in female childhood cancer survivors (CCS)?

Summary Answer: Female CCS carrying a common BR serine/threonine kinase 1 (BRSK1) gene variant appear to be at 2.5-fold increased odds of reduced ovarian function after treatment with high doses of alkylating chemotherapy.

What Is Known Already: Female CCS show large inter-individual variability in the impact of DNA-damaging alkylating chemotherapy, given as treatment of childhood cancer, on adult ovarian function. Genetic variants in DNA repair genes affecting ovarian function might explain this variability.

Study Design, Size, Duration: CCS for the discovery cohort were identified from the Dutch Childhood Oncology Group (DCOG) LATER VEVO-study, a multi-centre retrospective cohort study evaluating fertility, ovarian reserve and risk of premature menopause among adult female 5-year survivors of childhood cancer. Female 5-year CCS, diagnosed with cancer and treated with chemotherapy before the age of 25 years, and aged 18 years or older at time of study were enrolled in the current study. Results from the discovery Dutch DCOG-LATER VEVO cohort (n = 285) were validated in the pan-European PanCareLIFE (n = 465) and the USA-based St. Jude Lifetime Cohort (n = 391).

Participants/materials, Setting, Methods: To evaluate ovarian function, anti-Müllerian hormone (AMH) levels were assessed in both the discovery cohort and the replication cohorts. Using additive genetic models in linear and logistic regression, five genetic variants involved in DNA damage response were analysed in relation to cyclophosphamide equivalent dose (CED) score and their impact on ovarian function. Results were then examined using fixed-effect meta-analysis.

Main Results And The Role Of Chance: Meta-analysis across the three independent cohorts showed a significant interaction effect (P = 3.0 × 10-4) between rs11668344 of BRSK1 (allele frequency = 0.34) among CCS treated with high-dose alkylating agents (CED score ≥8000 mg/m2), resulting in a 2.5-fold increased odds of a reduced ovarian function (lowest AMH tertile) for CCS carrying one G allele compared to CCS without this allele (odds ratio genotype AA: 2.01 vs AG: 5.00).

Limitations, Reasons For Caution: While low AMH levels can also identify poor responders in assisted reproductive technology, it needs to be emphasized that AMH remains a surrogate marker of ovarian function.

Wider Implications Of The Findings: Further research, validating our findings and identifying additional risk-contributing genetic variants, may enable individualized counselling regarding treatment-related risks and necessity of fertility preservation procedures in girls with cancer.

Study Funding/competing Interest(s): This work was supported by the PanCareLIFE project that has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 602030. In addition, the DCOG-LATER VEVO study was funded by the Dutch Cancer Society (Grant no. VU 2006-3622) and by the Children Cancer Free Foundation (Project no. 20) and the St Jude Lifetime cohort study by NCI U01 CA195547. The authors declare no competing interests.

Trial Registration Number: N/A.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/humrep/deaa342DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7970730PMC
March 2021

Genome-wide meta-analysis of muscle weakness identifies 15 susceptibility loci in older men and women.

Nat Commun 2021 01 28;12(1):654. Epub 2021 Jan 28.

Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Low muscle strength is an important heritable indicator of poor health linked to morbidity and mortality in older people. In a genome-wide association study meta-analysis of 256,523 Europeans aged 60 years and over from 22 cohorts we identify 15 loci associated with muscle weakness (European Working Group on Sarcopenia in Older People definition: n = 48,596 cases, 18.9% of total), including 12 loci not implicated in previous analyses of continuous measures of grip strength. Loci include genes reportedly involved in autoimmune disease (HLA-DQA1 p = 4 × 10), arthritis (GDF5 p = 4 × 10), cell cycle control and cancer protection, regulation of transcription, and others involved in the development and maintenance of the musculoskeletal system. Using Mendelian randomization we report possible overlapping causal pathways, including diabetes susceptibility, haematological parameters, and the immune system. We conclude that muscle weakness in older adults has distinct mechanisms from continuous strength, including several pathways considered to be hallmarks of ageing.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-021-20918-wDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7844411PMC
January 2021

Mendelian randomization study on vitamin D levels and osteoarthritis risk: a concise report.

Rheumatology (Oxford) 2020 Nov 23. Epub 2020 Nov 23.

Department of Internal Medicine.

Objective: The role of vitamin D in OA is unclear and previous epidemiological studies have provided inconsistent results. We conducted a two-sample Mendelian randomization (MR) study to investigate the causal relationship between genetically determined serum vitamin D levels and hip/knee OA.

Methods: Six single-nucleotide polymorphisms (SNPs) associated with vitamin D levels in the Study of Underlying Genetic Determinants of Vitamin D and Highly Related Traits Consortium were selected as instrumental variables. Summary statistics of the SNPs effects on OA were derived from the Iceland and UK Biobank, comprising 23 877 knee OA cases, 17 151 hip OA cases and >562 000 controls. The control samples match the OA cases in age, sex and county of origin.

Results: The MR analyses showed no causal association between genetically determined vitamin D levels and knee OA [odds ratio (OR) 1.03 (95% CI 0.84, 1.26)] or hip OA [OR 1.06 (95% CI 0.83, 1.35)].

Conclusion: Genetic variations associated with low vitamin D serum levels are not associated with increased risk of hip or knee OA in community-dwelling older adults, suggesting that vitamin D levels are not causally linked to OA. It is therefore unlikely that vitamin D supplementation protects against hip or knee OA.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/rheumatology/keaa697DOI Listing
November 2020

Large-scale association analyses identify host factors influencing human gut microbiome composition.

Nat Genet 2021 02 18;53(2):156-165. Epub 2021 Jan 18.

Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.

To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 of 410 genera were detected in more than 95% of samples. A genome-wide association study of host genetic variation regarding microbial taxa identified 31 loci affecting the microbiome at a genome-wide significant (P < 5 × 10) threshold. One locus, the lactase (LCT) gene locus, reached study-wide significance (genome-wide association study signal: P = 1.28 × 10), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95 × 10 < P < 5 × 10) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome might have causal effects in ulcerative colitis and rheumatoid arthritis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-020-00763-1DOI Listing
February 2021

Assessment of Advanced Glycation End Products and Receptors and the Risk of Dementia.

JAMA Netw Open 2021 01 4;4(1):e2033012. Epub 2021 Jan 4.

Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands.

Importance: Advanced glycation end products (AGEs) and their receptor (RAGE) are implicated in the pathophysiological processes of dementia and potentially underlie the association of diabetes with neurodegeneration. However, longitudinal studies examining this association are lacking.

Objective: To determine whether markers of the AGE-RAGE system are associated with prevalent and incident dementia and with cognition.

Design, Setting, And Participants: In this population-based cohort study including participants from the prospective Rotterdam Study, extracellular newly identified RAGE binding protein (EN-RAGE) and soluble RAGE (S-RAGE) were measured in plasma collected between 1997 and 1999 in a random selection of participants, and additionally in participants with prevalent dementia. Participants without dementia were followed up for dementia until 2016. Skin AGEs, measured as skin autofluorescence, and cognition were measured between 2013 and 2016 in participants without dementia. Data analysis was performed from June 2019 to December 2019.

Exposures: EN-RAGE, S-RAGE, and skin autofluorescence.

Main Outcomes And Measures: Prevalent and incident dementia and cognition, adjusted for potential confounders, including age, sex, diabetes, educational level, APOE ε4 carrier status, smoking, and estimated glomerular filtration rate.

Results: Of 3889 included participants (mean [SD] age, 72.5 [8.9] years; 2187 [56.2%] women), 1021 participants had data on plasma markers (mean [SD] age 73.6 [7.8] years; 564 [55.2%] women), 73 participants had dementia at baseline, and during 10 711 person-years of follow-up, 161 participants developed incident dementia. Compared with low levels, high EN-RAGE level was associated with a higher prevalence of dementia (odds ratio [OR], 3.68 [95% CI, 1.50-8.03]; P = .003), while high S-RAGE level was associated with a lower prevalence of dementia (OR, 0.37 [95% CI, 0.17-0.78]; P = .01). These associations attenuated in a longitudinal setting, with hazard ratios of 0.65 (95% CI, 0.42-1.01) for high EN-RAGE (P = .05) and 1.22 (95% CI, 0.82-1.81) for high S-RAGE (P = .33). Among 2890 participants without dementia (mean [SD] age, 72.5 [9.4] years; 1640 [57%] women), higher skin autofluorescence was associated with lower global cognitive function (adjusted difference in z score per 1-SD higher skin autofluorescence, -0.07 [95% CI, -0.11 to -0.04]), especially among carriers of the APOE ε4 allele (adjusted difference in z score per 1-SD higher skin autofluorescence, -0.15 [95% CI, -0.22 to -0.07]).

Conclusions And Relevance: These findings suggest that the AGE-RAGE system is associated with cognitive decline and dementia cross-sectionally but not longitudinally. This indicates either a short-term association or reverse causality. Findings of cross-sectional associations between higher skin autofluorescence and lower cognitive function and an association with APOE status also warrant replication and prospective studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1001/jamanetworkopen.2020.33012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7794665PMC
January 2021

Genetic loci associated with prevalent and incident myocardial infarction and coronary heart disease in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium.

PLoS One 2020 13;15(11):e0230035. Epub 2020 Nov 13.

The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, United States of America.

Background: Genome-wide association studies have identified multiple genomic loci associated with coronary artery disease, but most are common variants in non-coding regions that provide limited information on causal genes and etiology of the disease. To overcome the limited scope that common variants provide, we focused our investigation on low-frequency and rare sequence variations primarily residing in coding regions of the genome.

Methods And Results: Using samples of individuals of European ancestry from ten cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, both cross-sectional and prospective analyses were conducted to examine associations between genetic variants and myocardial infarction (MI), coronary heart disease (CHD), and all-cause mortality following these events. For prevalent events, a total of 27,349 participants of European ancestry, including 1831 prevalent MI cases and 2518 prevalent CHD cases were used. For incident cases, a total of 55,736 participants of European ancestry were included (3,031 incident MI cases and 5,425 incident CHD cases). There were 1,860 all-cause deaths among the 3,751 MI and CHD cases from six cohorts that contributed to the analysis of all-cause mortality. Single variant and gene-based analyses were performed separately in each cohort and then meta-analyzed for each outcome. A low-frequency intronic variant (rs988583) in PLCL1 was significantly associated with prevalent MI (OR = 1.80, 95% confidence interval: 1.43, 2.27; P = 7.12 × 10-7). We conducted gene-based burden tests for genes with a cumulative minor allele count (cMAC) ≥ 5 and variants with minor allele frequency (MAF) < 5%. TMPRSS5 and LDLRAD1 were significantly associated with prevalent MI and CHD, respectively, and RC3H2 and ANGPTL4 were significantly associated with incident MI and CHD, respectively. No loci were significantly associated with all-cause mortality following a MI or CHD event.

Conclusion: This study identified one known locus (ANGPTL4) and four new loci (PLCL1, RC3H2, TMPRSS5, and LDLRAD1) associated with cardiovascular disease risk that warrant further investigation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230035PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665790PMC
December 2020

Smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic traits.

Clin Epigenetics 2020 10 22;12(1):157. Epub 2020 Oct 22.

Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, 3015 GB, Rotterdam, The Netherlands.

Background: Tobacco smoking is a well-known modifiable risk factor for many chronic diseases, including cardiovascular disease (CVD). One of the proposed underlying mechanism linking smoking to disease is via epigenetic modifications, which could affect the expression of disease-associated genes. Here, we conducted a three-way association study to identify the relationship between smoking-related changes in DNA methylation and gene expression and their associations with cardio-metabolic traits.

Results: We selected 2549 CpG sites and 443 gene expression probes associated with current versus never smokers, from the largest epigenome-wide association study and transcriptome-wide association study to date. We examined three-way associations, including CpG versus gene expression, cardio-metabolic trait versus CpG, and cardio-metabolic trait versus gene expression, in the Rotterdam study. Subsequently, we replicated our findings in The Cooperative Health Research in the Region of Augsburg (KORA) study. After correction for multiple testing, we identified both cis- and trans-expression quantitative trait methylation (eQTM) associations in blood. Specifically, we found 1224 smoking-related CpGs associated with at least one of the 443 gene expression probes, and 200 smoking-related gene expression probes to be associated with at least one of the 2549 CpGs. Out of these, 109 CpGs and 27 genes were associated with at least one cardio-metabolic trait in the Rotterdam Study. We were able to replicate the associations with cardio-metabolic traits of 26 CpGs and 19 genes in the KORA study. Furthermore, we identified a three-way association of triglycerides with two CpGs and two genes (GZMA; CLDND1), and BMI with six CpGs and two genes (PID1; LRRN3). Finally, our results revealed the mediation effect of cg03636183 (F2RL3), cg06096336 (PSMD1), cg13708645 (KDM2B), and cg17287155 (AHRR) within the association between smoking and LRRN3 expression.

Conclusions: Our study indicates that smoking-related changes in DNA methylation and gene expression are associated with cardio-metabolic risk factors. These findings may provide additional insights into the molecular mechanisms linking smoking to the development of CVD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-020-00951-0DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7579899PMC
October 2020

Genome-wide association of phenotypes based on clustering patterns of hand osteoarthritis identify as novel osteoarthritis gene.

Ann Rheum Dis 2020 Oct 14. Epub 2020 Oct 14.

Department of Internal Medicine, Genetic Laboratories, Erasmus MC, University Medical Center, Rotterdam, The Netherlands

Background: Despite recent advances in the understanding of the genetic architecture of osteoarthritis (OA), only two genetic loci have been identified for OA of the hand, in part explained by the complexity of the different hand joints and heterogeneity of OA pathology.

Methods: We used data from the Rotterdam Study (RSI, RSII and RSIII) to create three hand OA phenotypes based on clustering patterns of radiographic OA severity to increase power in our modest discovery genome-wide association studies in the RS (n=8700), and sought replication in an independent cohort, the Framingham Heart Study (n=1203). We used multiple approaches that leverage different levels of information and functional data to further investigate the underlying biological mechanisms and candidate genes for replicated loci. We also attempted to replicate known OA loci at other joint sites, including the hips and knees.

Results: We found two novel genome-wide significant loci for OA in the thumb joints. We identified as a possible novel causal gene involved in OA pathogenesis. Furthermore, several previously identified genetic loci for OA seem to confer risk for OA across multiple joints: , , , , and loci.

Conclusions: We identified a robust novel genetic locus for hand OA on chromosome 1, of which is the most likely causal gene. In addition, multiple genetic loci were identified to be associated with OA across multiple joints. Our study confirms the potential for novel insight into the genetic architecture of OA by using biologically meaningful stratified phenotypes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1136/annrheumdis-2020-217834DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7892373PMC
October 2020

Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits.

PLoS Genet 2020 10 12;16(10):e1008718. Epub 2020 Oct 12.

Department of Public Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands.

The genetic background of childhood body mass index (BMI), and the extent to which the well-known associations of childhood BMI with adult diseases are explained by shared genetic factors, are largely unknown. We performed a genome-wide association study meta-analysis of BMI in 61,111 children aged between 2 and 10 years. Twenty-five independent loci reached genome-wide significance in the combined discovery and replication analyses. Two of these, located near NEDD4L and SLC45A3, have not previously been reported in relation to either childhood or adult BMI. Positive genetic correlations of childhood BMI with birth weight and adult BMI, waist-to-hip ratio, diastolic blood pressure and type 2 diabetes were detected (Rg ranging from 0.11 to 0.76, P-values <0.002). A negative genetic correlation of childhood BMI with age at menarche was observed. Our results suggest that the biological processes underlying childhood BMI largely, but not completely, overlap with those underlying adult BMI. The well-known observational associations of BMI in childhood with cardio-metabolic diseases in adulthood may reflect partial genetic overlap, but in light of previous evidence, it is also likely that they are explained through phenotypic continuity of BMI from childhood into adulthood.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pgen.1008718DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7581004PMC
October 2020

Genetic basis of falling risk susceptibility in the UK Biobank Study.

Commun Biol 2020 09 30;3(1):543. Epub 2020 Sep 30.

Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.

Both extrinsic and intrinsic factors predispose older people to fall. We performed a genome-wide association analysis to investigate how much of an individual's fall susceptibility can be attributed to genetics in 89,076 cases and 362,103 controls from the UK Biobank Study. The analysis revealed a small, but significant SNP-based heritability (2.7%) and identified three novel fall-associated loci (P ≤ 5 × 10). Polygenic risk scores in two independent settings showed patterns of polygenic inheritance. Risk of falling had positive genetic correlations with fractures, identifying for the first time a pathway independent of bone mineral density. There were also positive genetic correlations with insomnia, neuroticism, depressive symptoms, and different medications. Negative genetic correlations were identified with muscle strength, intelligence and subjective well-being. Brain, and in particular cerebellum tissue, showed the highest gene expression enrichment for fall-associated variants. Overall, despite the highly heterogenic nature underlying fall risk, a proportion of the susceptibility can be attributed to genetics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-020-01256-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7527955PMC
September 2020

Short-Term, Combined Fasting and Exercise Improves Body Composition in Healthy Males.

Int J Sport Nutr Exerc Metab 2020 Nov 30;30(6):386-395. Epub 2020 Sep 30.

Università degli Studi della Campania "Luigi Vanvitelli".

Fasting enhances the beneficial metabolic outcomes of exercise; however, it is unknown whether body composition is favorably modified on the short term. A baseline-follow-up study was carried out to assess the effect of an established protocol involving short-term combined exercise with fasting on body composition. One hundred seven recreationally exercising males underwent a 10-day intervention across 15 fitness centers in the Netherlands involving a 3-day gradual decrease of food intake, a 3-day period with extremely low caloric intake, and a gradual 4-day increase to initial caloric intake, with daily 30-min submaximal cycling. Using dual-energy X-ray absorptiometry analysis, all subjects substantially lost total body mass (-3.9 ± 1.9 kg; p < .001) and fat mass (-3.3 ± 1.3 kg; p < .001). Average lean mass was lost (-0.6 ± 1.5 kg; p < .001), but lean mass as a percentage of total body mass was not reduced. The authors observed a loss of -3.9 ± 1.9% android fat over total fat mass (p < .001), a loss of -2.2 ± 1.9% gynoid over total fat mass (p < .001), and reduced android/gynoid ratios (-0.05 ± 0.1; p < .001). Analyzing 15 preselected single-nucleotide polymorphisms in 13 metabolism-related genes revealed trending associations for thyroid state-related single-nucleotide polymorphisms rs225014 (deiodinase 2) and rs35767 (insulin-like growth factor1), and rs1053049 (PPARD). In conclusion, a short period of combined fasting and exercise leads to a substantial loss of body and fat mass without a loss of lean mass as a percentage of total mass.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1123/ijsnem.2020-0058DOI Listing
November 2020

Genome-wide association study identifies 48 common genetic variants associated with handedness.

Nat Hum Behav 2021 01 28;5(1):59-70. Epub 2020 Sep 28.

Institute of Biological Psychiatry, Mental Health Services of Copenhagen, Copenhagen, Denmark.

Handedness has been extensively studied because of its relationship with language and the over-representation of left-handers in some neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and the International Handedness Consortium, we conducted a genome-wide association meta-analysis of handedness (N = 1,766,671). We found 41 loci associated (P < 5 × 10) with left-handedness and 7 associated with ambidexterity. Tissue-enrichment analysis implicated the CNS in the aetiology of handedness. Pathways including regulation of microtubules and brain morphology were also highlighted. We found suggestive positive genetic correlations between left-handedness and neuropsychiatric traits, including schizophrenia and bipolar disorder. Furthermore, the genetic correlation between left-handedness and ambidexterity is low (r = 0.26), which implies that these traits are largely influenced by different genetic mechanisms. Our findings suggest that handedness is highly polygenic and that the genetic variants that predispose to left-handedness may underlie part of the association with some psychiatric disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41562-020-00956-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7116623PMC
January 2021

Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults.

Nat Commun 2020 09 22;11(1):4796. Epub 2020 Sep 22.

Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.

Cortical thickness, surface area and volumes vary with age and cognitive function, and in neurological and psychiatric diseases. Here we report heritability, genetic correlations and genome-wide associations of these cortical measures across the whole cortex, and in 34 anatomically predefined regions. Our discovery sample comprises 22,824 individuals from 20 cohorts within the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank. We identify genetic heterogeneity between cortical measures and brain regions, and 160 genome-wide significant associations pointing to wnt/β-catenin, TGF-β and sonic hedgehog pathways. There is enrichment for genes involved in anthropometric traits, hindbrain development, vascular and neurodegenerative disease and psychiatric conditions. These data are a rich resource for studies of the biological mechanisms behind cortical development and aging.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-020-18367-yDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7508833PMC
September 2020

Association of candidate pharmacogenetic markers with platinum-induced ototoxicity: PanCareLIFE dataset.

Data Brief 2020 Oct 24;32:106227. Epub 2020 Aug 24.

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland.

Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase () is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The PanCareLIFE cross-sectional cohort study evaluated the genetic associations in a large pan-European population and assessed the diagnostic accuracy of the genetic markers. 1,112 pediatric cancer survivors who had provided biomaterial for genotyping were screened for participation in the pharmacogenetic association study. 900 participants qualified for inclusion. Based on the assessment of original audiograms, patients were assigned to three phenotype categories: no, minor, and clinically relevant hearing loss. Fourteen variants in eleven candidate genes ( and ) were genotyped. The genotype and phenotype data represent a resource for conducting meta-analyses to derive a more precise pooled estimate of the effects of genes on the risk of hearing loss due to platinum treatment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dib.2020.106227DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477761PMC
October 2020

Genetic Studies of Leptin Concentrations Implicate Leptin in the Regulation of Early Adiposity.

Diabetes 2020 12 11;69(12):2806-2818. Epub 2020 Sep 11.

Department of Biostatistics, Boston University School of Public Health, Boston, MA.

Leptin influences food intake by informing the brain about the status of body fat stores. Rare mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in , , , and , and one intergenic variant near The missense variant Val94Met (rs17151919) in was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry ( = 2 × 10, = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db20-0070DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7679778PMC
December 2020

Usefulness of current candidate genetic markers to identify childhood cancer patients at risk for platinum-induced ototoxicity: Results of the European PanCareLIFE cohort study.

Eur J Cancer 2020 10 6;138:212-224. Epub 2020 Sep 6.

Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland; Paediatric Oncology, Dept. of Paediatrics, Inselspital, University of Bern, Switzerland.

Background: Irreversible sensorineural hearing loss is a common side effect of platinum treatment with the potential to significantly impair the neurocognitive, social and educational development of childhood cancer survivors. Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The aim of this cross-sectional cohort study was to confirm the genetic associations in a large pan-European population and to evaluate the diagnostic accuracy of the genetic markers.

Methods: Eligibility criteria required patients to be aged less than 19 years at the start of chemotherapy, which had to include cisplatin and/or carboplatin. Patients were assigned to three phenotype categories: no, minor and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1 and ACYP2) were investigated. Multinomial logistic regression was performed to model the relationship between genetic predictors and platinum ototoxicity, adjusting for clinical risk factors. Additionally, measures of the diagnostic accuracy of the genetic markers were determined.

Results: 900 patients were included in this study. In the multinomial logistic regression, significant unique contributions were found from SLC22A2 rs316019, the age at the start of platinum treatment, cranial radiation and the interaction term [platinum compound]∗[cumulative dose of cisplatin]. The predictive performance of the genetic markers was poor compared with the clinical risk factors.

Conclusions: PanCareLIFE is the largest study of cisplatin-induced ototoxicity to date and confirmed a role for the polyspecific organic cation transporter SLC22A2. However, the predictive value of the current genetic candidate markers for clinical use is negligible, which puts the value of clinical factors for risk assessment of cisplatin-induced ototoxicity back into the foreground.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejca.2020.07.019DOI Listing
October 2020

Long-term effects of folic acid and vitamin-B12 supplementation on fracture risk and cardiovascular disease: Extended follow-up of the B-PROOF trial.

Clin Nutr 2021 Mar 5;40(3):1199-1206. Epub 2020 Aug 5.

Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, the Netherlands; Amsterdam UMC, (University) of Amsterdam, Section of Geriatric Medicine, Department of Internal Medicine, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands.

Background & Aims: In the initial B-proof, we found inconsistent results of B vitamin supplementation. However, the debate regarding the effects of B vitamins on age-related diseases continues. Therefore, our aim was to investigate the long-term effects (5-7 years follow-up) of an intervention with folic acid and vitamin-B12 supplementation on fracture and cardiovascular disease risk.

Methods: Extended follow-up of the B-PROOF trial, a multi-center, double-blind randomized placebo-controlled trial designed to assess the effect of 2-3 years daily supplementation with folic acid (400 μg) and vitamin-B12 (500 μg) versus placebo (n = 2,919). Primary outcome was verified self-reported fracture incidence and secondary outcomes were self-reported cardiovascular endpoints, which were collected through a follow-up questionnaires Proportional hazard analyses was used for the effect of the intervention on risk of fracture(s) and logistic regression for the effect of the intervention on risk of cardiovascular disease.

Results: A total of 1,298 individuals (44.5%) participated in the second follow-up round with median of 54 months [51-58], (n = 662 and n = 636, treatment versus placebo group). Median age at baseline was 71.0 years [68.0-76.0] for both groups. No effect was observed of the intervention on osteoporotic fracture or any fracture risk after a follow-up (HR: 0.99, 95% CI: 0.62-1.59 and HR: 0.77; 95% CI: 0.50-1.19, respectively), nor on cardiovascular or cerebrovascular disease risk (OR: 1.05; 95%CI: 0.80-1.44 and OR: 0.85; 95%CI: 0.50-1.45, respectively). Potential interaction by baseline homocysteine concentration was observed for osteoporotic- and any fracture (p = 0.10 and 0.06 respectively), which indicated a significantly lower risk of any fracture in the treatment group with higher total homocysteine concentrations (>15.1 μmol/l). No age-dependent effects were present.

Conclusions: This study supports and extends previous null-findings of the B-PROOF trial and shows that supplementation of folic acid and vitamin-B12 has no effect on fracture risk, nor on cardiovascular disease in older individuals over a longer follow-up period. However, B-vitamin supplementation may be beneficial in reducing fractures in individuals with high total homocysteine concentrations, a finding which needs to be replicated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clnu.2020.07.033DOI Listing
March 2021

Dietary Advanced Glycation End-Products (dAGEs) Intake and Bone Health: A Cross-Sectional Analysis in the Rotterdam Study.

Nutrients 2020 Aug 8;12(8). Epub 2020 Aug 8.

Department of Internal Medicine, Erasmus University Medical Center, 3015 Rotterdam, The Netherlands.

Animal studies suggest a role for dietary advanced glycation end-products (dAGEs) in bone health, but human studies on dAGEs in relation to bone are lacking. We aimed to study whether dAGEs intake is associated with the parameters of bone strength namely, bone mineral density (BMD), prevalent vertebral (VFs), and major osteoporotic fractures (MOFs = hip, wrist, proximal humerus, and clinical VFs). 3949 participants (mean age 66.7 ± 10.5 years) were included from a Rotterdam study for whom Carboxymethyllysine (CML-a dietary AGE) was estimated from food frequency questionnaires combined with dAGEs databases. Multivariable linear and logistic regression models were performed adjusting for age, sex, energy intake, dietary quality, physical activity, diabetes, smoking, renal function, and cohort effect and for models on fractures, subsequently for BMD. We observed no association of CML with BMD at both femoral neck (β = -0.006; = 0.70) and lumbar spine (β = -0.013; = 0.38). A higher intake of CML was linearly associated with VFs (Odds ratio, OR = 1.16, 95% CI (1.02-1.32) and a similar but non-significant trend with MOFs (OR = 1.12 (0.98-1.27). Additional adjustment for BMD did not change the associations. Our results imply a positive association between dietary intake of CML and VFs independent of BMD. Future studies are needed in order to elucidate whether associations found are causal.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/nu12082377DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7468958PMC
August 2020

Validation of the BOADICEA model and a 313-variant polygenic risk score for breast cancer risk prediction in a Dutch prospective cohort.

Genet Med 2020 11 6;22(11):1803-1811. Epub 2020 Jul 6.

Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.

Purpose: We evaluated the performance of the recently extended Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA version 5) in a Dutch prospective cohort, using a polygenic risk score (PRS) based on 313 breast cancer (BC)-associated variants (PRS) and other, nongenetic risk factors.

Methods: Since 1989, 6522 women without BC aged 45 or older of European descent have been included in the Rotterdam Study. The PRS was calculated per 1 SD in controls from the Breast Cancer Association Consortium (BCAC). Cox regression analysis was performed to estimate the association between the PRS and incident BC risk. Cumulative 10-year risks were calculated with BOADICEA including different sets of variables (age, risk factors and PRS). C-statistics were used to evaluate discriminative ability.

Results: In total, 320 women developed BC. The PRS was significantly associated with BC (hazard ratio [HR] per SD of 1.56, 95% confidence interval [CI] [1.40-1.73]). Using 10-year risk estimates including age and the PRS, other risk factors improved the discriminatory ability of the BOADICEA model marginally, from a C-statistic of 0.636 to 0.653.

Conclusions: The effect size of the PRS is highly reproducible in the Dutch population. Our results validate the BOADICEA v5 model for BC risk assessment in the Dutch general population.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41436-020-0884-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7605432PMC
November 2020

The impact of thiazide diuretics on bone mineral density and the trabecular bone score: the Rotterdam Study.

Bone 2020 09 9;138:115475. Epub 2020 Jun 9.

Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, the Netherlands.

The decreased risk of osteoporotic fractures in thiazide diuretics (TD) users is possibly not only caused by an increase in bone mineral density (BMD), but by an increase in other determinants of bone strength as well, such as the trabecular bone score (TBS). To test this hypothesis, we studied the association between TD use and both lumbar spine BMD (LS-BMD) and lumbar spine TBS (LS-TBS) cross-sectionally in 6096 participants from the Rotterdam Study, as well as the association between TD use and bone turnover estimated by serum osteocalcin levels. We found that past and current use of TD were associated with an increase of LS-BMD (β = 0.021 g/cm (95% CI: 0.006;0.036) and β = 0.016 g/cm (95% CI: 0.002;0.031), respectively). Use of ≥1 defined daily dose (DDD) (β = 0.028, 95% CI: 0.010;0.046; p for trend within DDD of use <0.001) and use of >365 days (β = 0.033, 95% CI: 0.014;0.052; p for trend within duration of use <0.001) were positively associated with LS-BMD. No significant association between TD use and LS-TBS was observed. Mean serum osteocalcin levels were significantly different between users and non-users of TD (20.2 ng/ml (SD 8.3) and 22.5 ng/ml (SD 17.0), respectively, p < 0.001). Furthermore, linear regression analysis showed that the use of TD was associated with a 3.2 ng/l (95% CI: -4.4.; -2.0) lower serum osteocalcin level compared to non-use of TD, when adjusted for Rotterdam Study cohort, age, and sex. Our results may implicate that the decreased fracture risk in TD users is explained by increased bone mass rather than by improved bone microarchitecture. Alternatively, changes in bone microarchitecture might not be detected through TBS and more sophisticated techniques are possibly needed to study a potential effect of TD on bone microarchitecture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2020.115475DOI Listing
September 2020

Microbiomics, Metabolomics, Predicted Metagenomics, and Hepatic Steatosis in a Population-Based Study of 1,355 Adults.

Hepatology 2021 Mar;73(3):968-982

Department of Gastroenterology and Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands.

Background And Aims: Previous small studies have appraised the gut microbiome (GM) in steatosis, but large-scale studies are lacking. We studied the association of the GM diversity and composition, plasma metabolites, predicted functional metagenomics, and steatosis.

Approach And Results: This is a cross-sectional analysis of the prospective population-based Rotterdam Study. We used 16S ribosomal RNA gene sequencing and determined taxonomy using the SILVA reference database. Alpha diversity and beta diversity were calculated using the Shannon diversity index and Bray-Curtis dissimilarities. Differences were tested across steatosis using permutational multivariate analysis of variance. Hepatic steatosis was diagnosed by ultrasonography. We subsequently selected genera using regularized regression. The functional metagenome was predicted based on the GM using Kyoto Encyclopedia of Genes and Genomes pathways. Serum metabolomics were assessed using high-throughput proton nuclear magnetic resonance. All analyses were adjusted for age, sex, body mass index, alcohol, diet, and proton-pump inhibitors. We included 1,355 participants, of whom 472 had steatosis. Alpha diversity was lower in steatosis (P = 1.1∙10 ), and beta diversity varied across steatosis strata (P = 0.001). Lasso selected 37 genera of which three remained significantly associated after adjustment (Coprococcus3: β = -65; Ruminococcus Gauvreauiigroup: β = 62; and Ruminococcus Gnavusgroup: β = 45, Q-value = 0.037). Predicted metagenome analyses revealed that pathways of secondary bile-acid synthesis and biotin metabolism were present, and D-alanine metabolism was absent in steatosis. Metabolic profiles showed positive associations for aromatic and branched chain amino acids and glycoprotein acetyls with steatosis and R. Gnavusgroup, whereas these metabolites were inversely associated with alpha diversity and Coprococcus3.

Conclusions: We confirmed, on a large-scale, the lower microbial diversity and association of Coprococcus and Ruminococcus Gnavus with steatosis. We additionally showed that steatosis and alpha diversity share opposite metabolic profiles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/hep.31417DOI Listing
March 2021

Skin Autofluorescence, a Noninvasive Biomarker for Advanced Glycation End-Products, Is Associated With Prevalent Vertebral and Major Osteoporotic Fractures: The Rotterdam Study.

J Bone Miner Res 2020 10 22;35(10):1904-1913. Epub 2020 Jun 22.

Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

Advanced glycation end-products (AGEs), which bind to type 1 collagen in bone and skin, have been implicated in reduced bone quality. The AGE reader™ measures skin autofluorescence (SAF), which might be regarded as a marker of long-term accumulation of AGEs in tissues. We investigated the association of SAF with bone mineral density (BMD) and fractures in the general population. We studied 2853 individuals from the Rotterdam Study with available SAF measurements (median age, 74.1 years) and with data on prevalent major osteoporotic (MOFs: hip, humerus, wrist, clinical vertebral) and vertebral fractures (VFs: clinical + radiographic Genant's grade 2 and 3). Radiographs were assessed 4 to 5 years before SAF. Multivariate regression models were performed adjusted for age, sex, BMI, creatinine, smoking status, and presence of diabetes and additionally for BMD with interaction terms to test for effect modification. Prevalence of MOFs was 8.5% and of VFs 7%. SAF had a curvilinear association with prevalent MOFs and VFs and therefore, age-adjusted, sex stratified SAF quartiles were used. The odds ratio (OR) (95% confidence interval [CI]) of the second, third and fourth quartiles of SAF for MOFs were as follows: OR 1.60 (95% CI, 1.08-2.35; p = .02); OR 1.30 (95% CI, 0.89-1.97; p = .20), and OR 1.40 (95% CI, 0.95-2.10; p = .09), respectively, with first (lowest) quartile as reference. For VFs the ORs were as follows: OR 1.69 (95% CI, 1.08-2.64; p = .02), OR 1.74(95% CI, 1.11-2.71; p = .01), and OR 1.73 (95% CI, 1.12-2.73; p = .02) for second, third, and fourth quartiles, respectively. When comparing the top three quartiles combined with the first quartile, the OR (95% CI) for MOFs was 1.43 (95% CI, 1.04-2.00; p = .03) and for VFs was 1.72 (95% CI, 1.18-2.53; p = .005). Additional adjustment for BMD did not change the associations. In conclusion, there is evidence of presence of a threshold of skin AGEs below which there is distinctly lower prevalence of fractures. Longitudinal analyses are needed to confirm our cross-sectional findings. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.4096DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7687120PMC
October 2020

The association between dietary and skin advanced glycation end products: the Rotterdam Study.

Am J Clin Nutr 2020 07;112(1):129-137

Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands.

Background: Advanced glycation end products (AGEs) accumulate in tissues with age and in conditions such as diabetes mellitus and chronic kidney disease (CKD), and they may be involved in age-related diseases. Skin AGEs measured as skin autofluorescence (SAF) are a noninvasive reflection of long-term AGE accumulation in tissues. Whether AGEs present in the diet (dAGEs) contribute to tissue AGEs is unclear.

Objectives: Our aim was to investigate the association between dietary and skin AGEs in the Rotterdam Study, a population-based cohort of mainly European ancestry.

Methods: In 2515 participants, intake of 3 dAGEs [carboxymethyl-lysine (CML), N-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MGH1), and carboxyethyl-lysine (CEL)] was estimated using FFQs and the content of AGEs measured in commonly consumed foods. SAF was measured 5 y (median value) later using an AGE Reader. The association of dAGEs with SAF was analyzed in linear regression models and stratified for diabetes and chronic kidney disease (CKD, defined as estimated glomerular filtration rate ≤60 mL/min) status.

Results: Mean ± SD intake was 3.40 ±0.89 mg/d for CML, 28.98 ±7.87 mg/d for MGH1, and 3.11 ±0.89 mg/d for CEL. None of them was associated with SAF in the total study population. However, in stratified analyses, CML was positively associated with SAF after excluding both individuals with diabetes and individuals with CKD: 1 SD higher daily CML intake was associated with a 0.03 (95% CI: 0.009, 0.05) arbitrary units higher SAF. MGH1 and CEL intake were not significantly associated with SAF. Nevertheless, the associations were stronger when the time difference between dAGEs and SAF measurements was shorter.

Conclusions: Higher dietary CML intake was associated with higher SAF only among participants with neither diabetes nor CKD, which may be explained by high AGE formation in diabetes and decreased excretion in CKD or by dietary modifications in these disease groups. The dAGE-SAF associations were also modified by the time difference between measurements. Our results suggest that dAGEs can influence tissue AGE accumulation and possibly thereby age-related diseases. This trial was registered at the Netherlands National Trial Register as NTR6831 (http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=6831) and at the WHO International Clinical Trials Registry Platform as NTR6831 (http://www.who.int/ictrp/network/primary/en/).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/ajcn/nqaa117DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7326595PMC
July 2020

Exome Sequencing Analysis Identifies Rare Variants in and That Are Associated With Shorter Telomere Length.

Front Genet 2020 30;11:337. Epub 2020 Apr 30.

Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.

Telomeres are important for maintaining genomic stability. Telomere length has been associated with aging, disease, and mortality and is highly heritable (∼82%). In this study, we aimed to identify rare genetic variants associated with telomere length using whole-exome sequence data. We studied 1,303 participants of the Erasmus Rucphen Family (ERF) study, 1,259 of the Rotterdam Study (RS), and 674 of the British Heart Foundation Family Heart Study (BHF-FHS). We conducted two analyses, first we analyzed the family-based ERF study and used the RS and BHF-FHS for replication. Second, we combined the summary data of the three studies in a meta-analysis. Telomere length was measured by quantitative polymerase chain reaction in blood. We identified nine rare variants significantly associated with telomere length (-value < 1.42 × 10, minor allele frequency of 0.2-0.5%) in the ERF study. Eight of these variants (in , , , , , and ) were located on chromosome 11q22.3 that contains , a gene involved in telomere maintenance. Although we were unable to replicate the variants in the RS and BHF-FHS (-value ≥ 0.21), segregation analysis showed that all variants segregate with shorter telomere length in a family. In the meta-analysis of all studies, a nominally significant association with LTL was observed with a rare variant in (- = 1.48 × 10), which has previously been associated with age. Additionally, a novel rare variant in the known locus showed suggestive evidence for association (-value = 1.18 × 10) with LTL. To conclude, we identified novel rare variants associated with telomere length. Larger samples size are needed to confirm these findings and to identify additional variants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fgene.2020.00337DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7204400PMC
April 2020

Genomic analysis of diet composition finds novel loci and associations with health and lifestyle.

Mol Psychiatry 2020 May 11. Epub 2020 May 11.

Department of Endocrinology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.

We conducted genome-wide association studies (GWAS) of relative intake from the macronutrients fat, protein, carbohydrates, and sugar in over 235,000 individuals of European ancestries. We identified 21 unique, approximately independent lead SNPs. Fourteen lead SNPs are uniquely associated with one macronutrient at genome-wide significance (P < 5 × 10), while five of the 21 lead SNPs reach suggestive significance (P < 1 × 10) for at least one other macronutrient. While the phenotypes are genetically correlated, each phenotype carries a partially unique genetic architecture. Relative protein intake exhibits the strongest relationships with poor health, including positive genetic associations with obesity, type 2 diabetes, and heart disease (r ≈ 0.15-0.5). In contrast, relative carbohydrate and sugar intake have negative genetic correlations with waist circumference, waist-hip ratio, and neighborhood deprivation (|r| ≈ 0.1-0.3) and positive genetic correlations with physical activity (r ≈ 0.1 and 0.2). Relative fat intake has no consistent pattern of genetic correlations with poor health but has a negative genetic correlation with educational attainment (r ≈-0.1). Although our analyses do not allow us to draw causal conclusions, we find no evidence of negative health consequences associated with relative carbohydrate, sugar, or fat intake. However, our results are consistent with the hypothesis that relative protein intake plays a role in the etiology of metabolic dysfunction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41380-020-0697-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7767645PMC
May 2020