Publications by authors named "André Fraiture"

2 Publications

  • Page 1 of 1

Two new species of Amanitasect.Phalloideae from Africa, one of which is devoid of amatoxins and phallotoxins.

MycoKeys 2019 6;53:93-125. Epub 2019 Jun 6.

Meise Botanic Garden, 38 Nieuwelaan, 1860 Meise, Belgium Meise Botanic Garden Meise Belgium.

Two new species of Amanitasect.Phalloideae are described from tropical Africa (incl. Madagascar) based on both morphological and molecular (DNA sequence) data. was collected, associated with , in Rwanda, Burundi and Tanzania. It is consumed by local people and chemical analyses showed the absence of amatoxins and phallotoxins in the basidiomata. Surprisingly, molecular analysis performed on the same specimens nevertheless demonstrated the presence of the gene sequence encoding for the phallotoxin phallacidin (PHA gene, member of the MSDIN family). The second species, was collected in Tanzania and Madagascar. It is also characterised by a complete PHA gene sequence and is suspected to be deadly poisonous. Both species clustered together in a well-supported terminal clade in multilocus phylogenetic inferences (including nuclear ribosomal partial LSU and ITS-5.8S, partial -α, and β-tubulin genes), considered either individually or concatenated. This, along with the occurrence of other species in sub-Saharan Africa and their phylogenetic relationships, are briefly discussed. Macro- and microscopic descriptions, as well as pictures and line drawings, are presented for both species. An identification key to the African and Madagascan species of Amanitasect.Phalloideae is provided. The differences between the two new species and the closest species are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3897/mycokeys.53.34560DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6565643PMC
June 2019

Considerations and consequences of allowing DNA sequence data as types of fungal taxa.

IMA Fungus 2018 Jun 24;9(1):167-175. Epub 2018 May 24.

Museum of Evolution, Uppsala University, Norbyvägen 16, 75236 Uppsala, Sweden.

Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11 International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5598/imafungus.2018.09.01.10DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6048565PMC
June 2018