Publications by authors named "André G Loxton"

60 Publications

Mycobacterium tuberculosis-stimulated whole blood culture to detect host biosignatures for tuberculosis treatment response.

Tuberculosis (Edinb) 2021 Apr 10;128:102082. Epub 2021 Apr 10.

DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Host markers to monitor the response to tuberculosis (TB) therapy hold some promise. We evaluated the changes in concentration of Mycobacterium tuberculosis (M.tb)-induced soluble biomarkers during early treatment for predicting short- and long-term treatment outcomes. Whole blood samples from 30 cured and 12 relapsed TB patients from diagnosis, week 1, 2, and 4 of treatment were cultured in the presence of live M.tb for seven days and patients followed up for 24 weeks after the end of treatment. 57 markers were measured in unstimulated and antigen-stimulated culture supernatants using Luminex assays. Top performing multi-variable models at diagnosis using unstimulated values predicted outcome at 24 months after treatment completion with a sensitivity of 75.0% (95% CI, 42.8-94.5%) and specificity of 72.4% (95% CI, 52.8-87.3%) in leave-one-out cross validation. Month two treatment responder classification was correctly predicted with a sensitivity of 79.2% (95% CI, 57.8-92.9%) and specificity of 92.3% (95% CI, 64.0-99.8%). This study provides evidence of the early M.tb-specific treatment response in TB patients but shows that the observed unstimulated marker models are not outperformed by stimulated marker models. Performance of unstimulated predictive host marker signatures is promising and requires validation in larger studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2021.102082DOI Listing
April 2021

FasL regulatory B-cells during Mycobacterium tuberculosis infection and TB disease.

J Mol Biol 2021 Apr 21:166984. Epub 2021 Apr 21.

DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa. Electronic address:

Tuberculosis (TB) disease remains a major health crisis. Infection with Mycobacterium tuberculosis (M.tb) cause a range of diseases ranging from latent infection to active TB disease. This active state of the disease is characterised by the formation of granulomas (a physical barrier in the lung), a structure thought to protect the host by controlling the infection through preventing the growth of the bacilli. Subsequently, the surviving bacteria become inactive and in most cases, TB reactivation is prevented by the immune response of the host. B-cells perform numerous immunological functions beyond antibody production to positively regulate the response to pathogenic assault. A subgroup of B-cells with regulatory functions express death-inducing ligands, such as Fas ligand (FasL). Expression and interaction of the Fas receptor-ligand promotes the induction of apoptosis and the induction of T-cell tolerance. Here, we focus on the significance of B-cells by addressing their FasL phenotype and regulatory functions during TB, with reference to disease in humans, non-human primates and mice.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmb.2021.166984DOI Listing
April 2021

The Peripheral Blood Transcriptome Is Correlated With PET Measures of Lung Inflammation During Successful Tuberculosis Treatment.

Front Immunol 2020 10;11:596173. Epub 2021 Feb 10.

Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa.

Pulmonary tuberculosis (PTB) is characterized by lung granulomas, inflammation and tissue destruction. Here we used within-subject peripheral blood gene expression over time to correlate with the within-subject lung metabolic activity, as measured by positron emission tomography (PET) to identify biological processes and pathways underlying overall resolution of lung inflammation. We used next-generation RNA sequencing and [F]FDG PET-CT data, collected at diagnosis, week 4, and week 24, from 75 successfully cured PTB patients, with the [F]FDG activity as a surrogate for lung inflammation. Our linear mixed-effects models required that for each individual the slope of the line of [F]FDG data in the outcome and the slope of the peripheral blood transcript expression data correlate, i.e., the slopes of the outcome and explanatory variables had to be similar. Of 10,295 genes that changed as a function of time, we identified 639 genes whose expression profiles correlated with decreasing [F]FDG uptake levels in the lungs. Gene enrichment over-representation analysis revealed that numerous biological processes were significantly enriched in the 639 genes, including several well known in TB transcriptomics such as platelet degranulation and response to interferon gamma, thus validating our novel approach. Others not previously associated with TB pathobiology included smooth muscle contraction, a set of pathways related to mitochondrial function and cell death, as well as a set of pathways connecting transcription, translation and vesicle formation. We observed up-regulation in genes associated with B cells, and down-regulation in genes associated with platelet activation. We found 254 transcription factor binding sites to be enriched among the 639 gene promoters. In conclusion, we demonstrated that of the 10,295 gene expression changes in peripheral blood, only a subset of 639 genes correlated with inflammation in the lungs, and the enriched pathways provide a description of the biology of resolution of lung inflammation as detectable in peripheral blood. Surprisingly, resolution of PTB inflammation is positively correlated with smooth muscle contraction and, extending our previous observation on mitochondrial genes, shows the presence of mitochondrial stress. We focused on pathway analysis which can enable therapeutic target discovery and potential modulation of the host response to TB.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fimmu.2020.596173DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7902901PMC
February 2021

Higher SARS-CoV-2 seroprevalence in workers with lower socioeconomic status in Cape Town, South Africa.

PLoS One 2021 25;16(2):e0247852. Epub 2021 Feb 25.

DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Background: Inequality is rife throughout South Africa. The first wave of COVID-19 may have affected people in lower socioeconomic groups worse than the affluent. The SARS-CoV-2 seroprevalence and the specificity of anti-SARS-CoV-2 antibody tests in South Africa is not known.

Methods: We tested 405 volunteers representing all socioeconomic strata from the workforce of a popular shopping and tourist complex in central Cape Town with the Abbott SARS-CoV-2 IgG assay. We assessed the association between antibody positivity and COVID-19 symptom status, medical history, and sociodemographic variables. We tested 137 serum samples from healthy controls collected in Cape Town prior to the COVID-19 pandemic, to confirm the specificity of the assay in the local population.

Results: Of the 405 volunteers tested one month after the first peak of the epidemic in Cape Town, 96(23.7%) were SARS-CoV-2 IgG positive. Of those who tested positive, 46(47.9%) reported no symptoms of COVID-19 in the previous 6 months. Seropositivity was significantly associated with living in informal housing, residing in a subdistrict with low income-per household, and having a low-earning occupation. The specificity of the assay was 98.54%(95%CI 94.82%-99.82%) in the pre-COVID controls.

Conclusions: There is a high background seroprevalence in Cape Town, particularly in people of lower socioeconomic status. Almost half of cases are asymptomatic, and therefore undiagnosed by local testing strategies. These results cannot be explained by low assay specificity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0247852PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7906413PMC
March 2021

Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis.

Sci Transl Med 2021 Feb;13(579)

Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD 20892, USA.

Early bactericidal activity studies monitor daily sputum bacterial counts in individuals with tuberculosis (TB) for 14 days during experimental drug treatment. The rate of change in sputum bacterial load over time provides an informative, but imperfect, estimate of drug activity and is considered a critical step in development of new TB drugs. In this clinical study, 160 participants with TB received isoniazid, pyrazinamide, or rifampicin, components of first-line chemotherapy, and moxifloxacin individually and in combination. In addition to standard bacterial enumeration in sputum, participants underwent 2-deoxy-2-[F]fluoro-d-glucose positron emission tomography and computerized tomography ([F]FDG-PET/CT) at the beginning and end of the 14-day drug treatment. Quantitating radiological responses to drug treatment provided comparative single and combination drug activity measures across lung lesion types that correlated more closely with established clinical outcomes when combined with sputum enumeration compared to sputum enumeration alone. Rifampicin and rifampicin-containing drug combinations were most effective in reducing both lung lesion volume measured by CT imaging and lesion-associated inflammation measured by PET imaging. Moxifloxacin was not superior to rifampicin in any measure by PET/CT imaging, consistent with its performance in recent phase 3 clinical trials. PET/CT imaging revealed synergy between isoniazid and pyrazinamide and demonstrated that the activity of pyrazinamide was limited to lung lesion, showing the highest FDG uptake during the first 2 weeks of drug treatment. [F]FDG-PET/CT imaging may be useful for measuring the activity of single drugs and drug combinations during evaluation of potential new TB drug regimens before phase 3 trials.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.abd7618DOI Listing
February 2021

Safety and immunogenicity of the adjunct therapeutic vaccine ID93 + GLA-SE in adults who have completed treatment for tuberculosis: a randomised, double-blind, placebo-controlled, phase 2a trial.

Lancet Respir Med 2021 04 8;9(4):373-386. Epub 2020 Dec 8.

South African Tuberculosis Vaccine Initiative (SATVI), Institute of Infectious Disease & Molecular Medicine and Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa. Electronic address:

Background: A therapeutic vaccine that prevents recurrent tuberculosis would be a major advance in the development of shorter treatment regimens. We aimed to assess the safety and immunogenicity of the ID93 + GLA-SE vaccine at various doses and injection schedules in patients with previously treated tuberculosis.

Methods: This randomised, double-blind, placebo-controlled, phase 2a trial was conducted at three clinical sites near Cape Town, South Africa. Patients were recruited at local clinics after receiving 4 months of tuberculosis treatment, and screened for eligibility after providing written informed consent. Participants were aged 18-60 years, BCG-vaccinated, HIV-uninfected, and diagnosed with drug-sensitive pulmonary tuberculosis. Eligible patients had completed standard treatment for pulmonary tuberculosis in the past 28 days. Participants were enrolled after completing standard treatment and randomly assigned sequentially to receive vaccine or placebo in three cohorts: 2 μg intramuscular ID93 + 2 μg GLA-SE on days 0 and 56 (cohort 1); 10 μg ID93 + 2 μg GLA-SE on days 0 and 56 (cohort 2); 2 μg ID93 + 5 μg GLA-SE on days 0 and 56 and placebo on day 28 (cohort 3); 2 μg ID93 + 5 μg GLA-SE on days 0, 28, and 56 (cohort 3); or placebo on days 0 and 56 (cohorts 1 and 2), with the placebo group for cohort 3 receiving an additional injection on day 28. Randomisation was in a ratio of 3:1 for ID93 + GLA-SE and saline placebo in cohorts 1 and 2, and in a ratio of 3:3:1 for (2 ×) ID93 + GLA-SE, (3 ×) ID93 + GLA-SE, and placebo in cohort 3. The primary outcomes were safety and immunogenicity (vaccine-specific antibody response and T-cell response). For the safety outcome, participants were observed for 30 min after each injection, injection site reactions and systemic adverse events were monitored until day 84, and serious adverse events and adverse events of special interest were monitored for 6 months after the last injection. Vaccine-specific antibody responses were measured by serum ELISA, and T-cell responses after stimulation with vaccine antigens were measured in cryopreserved peripheral blood mononuclear cells specimens using intracellular cytokine staining followed by flow cytometry. This study is registered with ClinicalTrials.gov, number NCT02465216.

Findings: Between June 17, 2015, and May 30, 2016, we assessed 177 patients for inclusion. 61 eligible patients were randomly assigned to receive: saline placebo (n=5) or (2 ×) 2 μg ID93 + 2 μg GLA-SE (n=15) on days 0 and 56 (cohort 1); saline placebo (n=2) or (2 ×) 10 μg ID93 + 2 μg GLA-SE (n=5) on days 0 and 56 (cohort 2); saline placebo (n=5) on days 0, 28 and 56, or 2 μg ID93 + 5 μg GLA-SE (n=15) on days 0 and 56 and placebo injection on day 28, or (3 ×) 2 μg ID93 + 5 μg GLA-SE (n=14) on days 0, 28, and 56 (cohort 3). ID93 + GLA-SE induced robust and durable antibody responses and specific, polyfunctional CD4 T-cell responses to vaccine antigens. Two injections of the 2 μg ID93 + 5 μg GLA-SE dose induced antigen-specific IgG and CD4 T-cell responses that were significantly higher than those with placebo and persisted for the 6-month study duration. Mild to moderate injection site pain was reported after vaccination across all dose combinations, and induration and erythema in patients given 2 μg ID93 + 5 μg GLA-SE in two or three doses. One participant had grade 3 erythema and induration at the injection site. No vaccine-related serious adverse events were observed.

Interpretation: Vaccination with ID93 + GLA-SE was safe and immunogenic for all tested regimens. These data support further evaluation of ID93 + GLA-SE in therapeutic vaccination strategies to improve tuberculosis treatment outcomes.

Funding: Wellcome Trust (102028/Z/13/Z).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2213-2600(20)30319-2DOI Listing
April 2021

Investigating Non-sterilizing Cure in TB Patients at the End of Successful Anti-TB Therapy.

Front Cell Infect Microbiol 2020 25;10:443. Epub 2020 Aug 25.

Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa.

(Mtb) is extremely recalcitrant to antimicrobial chemotherapy requiring 6 months to treat drug-sensitive tuberculosis (TB). Despite this, 4-10% of cured patients will develop recurrent disease within 12 months after completing therapy. Reasons for relapse in cured TB patients remains speculative, attributed to both pathogen and host factors. Populations of dormant bacilli are hypothesized to cause relapse in initially cured TB patients however, development of tests to convincingly demonstrate their presence at the end of anti-TB treatment has been challenging. Previous studies have indicated the utility of culture filtrate supplemented media (CFSM) to detect differentially culturable tubercle bacilli (DCTB). Here, we show that 3/22 of clinically cured patients retained DCTB in induced sputum and bronchoalveolar lavage fluid (BALF), with one DCTB positive patient relapsing within the first year of completing therapy. We also show a correlation of DCTB status with "unresolved" end of treatment FDG PET-CT imaging. Additionally, 19 end of treatment induced sputum samples from patients not undergoing bronchoscopy were assessed for DCTB, identifying a further relapse case with DCTB. We further show that induced sputum is a less reliable source for the DCTB assay at the end of treatment, limiting the utility of this assay in a clinical setting. We next investigated the host proteome at the site of disease (BALF) using multiplexed proteomic analysis and compared these to active TB cases to identify host-specific factors indicative of cure. Distinct signatures stratified active from cured TB patients into distinct groups, with a DCTB positive, subsequently relapsing, end of treatment patient showing a proteomic signature closer to active TB disease than cure. This exploratory study offers evidence of live Mtb, undetectable with conventional culture methods, at the end of clinically successful treatment and putative host protein biomarkers of active disease and cure. These findings have implications for the assessment of true sterilizing cure in TB patients and opens new avenues for targeted approaches to monitor treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcimb.2020.00443DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7477326PMC
August 2020

Immunoglobulin profile and B-cell frequencies are altered with changes in the cellular microenvironment independent of the stimulation conditions.

Immun Inflamm Dis 2020 09 8;8(3):458-467. Epub 2020 Jul 8.

Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Stellenbosch University, Cape Town, South Africa.

Introduction: B-cells are essential in the defense against Mycobacterium tuberculosis. Studies on isolated cells may not accurately reflect the responses that occur in vivo due to the presence of other cells. This study elucidated the influence of microenvironment complexity on B-cell polarization and function in the context of tuberculosis disease.

Methods: B-cell function was tested in whole blood, peripheral blood mononuclear cells (PBMCs), and as isolated cells. The different fractions were stimulated and the B-cell phenotype and immunoglobulin profiles analyzed.

Results: The immunoglobulin profile and developmental B-cell frequencies varied for each of the investigated sample types, while in an isolated cellular environment, secretion of immunoglobulin isotypes immunoglobulin A (IgA), IgG2, and IgG3 was hampered. The differences in the immunoglobulin profile highlight the importance of cell-cell communication for B-cell activation. Furthermore, a decrease in marginal zone B-cell frequencies and an increase in T1 B-cells was observed following cell isolation, indicating impaired B-cell development in response to in vitro antigenic stimulation in isolation.

Conclusion: Our results suggest that humoral B-cell function and development was impaired likely due to a lack of costimulatory signals from other cell types. Thus, B-cell function should ideally be studied in a PBMC or whole blood fraction.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/iid3.328DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7416019PMC
September 2020

Quantitative 18F-FDG PET-CT scan characteristics correlate with tuberculosis treatment response.

EJNMMI Res 2020 Feb 10;10(1). Epub 2020 Feb 10.

Department of Science and Technology/National Research Foundation, Centre of Excellence for Biomedical Tuberculosis Research and South African Medical Research Council Centre for Tuberculosis Research, Cape Town, South Africa.

Background: There is a growing interest in the use of F-18 FDG PET-CT to monitor tuberculosis (TB) treatment response. Tuberculosis lung lesions are often complex and diffuse, with dynamic changes during treatment and persisting metabolic activity after apparent clinical cure. This poses a challenge in quantifying scan-based markers of burden of disease and disease activity. We used semi-automated, whole lung quantification of lung lesions to analyse serial FDG PET-CT scans from the Catalysis TB Treatment Response Cohort to identify characteristics that best correlated with clinical and microbiological outcomes.

Results: Quantified scan metrics were already associated with clinical outcomes at diagnosis and 1 month after treatment, with further improved accuracy to differentiate clinical outcomes after standard treatment duration (month 6). A high cavity volume showed the strongest association with a risk of treatment failure (AUC 0.81 to predict failure at diagnosis), while a suboptimal reduction of the total glycolytic activity in lung lesions during treatment had the strongest association with recurrent disease (AUC 0.8 to predict pooled unfavourable outcomes). During the first year after TB treatment lesion burden reduced; but for many patients, there were continued dynamic changes of individual lesions.

Conclusions: Quantification of FDG PET-CT images better characterised TB treatment outcomes than qualitative scan patterns and robustly measured the burden of disease. In future, validated metrics may be used to stratify patients and help evaluate the effectiveness of TB treatment modalities.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13550-020-0591-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7010890PMC
February 2020

Distinct serum biosignatures are associated with different tuberculosis treatment outcomes.

Tuberculosis (Edinb) 2019 09 12;118:101859. Epub 2019 Aug 12.

DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa. Electronic address:

Biomarkers for TB treatment response and outcome are needed. This study characterize changes in immune profiles during TB treatment, define biosignatures associated with treatment outcomes, and explore the feasibility of predictive models for relapse. Seventy-two markers were measured by multiplex cytokine array in serum samples from 78 cured, 12 relapsed and 15 failed treatment patients from South Africa before and during therapy for pulmonary TB. Promising biosignatures were evaluated in a second cohort from Uganda/Brazil consisting of 17 relapse and 23 cured patients. Thirty markers changed significantly with different response patterns during TB treatment in cured patients. The serum biosignature distinguished cured from relapse patients and a combination of two clinical (time to positivity in liquid culture and BMI) and four immunological parameters (TNF-β, sIL-6R, IL-12p40 and IP-10) at diagnosis predicted relapse with a 75% sensitivity (95%CI 0.38-1) and 85% specificity (95%CI 0.75-0.93). This biosignature was validated in an independent Uganda/Brazil cohort correctly classifying relapse patients with 83% (95%CI 0.58-1) sensitivity and 61% (95%CI 0.39-0.83) specificity. A characteristic biosignature with value as predictor of TB relapse was identified. The repeatability and robustness of these biomarkers require further validation in well-characterized cohorts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2019.101859DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6839616PMC
September 2019

Bcells and their regulatory functions during Tuberculosis: Latency and active disease.

Authors:
Andre G Loxton

Mol Immunol 2019 07 1;111:145-151. Epub 2019 May 1.

DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241 Cape Town, 8000, South Africa. Electronic address:

Tuberculosis (TB) is a global epidemic with devastating consequences. Emerging evidence suggests that B-cells have the ability to modulate the immune response and understanding these roles during Mycobacterium tuberculosis (M.tb) infection can help to find new strategies to treat TB. The immune system of individuals with pulmonary TB form granulomas in the lung which controls the infection by inhibiting the M.tb growth and acts as a physical barrier. Thereafter, surviving M.tb become dormant and in most cases the host's immunity prevents TB reactivation. B-cells execute several immunological functions and are regarded as protective regulators of immune responses by antibody and cytokine production, as well as presenting antigen. Some of these B-cells, or regulatory B-cells, have been shown to express death-inducing ligands, such as Fas ligand (FasL). This expression and binding to the Fas receptor leads to apoptosis, a major immune regulation mechanism, in addition to the ability to induce T-cell tolerance. Here, I discuss the relevance of B-cells, in particular their non-humoral functions by addressing their regulatory properties during M.tb infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2019.04.012DOI Listing
July 2019

Regulatory B lymphocytes: development and modulation of the host immune response during disease.

Immunotherapy 2019 06 10;11(8):691-704. Epub 2019 Apr 10.

DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa, 8000.

The role of B lymphocytes (B cells) in immunogenic responses has become increasingly important over the past decade, focusing on a new B-cell subtype: regulatory B-cells (B). These B have been shown to possess potent immunosuppressive activities and have identified as key players in disease control and immune tolerance. In this review, the occurrence of B type in various conditions, along with evidence supporting discovered functions and proposed purposes will be explored. An example of such regulatory functions includes the induction or suppression of various T lymphocyte phenotypes in response to a particular stimulus. Should B prove effective in mediating immune responses, and correlate with favorable disease outcome, they may serve as a novel therapeutic to combat disease and prevent infection. However, the induction, function and stability of these cells remain unclear and further investigation is needed to better understand their role and therapeutic efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2217/imt-2018-0185DOI Listing
June 2019

Effect of binding immunoglobulin protein on induction of regulatory B cells with killer phenotype during inflammation and disease.

Future Sci OA 2019 Mar 5;5(3):FSO379. Epub 2019 Mar 5.

DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Stellenbosch University, Cape Town, South Africa; PO Box 241, Cape Town 8000, South Africa.

Immune responses result from different immune cells acting in synergy to successfully fight infections. This requires a high degree of regulation to prevent excessive production of inflammatory products leading to other disease forms. Regulatory B cells are classified based on surface immunoglobulin expression. These cells are reported to resolve inflammation during chronic or autoimmune diseases. However, during chronic inflammation, their frequencies have been shown to be affected, and they can be induced by exposure to extracellular binding immunoglobulin protein (BiP). This review focuses on the effects on immune cells by extracellular or secreted BiP during various chronic inflammatory responses. For example, cell stress associated with infection leads to accumulation of unfolded proteins that subsequently activate BiP and its three signal transducers intracellularly. Furthermore, BiP can be translocated from the endoplasmic reticulum to the extracellular environment where it binds immune cells as an autoantigen and leads to functional changes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4155/fsoa-2018-0121DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426174PMC
March 2019

Isolation of B-cells using Miltenyi MACS bead isolation kits.

PLoS One 2019 20;14(3):e0213832. Epub 2019 Mar 20.

DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; Stellenbosch University, Cape Town, South Africa.

This article describes the procedures used to isolate pure B-cell populations from whole blood using various Miltenyi magnetic-activated cell sorting (MACS) bead Isolation kits. Such populations are vital for studies investigating the functional capacity of B-cells, as the presence of other cell types may have indirect effects on B-cell function through cell-cell interactions or by secretion of several soluble molecules. B-cells can be isolated by two main approaches: 1) Negative selection-in which B-cells remain "untouched" in their native state; this is advantageous as it is likely that B-cells remain functionally unaltered by this process. 2) Positive selection-in which B-cells are labelled and actively removed from the sample. We used three Negative B-cell isolation kits as well as the Positive B-cell isolation kit from Miltenyi and compared the purity of each of the resulting B-cells fractions. Contamination of isolated B-cell fractions with platelets was the conclusive finding for all of the isolation techniques tested. These results illustrate the inefficiency of current available MACS B-cell isolation kits to produce pure B-cell populations, from which concrete findings can be made. As such we suggest cell sorting as the preferred method for isolating pure B-cells to be used for downstream functional assays.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0213832PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6426237PMC
December 2019

The level of the endoplasmic reticulum stress chaperone protein, binding immunoglobulin protein (BiP), decreases following successful tuberculosis treatment.

Int J Infect Dis 2019 Apr 23;81:198-202. Epub 2019 Jan 23.

DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000 South Africa. Electronic address:

An increased Mycobacterium tuberculosis burden inside the host leads to higher demand of response proteins. This in turn results in metabolic shift and cellular stress, which is caused by the accumulation and trafficking of these proteins within the endoplasmic reticulum (ER). To resolve this, cells trigger the unfolded protein response (UPR), which is mainly mediated by binding immunoglobulin protein (BiP)/glucose-regulated protein 78 (GRP78) chaperone, and this in turn upregulates its transcription. This chaperone protein facilitates proper protein folding within the ER; however, it can also be passively secreted into the extracellular environment or be expressed on cell surfaces attached to anchor proteins and transmembrane proteins. This notion has been shown in studies on chronic inflammation, including cancer and arthritis, with the detection of BiP-specific antibodies from different sample types. The present study analysed secreted BiP from plasma samples collected from healthy participants and patients with newly diagnosed tuberculosis (TBdx), seen over the course of TB treatment at week 1 (W1), month 2 (M2), and month 6 (M6). The results revealed that during the initial TB disease and treatment period, cells are subjected to stress conditions resulting in metabolic shifts, which lead to the secretion of the intracellular UPR-mediating chaperone protein, BiP. This was indicated by mean differences between TBdx (mean 40.88ng/ml) and W1 (68.57ng/ml) in the TB participant groups. However, no difference was observed between the healthy group (mean 42.64ng/ml) and TBdx group (mean 40.88ng/ml). Analysis of paired time-point visits revealed increased BiP secretion during early TB treatment. The detection of BiP in plasma samples was found to decrease after successful TB treatment to levels comparable to those in the healthy controls. Evaluation of BiP levels in larger TB treatment studies may lead to the identification of a new target for early TB diagnosis and host-directed immunotherapy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijid.2019.01.030DOI Listing
April 2019

Diagnostic Accuracy of Early Secretory Antigenic Target-6-Free Interferon-gamma Release Assay Compared to QuantiFERON-TB Gold In-tube.

Clin Infect Dis 2019 10;69(10):1724-1730

Statens Serum Institute, Copenhagen, Denmark.

Background: Early secretory antigenic target-6 (ESAT-6) is an immunodominant Mycobacterium tuberculosis (M.tb) antigen included in novel vaccines against tuberculosis (TB) and in interferon-gamma (IFN-γ) release assays (IGRAs). Therefore, the availability of an ESAT-6-free IGRA is essential to determine M.tb infection status following vaccination with ESAT-6-containing vaccines. We aimed to qualify a recently developed ESAT-6-free IGRA and to assess its diagnostic performance in comparison to QuantiFERON-TB Gold In-tube (QFT).

Methods: Participants with different levels of M.tb exposure and TB disease were enrolled to determine the ESAT-6-free IGRA cutoff, test assay performance in independent cohorts compared to standard QFT, and perform a technical qualification of antigen-coated blood collection tubes.

Results: ESAT-6-free IGRA antigen recognition was evaluated in QFT-positive and QFT-negative South African adolescents. The ESAT-6-free IGRA cutoff was established at 0.61 IU/mL, based on receiver operating characteristic analysis in M.tb-unexposed controls and microbiologically confirmed pulmonary TB patients. In an independent cohort of healthy adolescents, levels of IFN-γ released in QFT and ESAT-6-free IGRA were highly correlated (P < .0001, r = 0.83) and yielded comparable positivity rates, 41.5% and 43.5%, respectively, with 91% concordance between the tests (kappa = 0.82; 95% confidence interval, 0.74-0.90; McNemar test P = .48). ESAT-6-free IGRA blood collection tubes had acceptable lot-to-lot variability, precision, and stability.

Conclusions: The novel ESAT-6-free IGRA had diagnostic accuracy comparable to QFT and is suitable for use in clinical trials to assess efficacy of candidate TB vaccines to prevent established M.tb infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/cid/ciz034DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6821223PMC
October 2019

A semi-automatic technique to quantify complex tuberculous lung lesions on F-fluorodeoxyglucose positron emission tomography/computerised tomography images.

EJNMMI Res 2018 Jun 25;8(1):55. Epub 2018 Jun 25.

Division of Nuclear Medicine, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Background: There is a growing interest in the use of F-FDG PET-CT to monitor tuberculosis (TB) treatment response. However, TB causes complex and widespread pathology, which is challenging to segment and quantify in a reproducible manner. To address this, we developed a technique to standardise uptake (Z-score), segment and quantify tuberculous lung lesions on PET and CT concurrently, in order to track changes over time. We used open source tools and created a MATLAB script. The technique was optimised on a training set of five pulmonary tuberculosis (PTB) cases after standard TB therapy and 15 control patients with lesion-free lungs.

Results: We compared the proposed method to a fixed threshold (SUV > 1) and manual segmentation by two readers and piloted the technique successfully on scans of five control patients and five PTB cases (four cured and one failed treatment case), at diagnosis and after 1 and 6 months of treatment. There was a better correlation between the Z-score-based segmentation and manual segmentation than SUV > 1 and manual segmentation in terms of overall spatial overlap (measured in Dice similarity coefficient) and specificity (1 minus false positive volume fraction). However, SUV > 1 segmentation appeared more sensitive. Both the Z-score and SUV > 1 showed very low variability when measuring change over time. In addition, total glycolytic activity, calculated using segmentation by Z-score and lesion-to-background ratio, correlated well with traditional total glycolytic activity calculations. The technique quantified various PET and CT parameters, including the total glycolytic activity index, metabolic lesion volume, lesion volumes at different CT densities and combined PET and CT parameters. The quantified metrics showed a marked decrease in the cured cases, with changes already apparent at month one, but remained largely unchanged in the failed treatment case.

Conclusions: Our technique is promising to segment and quantify the lung scans of pulmonary tuberculosis patients in a semi-automatic manner, appropriate for measuring treatment response. Further validation is required in larger cohorts.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13550-018-0411-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6020088PMC
June 2018

Using biomarkers to predict TB treatment duration (Predict TB): a prospective, randomized, noninferiority, treatment shortening clinical trial.

Gates Open Res 2017 Nov 6;1. Epub 2017 Nov 6.

Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.

: By the early 1980s, tuberculosis treatment was shortened from 24 to 6 months, maintaining relapse rates of 1-2%. Subsequent trials attempting shorter durations have failed, with 4-month arms consistently having relapse rates of 15-20%. One trial shortened treatment only among those without baseline cavity on chest x-ray and whose month 2 sputum culture converted to negative. The 4-month arm relapse rate decreased to 7% but was still significantly worse than the 6-month arm (1.6%, P<0.01).  We hypothesize that PET/CT characteristics at baseline, PET/CT changes at one month, and markers of residual bacterial load will identify patients with tuberculosis who can be cured with 4 months (16 weeks) of standard treatment. : This is a prospective, multicenter, randomized, phase 2b, noninferiority clinical trial of pulmonary tuberculosis participants. Those eligible start standard of care treatment. PET/CT scans are done at weeks 0, 4, and 16 or 24. Participants who do not meet early treatment completion criteria (baseline radiologic severity, radiologic response at one month, and GeneXpert-detectable bacilli at four months) are placed in Arm A (24 weeks of standard therapy). Those who meet the early treatment completion criteria are randomized at week 16 to continue treatment to week 24 (Arm B) or complete treatment at week 16 (Arm C). The primary endpoint compares the treatment success rate at 18 months between Arms B and C. : Multiple biomarkers have been assessed to predict TB treatment outcomes. This study uses PET/CT scans and GeneXpert (Xpert) cycle threshold to risk stratify participants. PET/CT scans are not applicable to global public health but could be used in clinical trials to stratify participants and possibly become a surrogate endpoint. If the Predict TB trial is successful, other immunological biomarkers or transcriptional signatures that correlate with treatment outcome may be identified.

Trial Registration: NCT02821832.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.12688/gatesopenres.12750.1DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841574PMC
November 2017

Killer (FASL regulatory) B cells are present during latent TB and are induced by BCG stimulation in participants with and without latent tuberculosis.

Tuberculosis (Edinb) 2018 01 24;108:114-117. Epub 2017 Nov 24.

SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town, 8000, South Africa. Electronic address:

Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tube.2017.11.010DOI Listing
January 2018

Africa-wide evaluation of host biomarkers in QuantiFERON supernatants for the diagnosis of pulmonary tuberculosis.

Sci Rep 2018 02 8;8(1):2675. Epub 2018 Feb 8.

Vaccines and Immunity, Medical Research Council Unit, Fajara, The Gambia.

We investigated host-derived biomarkers that were previously identified in QuantiFERON supernatants, in a large pan-African study. We recruited individuals presenting with symptoms of pulmonary TB at seven peripheral healthcare facilities in six African countries, prior to assessment for TB disease. We then evaluated the concentrations of 12 biomarkers in stored QuantiFERON supernatants using the Luminex platform. Based on laboratory, clinical and radiological findings and a pre-established algorithm, participants were classified as TB disease or other respiratory diseases(ORD). Of the 514 individuals included in the study, 179(34.8%) had TB disease, 274(51.5%) had ORD and 61(11.5%) had an uncertain diagnosis. A biosignature comprising unstimulated IFN-γ, MIP-1β, TGF-α and antigen-specific levels of TGF-α and VEGF, identified on a training sample set (n = 311), validated by diagnosing TB disease in the test set (n = 134) with an AUC of 0.81(95% CI, 0.76-0.86), corresponding to a sensitivity of 64.2%(95% CI, 49.7-76.5%) and specificity of 82.7%(95% CI, 72.4-89.9%). Host biomarkers detected in QuantiFERON supernatants can contribute to the diagnosis of active TB disease amongst people presenting with symptoms requiring investigation for TB disease, regardless of HIV status or ethnicity in Africa.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-018-20855-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5805775PMC
February 2018

B Cells Producing Type I IFN Modulate Macrophage Polarization in Tuberculosis.

Am J Respir Crit Care Med 2018 03;197(6):801-813

1 Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier, Toulouse, France.

Rationale: In addition to their well-known function as antibody-producing cells, B lymphocytes can markedly influence the course of infectious or noninfectious diseases via antibody-independent mechanisms. In tuberculosis (TB), B cells accumulate in lungs, yet their functional contribution to the host response remains poorly understood.

Objectives: To document the role of B cells in TB in an unbiased manner.

Methods: We generated the transcriptome of B cells isolated from Mycobacterium tuberculosis (Mtb)-infected mice and validated the identified key pathways using in vitro and in vivo assays. The obtained data were substantiated using B cells from pleural effusion of patients with TB.

Measurements And Main Results: B cells isolated from Mtb-infected mice displayed a STAT1 (signal transducer and activator of transcription 1)-centered signature, suggesting a role for IFNs in B-cell response to infection. B cells stimulated in vitro with Mtb produced type I IFN, via a mechanism involving the innate sensor STING (stimulator of interferon genes), and antagonized by MyD88 (myeloid differentiation primary response 88) signaling. In vivo, B cells expressed type I IFN in the lungs of Mtb-infected mice and, of clinical relevance, in pleural fluid from patients with TB. Type I IFN expression by B cells induced an altered polarization of macrophages toward a regulatory/antiinflammatory profile in vitro. In vivo, increased provision of type I IFN by B cells in a murine model of B cell-restricted Myd88 deficiency correlated with an enhanced accumulation of regulatory/antiinflammatory macrophages in Mtb-infected lungs.

Conclusions: Type I IFN produced by Mtb-stimulated B cells favors macrophage polarization toward a regulatory/antiinflammatory phenotype during Mtb infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201707-1475OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855072PMC
March 2018

Optimization and Interpretation of Serial QuantiFERON Testing to Measure Acquisition of Mycobacterium tuberculosis Infection.

Am J Respir Crit Care Med 2017 09;196(5):638-648

1 South African Tuberculosis Vaccine Initiative, Institute of Infectious Disease and Molecular Medicine, and.

Rationale: Conversion from a negative to positive QuantiFERON-TB test is indicative of Mycobacterium tuberculosis (Mtb) infection, which predisposes individuals to tuberculosis disease. Interpretation of serial tests is confounded by immunological and technical variability.

Objectives: To improve the consistency of serial QuantiFERON-TB testing algorithms and provide a data-driven definition of conversion.

Methods: Sources of QuantiFERON-TB variability were assessed, and optimal procedures were identified. Distributions of IFN-γ response levels were analyzed in healthy adolescents, Mtb-unexposed control subjects, and patients with pulmonary tuberculosis.

Measurements And Main Results: Individuals with no known Mtb exposure had IFN-γ values less than 0.2 IU/ml. Among individuals with IFN-γ values less than 0.2 IU/ml, 0.2-0.34 IU/ml, 0.35-0.7 IU/ml, and greater than 0.7 IU/ml, tuberculin skin test positivity results were 15%, 53%, 66%, and 91% (P < 0.005), respectively. Together, these findings suggest that values less than 0.2 IU/ml were true negatives. In short-term serial testing, "uncertain" conversions, with at least one value within the uncertainty zone (0.2-0.7 IU/ml), were partly explained by technical assay variability. Individuals who had a change in QuantiFERON-TB IFN-γ values from less than 0.2 to greater than 0.7 IU/ml had 10-fold higher tuberculosis incidence rates than those who maintained values less than 0.2 IU/ml over 2 years (P = 0.0003). By contrast, "uncertain" converters were not at higher risk than nonconverters (P = 0.229). Eighty-seven percent of patients with active tuberculosis had IFN-γ values greater than 0.7 IU/ml, suggesting that these values are consistent with established Mtb infection.

Conclusions: Implementation of optimized procedures and a more rigorous QuantiFERON-TB conversion definition (an increase from IFN-γ <0.2 to >0.7 IU/ml) would allow more definitive detection of recent Mtb infection and potentially improve identification of those more likely to develop disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1164/rccm.201704-0817OCDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620669PMC
September 2017

Detection of a combination of serum IgG and IgA antibodies against selected mycobacterial targets provides promising diagnostic signatures for active TB.

Oncotarget 2017 Jun;8(23):37525-37537

DST/NRF Centre of Excellence for Biomedical TB Research and SAMRC Centre for TB Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Immunoglobulin G (IgG) based tests for the diagnosis of active tuberculosis (TB) disease often show a lack of specificity in TB endemic regions, which is mainly due to a high background prevalence of LTBI. Here, we investigated the combined performance of the responses of different Ig classes to selected mycobacterial antigens in primary healthcare clinic attendees with signs and symptoms suggestive of TB. The sensitivity and specificity of IgA, IgG and/or IgM to LAM and 7 mycobacterial protein antigens (ESAT-6, Tpx, PstS1, AlaDH, MPT64, 16kDa and 19kDa) and 2 antigen combinations (TUB, TB-LTBI) in the plasma of 63 individuals who underwent diagnostic work-up for TB after presenting with symptoms and signs compatible with possible active TB were evaluated. Active TB was excluded in 42 individuals of whom 21 has LTBI whereas active TB was confirmed in 21 patients of whom 19 had a follow-up blood draw at the end of 6-month anti-TB treatment. The leading single serodiagnostic markers to differentiate between the presence or absence of active TB were anti-16 kDa IgA, anti-MPT64 IgA with sensitivity and specificity of 90%/90% and 95%/90%, respectively. The combined use of 3 or 4 antibodies further improved this performance to accuracies above 95%. After successful completion of anti-TB treatment at month 6, the levels of 16 kDa IgA and 16 kDa IgM dropped significantly whereas LAM IgG and TB-LTBI IgG increased. These results show the potential of extending investigation of anti-tuberculous IgG responses to include IgM and IgA responses against selected protein and non-protein antigens in differentiating active TB from other respiratory diseases in TB endemic settings.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.16401DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5514927PMC
June 2017

B-cells with a FasL expressing regulatory phenotype are induced following successful anti-tuberculosis treatment.

Immun Inflamm Dis 2017 03 27;5(1):57-67. Epub 2016 Dec 27.

Division of Molecular Biology and Human Genetics Faculty of Medicine and Health Sciences SA MRC Centre for TB Research DST/NRF Centre of Excellence for Biomedical Tuberculosis Research Stellenbosch University Cape Town South Africa.

Introduction: Studies show that B-cells, in addition to producing antibodies and antigen-presentation, are able to produce cytokines as well. These include regulatory cytokines such as IL-10 by regulatory B-cells. Furthermore, a rare regulatory subset of B-cells have the potential to express FasL, which is a death-inducing ligand. This subset of B-cells have a positive role during autoimmune disease, but has not yet been studied during tuberculosis. These FasL-expressing B-cells are induced by bacterial LPS and CpG, thus we hypothesized that this phenotype might be induced during tuberculosis as well.

Methods: B-cells from participants with TB (at diagnosis and during treatment) and controls were collected, and analyzed by means of real-time PCR and flow cytometry. In addition to this, BAL was collected from TB participants as well and analyzed by means of MAGPix (multi-cytokine) technology.

Results: Gene expression analysis show that FASL transcript levels increase by the end of treatment. Similarly, phenotypic analysis show that there is a higher frequency of FasL-expressing B-cells by the end of treatment.

Conclusion: Collectively, these results indicate that these FasL-expressing B-cells are being induced during anti-TB treatment, and thus may play a positive role. Further studies are required to elucidate this.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1002/iid3.140DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5322165PMC
March 2017

Safety and Immunogenicity of the Recombinant Mycobacterium bovis BCG Vaccine VPM1002 in HIV-Unexposed Newborn Infants in South Africa.

Clin Vaccine Immunol 2017 02 6;24(2). Epub 2017 Feb 6.

Fam-Cru, Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa

Tuberculosis is a global threat to which infants are especially vulnerable. Effective vaccines are required to protect infants from this devastating disease. VPM1002, a novel recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccine previously shown to be safe and immunogenic in adults, was evaluated for safety in its intended target population, namely, newborn infants in a region with high prevalence of tuberculosis. A total of 48 newborns were vaccinated intradermally with VPM1002 (n = 36) or BCG Danish strain (n = 12) in a phase II open-labeled, randomized trial with a 6-month follow-up period. Clinical and laboratory measures of safety were evaluated during this time. In addition, vaccine-induced immune responses to mycobacteria were analyzed in whole-blood stimulation and proliferation assays. The safety parameters and immunogenicity were comparable in the two groups. Both vaccines induced interleukin-17 (IL-17) responses; however, VPM1002 vaccination led to an increase of CD8 IL-17 T cells at the week 16 and month 6 time points. The incidence of abscess formation was lower for VPM1002 than for BCG. We conclude that VPM1002 is a safe, well-tolerated, and immunogenic vaccine in newborn infants, confirming results from previous trials in adults. These results strongly support further evaluation of the safety and efficacy of this vaccination in larger studies. (This study has been registered at ClinicalTrials.gov under registration no. NCT01479972.).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/CVI.00439-16DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5299117PMC
February 2017

Successful TB treatment induces B-cells expressing FASL and IL5RA mRNA.

Oncotarget 2017 Jan;8(2):2037-2043

SA MRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

Activated B-cells increase T-cell behaviour during autoimmune disease and other infections by means of cytokine production and antigen-presentation. Functional studies in experimental autoimmune encephalomyelitis (EAE) indicate that B-cell deficiencies, and a lack of IL10 and IL35 leads to a poor prognosis. We hypothesised that B-cells play a role during tuberculosis. We evaluated B-cell mRNA expression using real-time PCR from healthy community controls, individuals with other lung diseases and newly diagnosed untreated pulmonary TB patients at three different time points (diagnosis, month 2 and 6 of treatment).We show that FASLG, IL5RA, CD38 and IL4 expression was lower in B-cells from TB cases compared to healthy controls. The changes in expression levels of CD38 may be due to a reduced activation of B-cells from TB cases at diagnosis. By month 2 of treatment, there was a significant increase in the expression of APRIL and IL5RA in TB cases. Furthermore, after 6 months of treatment, APRIL, FASLG, IL5RA and CD19 were upregulated in B-cells from TB cases. The increase in the expression of APRIL and CD19 suggests that there may be restored activation of B-cells following anti-TB treatment. The upregulation of FASLG and IL5RA indicates that B-cells expressing regulatory genes may play an important role in the protective immunity against M.tb infection. Our results show that increased activation of B-cells is present following successful TB treatment, and that the expression of FASLG and IL5RA could potentially be utilised as a signature to monitor treatment response.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.12184DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356777PMC
January 2017

Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure.

Nat Med 2016 10 5;22(10):1094-1100. Epub 2016 Sep 5.

National Medical Center, Seoul, South Korea.

The absence of a gold standard to determine when antibiotics induce a sterilizing cure has confounded the development of new approaches to treat pulmonary tuberculosis (PTB). We detected positron emission tomography and computerized tomography (PET-CT) imaging response patterns consistent with active disease, along with the presence of Mycobacterium tuberculosis (MTB) mRNA in sputum and bronchoalveolar lavage samples, in a substantial proportion of adult, HIV-negative patients with PTB after a standard 6-month treatment plus 1 year follow-up, including patients with a durable cure and others who later developed recurrent disease. The presence of MTB mRNA in the context of nonresolving and intensifying lesions on PET-CT images might indicate ongoing transcription, suggesting that even apparently curative treatment for PTB may not eradicate all of the MTB bacteria in most patients. This suggests an important complementary role for the immune response in maintaining a disease-free state. Sterilizing drugs or host-directed therapies, and better treatment response markers, are probably needed for the successful development of improved and shortened PTB-treatment strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053881PMC
http://dx.doi.org/10.1038/nm.4177DOI Listing
October 2016

Identification of novel host biomarkers in plasma as candidates for the immunodiagnosis of tuberculosis disease and monitoring of tuberculosis treatment response.

Oncotarget 2016 Sep;7(36):57581-57592

Department of Biomedical Sciences, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research and SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.

There is an urgent need for new tools for the rapid diagnosis of tuberculosis disease. We evaluated the potentials of 74 host markers as biomarkers for the immunological diagnosis of tuberculosis and monitoring of treatment response. Fifty-five individuals that presented with signs and symptoms requiring investigation for tuberculosis disease were prospectively recruited prior to clinical diagnosis, at a health centre in Cape Town, South Africa. Patients were later classified as having tuberculosis disease or other respiratory diseases (ORD) using a combination of clinical, radiological and laboratory findings. Out of 74 host markers that were evaluated in plasma samples from study participants using a multiplex platform, 18 showed potential as tuberculosis diagnostic candidates with the most promising being NCAM, CRP, SAP, IP-10, ferritin, TPA, I-309, and MIG, which diagnosed tuberculosis disease individually, with area under the ROC curve ≥0.80. Six-marker biosignatures containing NCAM diagnosed tuberculosis disease with a sensitivity of 100% (95%CI, 86.3-100%) and specificity of 89.3% (95%CI, 67.6-97.3%) irrespective of HIV status, and 100% accuracy in the absence of HIV infection. Furthermore, the concentrations of 11 of these proteins changed with treatment, thereby indicating that they may be useful in monitoring of the response to tuberculosis treatment. Our findings have potential to be translated into a point-of-care screening test for tuberculosis, after future validation studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.11420DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5295374PMC
September 2016