Publications by authors named "Ana Cristina Rego"

19 Publications

  • Page 1 of 1

MPV17 Mutations Are Associated With a Quiescent Energetic Metabolic Profile.

Front Cell Neurosci 2021 17;15:641264. Epub 2021 Mar 17.

Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany.

Mutations in the MPV17 gene are associated with hepatocerebral form of mitochondrial depletion syndrome. The mechanisms through which MPV17 mutations cause respiratory chain dysfunction and mtDNA depletion is still unclear. The MPV17 gene encodes an inner membrane mitochondrial protein that was recently described to function as a non-selective channel. Although its exact function is unknown, it is thought to be important in the maintenance of mitochondrial membrane potential (ΔΨm). To obtain more information about the role of MPV17 in human disease, we investigated the effect of MPV17 knockdown and of selected known MPV17 mutations associated with MPV17 disease . We used different approaches in order to evaluate the cellular consequences of MPV17 deficiency. We found that lower levels of MPV17 were associated with impaired mitochondrial respiration and with a quiescent energetic metabolic profile. All the mutations studied destabilized the protein, resulting in reduced protein levels. We also demonstrated that different mutations caused different cellular abnormalities, including increased ROS production, decreased oxygen consumption, loss of ΔΨm, and mislocalization of MPV17 protein. Our study provides novel insight into the molecular effects of MPV17 mutations and opens novel possibilities for testing therapeutic strategies for a devastating group of disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fncel.2021.641264DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8011494PMC
March 2021

Mitochondrial and Redox Modifications in Huntington Disease Induced Pluripotent Stem Cells Rescued by CRISPR/Cas9 CAGs Targeting.

Front Cell Dev Biol 2020 22;8:576592. Epub 2020 Sep 22.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Mitochondrial deregulation has gained increasing support as a pathological mechanism in Huntington's disease (HD), a genetic-based neurodegenerative disorder caused by CAG expansion in the gene. In this study, we thoroughly investigated mitochondrial-based mechanisms in HD patient-derived iPSC (HD-iPSC) and differentiated neural stem cells (NSC) control cells, as well as in cells subjected to CRISPR/Cas9-CAG repeat deletion. We analyzed mitochondrial morphology, function and biogenesis, linked to exosomal release of mitochondrial components, glycolytic flux, ATP generation and cellular redox status. Mitochondria in HD cells exhibited round shape and fragmented morphology. Functionally, HD-iPSC and HD-NSC displayed lower mitochondrial respiration, exosomal release of cytochrome c, decreased ATP/ADP, reduced PGC-1α and complex III subunit expression and activity, and were highly dependent on glycolysis, supported by pyruvate dehydrogenase (PDH) inactivation. HD-iPSC and HD-NSC mitochondria showed ATP synthase reversal and increased calcium retention. Enhanced mitochondrial reactive oxygen species (ROS) were also observed in HD-iPSC and HD-NSC, along with decreased UCP2 mRNA levels. CRISPR/Cas9-CAG repeat deletion in HD-iPSC and derived HD-NSC ameliorated mitochondrial phenotypes. Data attests for intricate metabolic and mitochondrial dysfunction linked to transcriptional deregulation as early events in HD pathogenesis, which are alleviated following CAG deletion.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.576592DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7536317PMC
September 2020

Mitochondrial and Redox-Based Therapeutic Strategies in Huntington's Disease.

Antioxid Redox Signal 2021 03 4;34(8):650-673. Epub 2020 Jun 4.

Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.

The molecular processes that determine Huntington's disease (HD) pathogenesis are not yet fully understood, and until now no effective neuroprotective therapeutic strategies have been developed. Mitochondria are one of most important organelles required for neuronal homeostasis, by providing metabolic pathways relevant for energy production, regulating calcium homeostasis, or controlling free radical generation and cell death. Because augmented reactive oxygen species (ROS) accompanied by mitochondrial dysfunction are relevant early HD mechanisms, targeting these cellular mechanisms may constitute relevant therapeutic approaches. Previous findings point toward a close relationship between mitochondrial dysfunction and redox changes in HD. Mutant huntingtin (mHTT) can directly interact with mitochondrial proteins, as translocase of the inner membrane 23 (TIM23), disrupting mitochondrial proteostasis and favoring ROS production and HD progression. Furthermore, abnormal brain and muscle redox signaling contributes to altered proteostasis and motor impairment in HD, which can be improved with the mitochondria-targeted antioxidant mitoquinone or resveratrol, an SIRT1 activator that ameliorates mitochondrial biogenesis and function. Various antioxidants and metabolic enhancers have been studied in HD; however, the real outcome of these molecules is still debatable. New compounds have proven to ameliorate mitochondrial and redox-based signaling pathways in early stages of HD, potentially precluding selective neurodegeneration. Unraveling the molecular etiology of deregulated mitochondrial function and dynamics, and oxidative stress opens new prospects for HD therapeutics. In this review, we explore the role of redox unbalance and mitochondrial dysfunction in HD progression, and further describe advances on clinical trials in HD based on mitochondrial and redox-based therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2019.8004DOI Listing
March 2021

Calcium Signaling in Aging and Neurodegenerative Diseases 2019.

Int J Mol Sci 2020 Feb 7;21(3). Epub 2020 Feb 7.

Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Rua Larga, Faculty of Medicine, Polo I, 1st floor, 3004-504 Coimbra, Portugal.

The European Calcium Society (ECS) workshop, which is held every 2 years, is a dedicated meeting of scientists interested in the elucidation of the action of calcium binding, calcium signaling and the study of proteins and organelles, such as mitochondria and endoplasmic reticulum, thereby involved, either in health and disease conditions. The 8 edition of the ECS workshop was organized by a group of researchers from the University of Coimbra, Portugal, in close collaboration with ECS board members. Thanks to the central role of "Calcium Signaling in Aging and Neurodegenerative Disorders", the ECS 2019 workshop was attended by 62 experts who presented their results in a plenary lecture and five regular symposia, two oral communication sessions and two poster sessions, followed by a hands-on session on calcium imaging. All the scientific and social events were fully participated by the scientific community that allowed a close and fruitful interaction and discussion between junior researchers and senior experts in the field. In this report, the contributions in individual sessions are summarized.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3390/ijms21031125DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7037616PMC
February 2020

Chronic stress triggers divergent dendritic alterations in immature neurons of the adult hippocampus, depending on their ultimate terminal fields.

Transl Psychiatry 2019 04 26;9(1):143. Epub 2019 Apr 26.

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.

Chronic stress, a suggested precipitant of brain pathologies, such as depression and Alzheimer's disease, is known to impact on brain plasticity by causing neuronal remodeling as well as neurogenesis suppression in the adult hippocampus. Although many studies show that stressful conditions reduce the number of newborn neurons in the adult dentate gyrus (DG), little is known about whether and how stress impacts on dendritic development and structural maturation of these newborn neurons. We, herein, demonstrate that chronic stress impacts differentially on doublecortin (DCX)-positive immature neurons in distinct phases of maturation. Specifically, the density of the DCX-positive immature neurons whose dendritic tree reaches the inner molecular layer (IML) of DG is reduced in stressed animals, whereas their dendritic complexity is increased. On the contrary, no change on the density of DCX-positive neurons whose dendritic tree extends to the medial/outer molecular layer (M/OML) of the DG is found under stress conditions, whereas the dendritic complexity of these cells is diminished. In addition, DCX+ cells displayed a more complex and longer arbor in the dendritic compartments located in the granular cell layer of the DG under stress conditions; on the contrary, their dendritic segments localized into the M/OML were shorter and less complex. These findings suggest that the neuroplastic effects of chronic stress on dendritic maturation and complexity of DCX+ immature neurons vary based on the different maturation stage of DCX-positive cells and the different DG sublayer, highlighting the complex and dynamic stress-driven neuroplasticity of immature neurons in the adult hippocampus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41398-019-0477-7DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486609PMC
April 2019

biomass increases dendritic arborization of newly-generated neurons in mouse hippocampal dentate gyrus.

Oncotarget 2018 Aug 31;9(68):32929-32942. Epub 2018 Aug 31.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Brain cognitive reserve refers to the ability of the brain to manage different challenges that arise throughout life, making it resilient to neuropathology. Hippocampal adult neurogenesis has been considered to be a relevant contributor for brain cognitive reserve and brain plasticity. (CV), a common healthful mushroom, has been receiving increasing attention by its antitumoral, anti-inflammatory, antioxidant, antibacterial, and immunomodulatory properties, including in the hippocampus. Herein, we evaluated whether CV biomass oral administration for 2.5 months enhances hippocampal neurogenic reserve under normal/physiological conditions, by quantifying hippocampal dentate gyrus (DG) granular cell layer (GCL) and subgranular zone (SGZ) volumes, proliferation, number and dendritic complexity features of hippocampal newly-generated neurons. We also analyzed β-catenin levels in DG newly-generated immature neurons, because it plays a major role in neurogenesis. Although no differences were observed in the volume of GCL and SGZ layers, in proliferation and in the number of newly-generated neurons of controls and CV-administered mice, we found that CV administration promotes a significant increase in dendritic length and branching and total dendritic volume of immature neurons, suggesting a positive effect of oral CV administration in the hippocampal neurogenic reserve. We also observed that β-catenin levels are increased both in the nucleus and cytoplasm of DG immature neurons, suggesting that Wnt/β-catenin signalling may play an important role in the CV positive effect on the differentiation of these cells. These data unveil a so far unexplored neurogenic potential of CV supplementation, which emerges as a possible preventive strategy for different neurological conditions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.25978DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6152478PMC
August 2018

Amyloid β Peptide Compromises Neural Stem Cell Fate by Irreversibly Disturbing Mitochondrial Oxidative State and Blocking Mitochondrial Biogenesis and Dynamics.

Mol Neurobiol 2019 Jun 18;56(6):3922-3936. Epub 2018 Sep 18.

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal.

Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by the accumulation of amyloid β peptide (Aβ). Although most AD mouse models present a decline in neurogenesis, they express mutated genes which regulate neurogenesis per se and are not present in most AD patients, thus masking the real impact of Aβ on adult neurogenesis. Mitochondrion, a well-known target of Aβ in neurons, is a main regulator of neural stem cell (NSC) fate. Here, we aimed to investigate the impact of Aβ on NSC mitochondria and cell fate decisions, namely whether and how Aβ affects neurogenesis. NSC fate and mitochondrial parameters, including biogenesis, dynamics, and oxidative stress, were evaluated. Our results showed that Aβ impaired NSC viability and proliferation and indirectly blocked neurogenic differentiation, by disrupting mitochondrial signaling of self-renewing NSCs. Importantly, Aβ decreased ATP levels, generated oxidative stress, and affected the radical scavenger system through SOD2 and SIRT3. Aβ also reduced mtDNA and mitochondrial biogenesis proteins, such as Tfam, PGC-1α, and NRF1, and inhibited activation of PGC-1α-positive regulator CREB. Moreover, Aβ triggered mitochondrial fragmentation in self-renewing NSCs and reduced mitochondrial fusion proteins, such as Mfn2 and ERRα. Notably, Aβ compromised NSC commitment and survival by irreversibly impairing mitochondria and thwarting any neurogenic rescue through mitochondrial biogenesis, dynamics, or radical scavenger system. Altogether, this study brings new perspective to rethink the molecular targets relevant for endogenous NSC-based strategies in AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-018-1342-zDOI Listing
June 2019

Nuclear localization and phosphorylation modulate pathological effects of alpha-synuclein.

Hum Mol Genet 2019 01;28(1):31-50

Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center Göttingen, Göttingen, Germany.

Alpha-synuclein (aSyn) is a central player in Parkinson's disease (PD) but the precise molecular mechanisms underlying its pathogenicity remain unclear. It has recently been suggested that nuclear aSyn may modulate gene expression, possibly via interactions with DNA. However, the biological behavior of aSyn in the nucleus and the factors affecting its transcriptional role are not known. Here, we investigated the mechanisms underlying aSyn-mediated transcription deregulation by assessing its effects in the nucleus and the impact of phosphorylation in these dynamics. We found that aSyn induced severe transcriptional deregulation, including the downregulation of important cell cycle-related genes. Importantly, transcriptional deregulation was concomitant with reduced binding of aSyn to DNA. By forcing the nuclear presence of aSyn in the nucleus (aSyn-NLS), we found the accumulation of high molecular weight aSyn species altered gene expression and reduced toxicity when compared with the wild-type or exclusively cytosolic protein. Interestingly, nuclear localization of aSyn, and the effect on gene expression and cytotoxicity, was also modulated by phosphorylation on serine 129. Thus, we hypothesize that the role of aSyn on gene expression and, ultimately, toxicity, may be modulated by the phosphorylation status and nuclear presence of different aSyn species. Our findings shed new light onto the subcellular dynamics of aSyn and unveil an intricate interplay between subcellular location, phosphorylation and toxicity, opening novel avenues for the design of future strategies for therapeutic intervention in PD and other synucleinopathies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddy326DOI Listing
January 2019

Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage.

Hum Mol Genet 2017 06;26(12):2231-2246

Department of Experimental Neurodegeneration, Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.

Alpha-synuclein (aSyn) is considered a major culprit in Parkinson's disease (PD) pathophysiology. However, the precise molecular function of the protein remains elusive. Recent evidence suggests that aSyn may play a role on transcription regulation, possibly by modulating the acetylation status of histones. Our study aimed at evaluating the impact of wild-type (WT) and mutant A30P aSyn on gene expression, in a dopaminergic neuronal cell model, and decipher potential mechanisms underlying aSyn-mediated transcriptional deregulation. We performed gene expression analysis using RNA-sequencing in Lund Human Mesencephalic (LUHMES) cells expressing endogenous (control) or increased levels of WT or A30P aSyn. Compared to control cells, cells expressing both aSyn variants exhibited robust changes in the expression of several genes, including downregulation of major genes involved in DNA repair. WT aSyn, unlike A30P aSyn, promoted DNA damage and increased levels of phosphorylated p53. In dopaminergic neuronal cells, increased aSyn expression led to reduced levels of acetylated histone 3. Importantly, treatment with sodium butyrate, a histone deacetylase inhibitor (HDACi), rescued WT aSyn-induced DNA damage, possibly via upregulation of genes involved in DNA repair. Overall, our findings provide novel and compelling insight into the mechanisms associated with aSyn neurotoxicity in dopaminergic cells, which could be ameliorated with an HDACi. Future studies will be crucial to further validate these findings and to define novel possible targets for intervention in PD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/hmg/ddx114DOI Listing
June 2017

Dominant-Negative Effects of Adult-Onset Huntingtin Mutations Alter the Division of Human Embryonic Stem Cells-Derived Neural Cells.

PLoS One 2016 10;11(2):e0148680. Epub 2016 Feb 10.

Grenoble Institut des Neurosciences, Grenoble, France.

Mutations of the huntingtin protein (HTT) gene underlie both adult-onset and juvenile forms of Huntington's disease (HD). HTT modulates mitotic spindle orientation and cell fate in mouse cortical progenitors from the ventricular zone. Using human embryonic stem cells (hESC) characterized as carrying mutations associated with adult-onset disease during pre-implantation genetic diagnosis, we investigated the influence of human HTT and of an adult-onset HD mutation on mitotic spindle orientation in human neural stem cells (NSCs) derived from hESCs. The RNAi-mediated silencing of both HTT alleles in neural stem cells derived from hESCs disrupted spindle orientation and led to the mislocalization of dynein, the p150Glued subunit of dynactin and the large nuclear mitotic apparatus (NuMA) protein. We also investigated the effect of the adult-onset HD mutation on the role of HTT during spindle orientation in NSCs derived from HD-hESCs. By combining SNP-targeting allele-specific silencing and gain-of-function approaches, we showed that a 46-glutamine expansion in human HTT was sufficient for a dominant-negative effect on spindle orientation and changes in the distribution within the spindle pole and the cell cortex of dynein, p150Glued and NuMA in neural cells. Thus, neural derivatives of disease-specific human pluripotent stem cells constitute a relevant biological resource for exploring the impact of adult-onset HD mutations of the HTT gene on the division of neural progenitors, with potential applications in HD drug discovery targeting HTT-dynein-p150Glued complex interactions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0148680PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4749329PMC
July 2016

Limited Effect of Chronic Valproic Acid Treatment in a Mouse Model of Machado-Joseph Disease.

PLoS One 2015 27;10(10):e0141610. Epub 2015 Oct 27.

Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710-057 Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.

Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeutics.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0141610PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4624233PMC
June 2016

Overexpression of BDNF and Full-Length TrkB Receptor Ameliorate Striatal Neural Survival in Huntington's Disease.

Neurodegener Dis 2015 21;15(4):207-18. Epub 2015 Apr 21.

CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

Background: Several cellular mechanisms have been proposed to explain the pathogenesis of Huntington's disease (HD), including the lack of striatal brain-derived neurotrophic factor (BDNF). Thus, by preferentially binding to tropomyosin receptor kinase B (TrkB) receptor, BDNF is an important neurotrophin implicated in striatal neuronal survival.

Objective: To study the influence of BDNF and TrkB receptors in intracellular signaling pathways and caspase-3 activation in HD striatal cells.

Methods: HD mutant knockin and wild-type striatal cells were transduced with preproBDNF or full-length TrkB receptors to analyze BDNF processing, AKT and extracellular signal-regulated kinase (ERK) activation and the activity of caspase-3 in the absence or presence of staurosporine (STS).

Results: HD mutant cells transduced with preproBDNF-mCherry (mCh) expressed similar levels of pro- and mature BDNF compared to WT cells, but HD cells released lower levels of pro- and mature BDNF. Despite this, BDNF-mCh overexpression rescued decreased AKT phosphorylation and reduced the caspase-3 activation observed in HD cells. Activated ERK was also enhanced in HD BDNF-mCh/TrkB-eGFP receptor co-cultures. Of relevance, overexpression of TrkB-eGFP in HD cells decreased caspase-3 activation, and stimulation of TrkB-eGFP-transduced mutant cells with recombinant human BDNF reduced both basal and STS-induced caspase-3 activation.

Conclusion: The results highlight the importance of BDNF-induced TrkB receptor signaling in rescuing HD-mediated apoptotic features in striatal cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1159/000375447DOI Listing
April 2016

Oxidative stress involving changes in Nrf2 and ER stress in early stages of Alzheimer's disease.

Biochim Biophys Acta 2015 Jul 6;1852(7):1428-41. Epub 2015 Apr 6.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal. Electronic address:

Oxidative stress and endoplasmic reticulum (ER) stress have been associated with Alzheimer's disease (AD) progression. In this study we analyzed whether oxidative stress involving changes in Nrf2 and ER stress may constitute early events in AD pathogenesis by using human peripheral blood cells and an AD transgenic mouse model at different disease stages. Increased oxidative stress and increased phosphorylated Nrf2 (p(Ser40)Nrf2) were observed in human peripheral blood mononuclear cells (PBMCs) isolated from individuals with mild cognitive impairment (MCI). Moreover, we observed impaired ER Ca2+ homeostasis and increased ER stress markers in PBMCs from MCI individuals and mild AD patients. Evidence of early oxidative stress defense mechanisms in AD was substantiated by increased p(Ser40)Nrf2 in 3month-old 3xTg-AD male mice PBMCs, and also with increased nuclear Nrf2 levels in brain cortex. However, SOD1 protein levels were decreased in human MCI PBMCs and in 3xTg-AD mice brain cortex; the latter further correlated with reduced SOD1 mRNA levels. Increased ER stress was also detected in the brain cortex of young female and old male 3xTg-AD mice. We demonstrate oxidative stress and early Nrf2 activation in AD human and mouse models, which fails to regulate some of its targets, leading to repressed expression of antioxidant defenses (e.g., SOD-1), and extending to ER stress. Results suggest markers of prodromal AD linked to oxidative stress associated with Nrf2 activation and ER stress that may be followed in human peripheral blood mononuclear cells.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbadis.2015.03.015DOI Listing
July 2015

Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse.

Free Radic Biol Med 2013 Sep 3;62:186-201. Epub 2013 Jun 3.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal. Electronic address:

Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2013.05.042DOI Listing
September 2013

Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse.

Free Radic Biol Med 2012 Nov 25;53(9):1791-806. Epub 2012 Aug 25.

CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.

Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.freeradbiomed.2012.08.569DOI Listing
November 2012

Mechanisms of neurodegeneration in Huntington's disease.

Eur J Neurosci 2008 Jun;27(11):2803-20

Island Medical Program, Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.

Huntington's disease (HD) is caused by an expansion of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene, which leads to neuronal loss in the striatum and cortex and to the appearance of neuronal intranuclear inclusions of mutant huntingtin. Huntingtin plays a role in protein trafficking, vesicle transport, postsynaptic signaling, transcriptional regulation, and apoptosis. Thus, a loss of function of the normal protein and a toxic gain of function of the mutant huntingtin contribute to the disruption of multiple intracellular pathways. Furthermore, excitotoxicity, dopamine toxicity, metabolic impairment, mitochondrial dysfunction, oxidative stress, apoptosis, and autophagy have been implicated in the progressive degeneration observed in HD. Nevertheless, despite the efforts of a multidisciplinary scientific community, there is no cure for this devastating neurodegenerative disorder. This review presents an overview of the mechanisms that may contribute for HD pathogenesis. Ultimately, a better understanding of these mechanisms will lead to the development of more effective therapeutic targets.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1460-9568.2008.06310.xDOI Listing
June 2008

Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs.

Brain Res Rev 2008 Jun 27;58(1):192-208. Epub 2008 Mar 27.

Center for Neuroscience and Cell Biology and Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.

Substance abuse and addiction are the most costly of all the neuropsychiatric disorders. In the last decades, much progress has been achieved in understanding the effects of the drugs of abuse in the brain. However, efficient treatments that prevent relapse have not been developed. Drug addiction is now considered a brain disease, because the abuse of drugs affects several brain functions. Neurological impairments observed in drug addicts may reflect drug-induced neuronal dysfunction and neurotoxicity. The drugs of abuse directly or indirectly affect neurotransmitter systems, particularly dopaminergic and glutamatergic neurons. This review explores the literature reporting cellular and molecular alterations reflecting the cytotoxicity induced by amphetamines, cocaine and opiates in neuronal systems. The neurotoxic effects of drugs of abuse are often associated with oxidative stress, mitochondrial dysfunction, apoptosis and inhibition of neurogenesis, among other mechanisms. Understanding the mechanisms that underlie brain dysfunction observed in drug-addicted individuals may contribute to improve the treatment of drug addiction, which may have social and economic consequences.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainresrev.2008.03.002DOI Listing
June 2008

Carvedilol protects ischemic cardiac mitochondria by preventing oxidative stress.

Rev Port Cardiol 2004 Nov;23(11):1447-55

Unidade de Investigação Básica em Cardiologia, Serviço de Cardiologia, Hospitais da Universidade de Coimbra, Portugal.

Ischemia negatively affects mitochondrial function by inducing the mitochondrial permeability transition (MPT). The MPT is triggered by oxidative stress, which occurs in mitochondria during ischemia as a result of diminished antioxidant defenses and increased reactive oxygen species production. It causes mitochondrial dysfunction and can ultimately lead to cell death. Therefore, drugs able to minimize mitochondrial damage induced by ischemia may prove to be clinically effective. We analyzed the effect of carvedilol, a beta-blocker with antioxidant properties, on mitochondrial dysfunction. Carvedilol decreased levels of TBARS (thiobarbituric acid reactive substances), an indicator of oxidative stress, which is consistent with its antioxidant properties. Regarding cell death by apoptosis, although ischemia did increase caspase-8-like activity, there were no changes in caspase-3-like activity, which is activated downstream of caspase-8; this may indicate that the apoptotic cascade is not activated by 60 minutes of ischemia. We conclude that carvedilol protects ischemic mitochondria by preventing oxidative mitochondrial damage, and, by so doing, it may also inhibit the formation of the MPT pore.
View Article and Find Full Text PDF

Download full-text PDF

Source
November 2004