Publications by authors named "Amit Alexander"

58 Publications

Design and optimization of curcumin loaded nano lipid carrier system using Box-Behnken design.

Biomed Pharmacother 2021 Jul 17;141:111919. Epub 2021 Jul 17.

National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila, Changsari, Kamrup, 781 101 Guwahati, Assam, India. Electronic address:

Herbal antioxidant like curcumin holds great potential to treat neurodegenerative disease like Alzheimer's disease. However, its therapeutic potency is obstructed due to rapid metabolism, poor solubility, GI susceptibility, enzymatic degradation and lower bioavailability. Thus, the present work aimed to design and optimize curcumin-loaded NLC (CNL) with higher drug entrapment, prolonged release and better stability. CNL was prepared by modified melt emulsification method followed by ultrasonication. The formulation was optimized by 3 factor 3 level Box-Behnken design using solid: liquid lipid, surfactant concentration and ultrasonication time as independent variable while particle size, entrapment efficiency and % drug release as dependant variable. The design suggested 3.092 solid:liquid lipid, 2.131% surfactant and 4.757 min ultrasonication fit best to get the optimized formulation. The size of the optimized CNL was noted 124.37 ± 55.81 nm, which is in the acceptable range for brain delivery. SEM results also comply with this size range (near 150 nm) and demonstrated almost spherical and uniform particles with porous and uneven surface structures. PDI, zeta potential, entrapment efficiency and % drug release were observed as 0.201 ± 0.00, - 17.2 ± 2.35 mV, 93.62 ± 0.68% and 92.73 ± 0.06%, respectively. The NLC demonstrated initial burst release with subsequent prolonged release of drug for 48 h. Weibull kinetic equation with 0.9958 R, minimum AIC and maximum MSC value was found best fit to explain the release behavior. The β exponent and diffusional coefficient (n) indicated combined release mechanism with Fickian diffusion as drug release mechanism. Formulation was also found stable at different storage condition.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2021.111919DOI Listing
July 2021

Lithocholic acid-tryptophan conjugate (UniPR126) based mixed micelle as a nano carrier for specific delivery of niclosamide to prostate cancer via EphA2 receptor.

Int J Pharm 2021 Aug 22;605:120819. Epub 2021 Jun 22.

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup, Assam 781101, India. Electronic address:

Targeted delivery of chemotherapeutic agents is considered a prominent strategy for the treatment of cancer due to its site-specific delivery, augmented penetration, bioavailability, and improved therapeutic efficiency. In the present study, we employed UniPR126 as a carrier in a mixed nanomicellar delivery system to target and deliver anticancer drug NIC specifically to cancer cells via EphA2 receptors as these receptors are overexpressed in cancer cells but not in normal cells. The specificity of the carrier was confirmed from the significant enhancement in the uptake of coumarin-6 loaded mixed nanomicelle by EphA2 highly expressed PC-3 cells compared to EphA2 low expressed H4 cells. Further, niclosamide-loaded lithocholic acid tryptophan conjugate-based mixed nanomicelle has shown significant synergistic cytotoxicity in PC-3 but not in H4 cells. In vivo anticancer efficacy data in PC-3 xenograft revealed a significant reduction in the tumor volume (66.87%) with niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle, where pure niclosamide showed just half of the activity. Molecular signaling data by western blotting also indicated that niclosamide-loaded lithocholic acid tryptophan conjugate nanomicelle interfered with the EphA2 receptor signaling and inhibition of the Wnt/beta-catenin pathway and resulted in the synergistic anticancer activity compared to niclosamide pure drug.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120819DOI Listing
August 2021

Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects.

Int J Biol Macromol 2021 Aug 11;184:438-453. Epub 2021 Jun 11.

Industrial Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS), Pilani, Pilani Campus, Rajasthan, India. Electronic address:

Microneedles (MNs) fabrication using chitosan has gained significant interest due to its ability of film-forming, biodegradability, and biocompatibility, making it suitable for topical and transdermal drug delivery. The presence of amine and hydroxyl functional groups on chitosan permits the modification with tunable properties and functionalities. In this regard, chitosan is the preferred material for fabrication of MNs because it does not produce an immune response in the body and can be tailored as per required strength and functionalities. Therefore, many researchers have attempted to use chitosan as a drug delivery vehicle for hydrophilic drugs, peptides, and hormones. In 2020, the FDA has issued "Regulatory Considerations for Microneedling Products". This official guidance is a sign for future opportunities in the development of MNs. The present review focuses on properties, and modifications of chitosan used in the fabrication of MNs. The therapeutic and diagnostic applications of different types of chitosan-based MNs have been discussed. Further, the regulatory aspects of MN-based devices, and patents related to chitosan-based MNs are discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.06.059DOI Listing
August 2021

Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer.

Eur J Pharm Sci 2021 Sep 1;164:105890. Epub 2021 Jun 1.

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India. Electronic address:

Breast Cancer (BC) is a highly heterogeneous malignant carcinoma that is the most frequently occurring cancer in women. The major types of BC are luminal A, basal-like, luminal B, Human Epidermal Growth Factor Receptor 2 (HER2) positive/ Estrogen Receptor (ER) negative, and Triple-Negative BC (TNBC). The conventional therapies against BC include various chemotherapeutic agents in different combinations. Along with the chemotherapeutic drugs, alternatives like hormonal therapy, radiation, and nanotechnology are emerging fields in treating breast carcinoma. Dendrimers are three-dimensional hyperbranched nanosized structures that deal with the toxicity and resistance of chemotherapeutic agents in BC. These nanocarriers can carry drugs on the surface as well as inside the cavity to the desired site. Dendrimers have high loading capacity and exhibit targeted delivery of drugs resulting in reduced side effects. The current review discusses the utilization of dendrimers for treating BC and conquering the limitations of multidrug resistance.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejps.2021.105890DOI Listing
September 2021

Epidemiology, virology and clinical aspects of hantavirus infections: an overview.

Int J Environ Health Res 2021 Apr 22:1-13. Epub 2021 Apr 22.

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.

At the end of 2019 and 2020s, a wave of coronavirus disease 19 (COVID-19) epidemics worldwide has catalyzed a new era of 'communicable infectious diseases'. However, the world is not currently prepared to deal with the growing burden of COVID-19, with the unexpected arrival of Hantavirus infection heading to the next several healthcare emergencies in public. Hantavirus is a significant class of zoonotic pathogens of negative-sense single-stranded ribonucleic acid (RNA). Hemorrhagic renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS) are the two major clinical manifestations. Till date, there is no effective treatments or vaccines available, public awareness and precautionary measures can help to reduce the spread of hantavirus disease. In this study, we outline the epidemiology, virology, clinical aspects, and existing HFRS and HCPS management approaches. This review will give an understanding of virus-host interactions and will help for the early preparation and effective handling of further outbreaks in an ever-changing environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/09603123.2021.1917527DOI Listing
April 2021

Biomaterials in treatment of Alzheimer's disease.

Neurochem Int 2021 05 5;145:105008. Epub 2021 Mar 5.

Department of Pharmaceutical Technology (Formulations), National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India. Electronic address:

Alzheimer's disease (AD) is a non-recoverable progressive neurodegenerative disorder most prevalent but not limited to the old age population. After all the scientific efforts, there are still many unmet criteria and loopholes in available treatment and diagnostic strategies, limiting their efficacy. The poor drug efficacy is attributed to various biological hurdles, including blood-brain barrier (BBB) and peripheral side effects as most prominent ones and the lack of promising carriers to precisely deliver the drug to the brain by conserving its therapeutic potency. The increasing disease prevalence and unavailability of effective therapy calls for developing a more innovative, convenient and affordable way to treat AD. To fulfill such need, researchers explored various biomaterials to develop potential vectors or other forms to target the bioactives in the brain by preserving their inherent properties, improving the existing lacuna like poor solubility, permeability and bioavailability etc. and minimize the side effect. The unique characteristic properties of biomaterials are used to develop different drug carriers, surface modifying target active ligands, functional carriers, drug conjugate, biosensing probe, diagnostic tool and many more. The nanoparticulate system and other colloidal carriers like hydrogel and biodegradable scaffold can effectively target the drug moieties to the brain. Also, the use of different target-acting ligands and stimuli-responsive carriers assures the site-specificity and controlled release at the desired site by interaction with receptors and various exo- and endogenous stimuli. This review article has highlighted the application of biomaterials for targeting the drug to the brain and as promising diagnostic tools to detect the markers for better AD management. The work particularly focuses on the use of biomaterials as smart drug carriers including pH, thermo, photo, electro and magnetically triggered system; novel drug carriers for brain targeting including polymeric carriers (polymeric nanoparticle, dendrimer and polymeric micelle); lipid carrier (liposome, nanoemulsion, NLC and SLN); inorganic nanoparticles (quantum dots, gold nanoparticles etc.); and other drug vectors (hydrogel, biodegradable scaffold, and carbon nanotube) in treatment of AD. It also highlighted the application of some novel carrier systems and biomaterials as biosensor and other diagnostic tools for early and precise AD diagnosis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2021.105008DOI Listing
May 2021

Evolving new-age strategies to transport therapeutics across the blood-brain-barrier.

Int J Pharm 2021 Apr 2;599:120351. Epub 2021 Feb 2.

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India; R&D Healthcare Division Emami Ltd., 13, BT Road, Belgharia, Kolkata 700056, India. Electronic address:

A basic understanding of the blood-brain barrier (BBB) is essential for the novel advancements in targeting drugs specific to the brain. Neoplasm compromising the internal structure of BBB that results in impaired vasculature is called as blood tumor barrier (BTB). Besides, the BBB serves as a chief hindrance to the passage of a drug into the brain parenchyma. The small and hydrophilic drugs majorly display an absence of desired molecular characteristics required to cross the BBB. Furthermore, all classes of biologics have failed in the clinical trials of brain diseases over the past years since these biologics are large molecules that do not cross the BBB. Also, new strategies have been discovered that use the Trojan horse technology with the re-engineered biologics for BBB transport. Thus, this review delivers information about the different grades of tumors (I-IV) i.e. examples of BBB/BTB heterogenicity along with the different mechanisms for transporting the therapeutics into the brain tumors by crossing BBB. This review also provides insights into the emerging approaches of peptide delivery and the non-invasive and brain-specific molecular Trojan horse targeting technologies. Also, the several challenges in the clinical development of BBB penetrating IgG fusion protein have been discussed.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2021.120351DOI Listing
April 2021

Oral peptide delivery: challenges and the way ahead.

Drug Discov Today 2021 Apr 11;26(4):931-950. Epub 2021 Jan 11.

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. Electronic address:

Peptides and proteins have emerged as potential therapeutic agents and, in the search for the best treatment regimen, the oral route has been extensively evaluated because of its non-invasive and safe nature. The physicochemical properties of peptides and proteins along with the hurdles in the gastrointestinal tract (GIT), such as degrading enzymes and permeation barriers, are challenges to their delivery. To address these challenges, several conventional and novel approaches, such as nanocarriers, site-specific and stimuli specific delivery, are being used. In this review, we discuss the challenges to the oral delivery of peptides and the approaches used to tackle these challenges.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2021.01.001DOI Listing
April 2021

Role of stealth lipids in nanomedicine-based drug carriers.

Chem Phys Lipids 2021 03 5;235:105036. Epub 2021 Jan 5.

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India; Emami Limited, R&D Healthcare Division, 13, BT Road, Kolkata, 700 056, West Bengal, India. Electronic address:

The domain of nanomedicine owns a wide-ranging variety of lipid-based drug carriers, and novel nanostructured drug carriersthat are further added to this range every year. The primary goal behind the exploration of any new lipid-based nanoformulation is the improvement of the therapeutic index of the concerned drug molecule along with minimization in the associated side-effects. However, for maintaining a sustained delivery of these intravenously injected lipoidal nanomedicines to the targeted tissues and organ systems in the body, longer circulation in the bloodstream, as well as their stability, are important. After administration, upon recognition as foreign entities in the body, these systems are rapidly cleared by the cells associated with the mononuclear phagocyte system. In order to provide these lipid-based systems with long circulation characteristics, techniques such as coating of the lipoidal surface with an inert polymeric material like polyethylene glycol (PEG) assists in imparting 'stealth properties' to these nanoformulations for avoiding recognition by the macrophages of the immune system. In this review, detailed importance is given to the hydrophilic PEG polymer and the role played by PEG-linked lipid polymers in the field of nanomedicine-based drug carriers. The typical structure and classification of stealth lipids, clinical utility, assemblage techniques, physicochemical characterization, and factors governing the in-vivo performance of the PEG-linked lipids containing formulations will be discussed. Eventually, the novel concept of accelerated blood clearance (ABC) phenomenon associated with the use of PEGylated therapeutics will be deliberated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemphyslip.2020.105036DOI Listing
March 2021

In-line treatments and clinical initiatives to fight against COVID-19 outbreak.

Respir Med 2020 Oct 17:106192. Epub 2020 Oct 17.

National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India. Electronic address:

In December 2019, when the whole world is waiting for Christmas and New Year, the physicians of Wuhan, China, are astounded by clusters of patients suffering from pneumonia from unknown causes. The pathogen isolated from the respiratory epithelium of the patients is similar to previously known coronaviruses with some distinct features. The disease was initially called nCoV-2019 or SARS-nCoV-2 and later termed as COVID-19 by WHO. The infection is rapidly propagating from the day of emergence, spread throughout the globe and now became a pandemic which challenged the competencies of developed nations in terms of health care management. As per WHO report, 216 countries are affected with SARS-CoV-19 by August 5, 2020 with 18, 142, 718 confirmed cases and 691,013 deaths reports. Such huge mortality and morbidity rates are truly threatening and calls for some aggressive and effective measures to slow down the disease transmission. The scientists are constantly engaged in finding a potential solution to diagnose and treat the pandemic. Various FDA approved drugs with the previous history of antiviral potency are repurposed for COVID-19 treatment. Different drugs and vaccines are under clinical trials and some rapid and effective diagnostic tools are also under development. In this review, we have highlighted the current epidemiology through infographics, disease transmission and progression, clinical features and diagnosis and possible therapeutic approaches for COVID-19. The article mainly focused on the development and possible application of various FDA approved drugs, including chloroquine, remdesivir, favipiravir, nefamostate mesylate, penciclovir, nitazoxanide, ribavirin etc., vaccines under development and various registered clinical trials exploring different therapeutic measures for the treatment of COVID-19. This information will definitely help the researchers to understand the in-line scientific progress by various clinical agencies and regulatory bodies against COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.rmed.2020.106192DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7567661PMC
October 2020

Recent advances in targeted nanomedicine as promising antitumor therapeutics.

Drug Discov Today 2020 12 1;25(12):2227-2244. Epub 2020 Oct 1.

Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, 333031, India. Electronic address:

A tumor serves as a major avenue in drug development owing to its complexity. Conventional therapies against tumors possess limitations such as suboptimal therapeutic efficacy and extreme side effects. These display poor pharmacokinetics and lack specific targeting, with non-specific distribution resulting in systemic toxicity. Therefore, nanocarriers targeted against cancers are increasingly being explored. Nanomedicine aids in maintaining a balance between efficacy and toxicity by specifically accumulating in tumors. Nanotherapeutics possess advantages such as increased solubility of chemotherapeutics, encapsulation of multiple drugs and improved biodistribution, and can ensure tumor-directed drug delivery and release via the approaches of passive targeting and active targeting. This review aims to offer a general overview of the current advances in tumor-targeting nanocarriers for clinical and diagnostic use.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2020.09.031DOI Listing
December 2020

Stimuli-responsive In situ gelling system for nose-to-brain drug delivery.

J Control Release 2020 11 31;327:235-265. Epub 2020 Jul 31.

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup-781101, Guwahati, Assam, India. Electronic address:

The diagnosis and treatment of neurological ailments always remain an utmost challenge for research fraternity due to the presence of BBB. The intranasal route appeared as an attractive and alternative route for brain targeting of therapeutics without the intrusion of BBB and GI exposure. This route directly and effectively delivers the therapeutics to different regions of the brain via olfactory and trigeminal nerve pathways. However, shorter drug retention time and mucociliary clearance curtail the efficiency of the intranasal route. The in situ mucoadhesive gel overthrow the limitations of direct nose-to-brain delivery by not only enhancing nasal residence time but also minimizing the mucociliary clearance and enzymatic degradation. This delivery system further improves the nasal absorption as well as bioavailability of drugs in the brain. The in situ mucoadhesive gel is a controlled and sustained release system that facilitates the absorption of various proteins, peptides and other larger lipophilic and hydrophilic moieties. Owing to multiple benefits, in situ gelling system has been widely explored to target the brain via nasal route. However, very few review works are reported which explains the application of in situ nasal gel for brain delivery of CNS acting moieties. Hence, in this piece of work, we have initially discussed the global statistics of neurological disorders reported by WHO and other reputed organizations, nasal anatomy, mechanism and challenges of nose-to-brain drug delivery. The work mainly focused on the use of different stimuli-responsive polymers, specifically thermoresponsive, pH-responsive, and ion triggered systems for the development of an effective and controlled dosage form, i.e., in situ nasal gel for brain targeting of bioactives. We have also highlighted the origin, structure, nature and phase transition behavior of the smart polymers found suitable for nasal administration, including poloxamer, chitosan, EHEC, xyloglucan, Carbopol, gellan gum and DGG along with their application in the treatment of neurological disorders. The article is aimed to gather all the information of the past 10 years related to the development and application of stimuli-responsive in situ nasal gel for brain drug delivery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.07.044DOI Listing
November 2020

Virology, pathogenesis, diagnosis and in-line treatment of COVID-19.

Eur J Pharmacol 2020 Sep 17;883:173375. Epub 2020 Jul 17.

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, Sila Katamur (Halugurisuk), Changsari, Kamrup, 781101, Guwahati, Assam, India. Electronic address:

SARS-CoV-2, a newly emerged pathogen in December 2019, marked as one of the highly pathogenic Coronavirus, and altogether this is the third coronavirus attack that crossed the species barrier. As of 1 July 2020, it is spreading around 216 countries, areas or territories, and a total of 10,185,374 and 503,862 confirmed cases and death reports, respectively. The SARS-CoV-2 virus entered into the target cells by binding with the hACE2 receptors. Spike glycoprotein promotes the entry of the virus into host target cells. Literature reported a significant mutation in receptor binding sites and membrane proteins of the previous SARS-CoV to turned as SARS-CoV-2 virus, responsible for most dreadful pandemic COVID-19. These modifications may be the probable reason for the extreme transmission and pathogenicity of the virus. A hasty spread of COVID-19 throughout the world is highly threatening, but still, scientists do not have a proper therapeutic measure to fight with it. Scientists are endeavoring across the world to find effective therapy to combat COVID 19. Several drugs such as Remdesivir, Hydroxychloroquine, Chloroquine, Ribavirin, Ritonavir, Lopinavir, Favipiravir, Interferons, Bevacizumab, Azithromycin, etc. are currently under clinical trials. Vaccine development from various pharmaceutical companies and research institutes is under progress, and more than ten vaccine candidates are in the various phases of clinical trials. This review work highlighted the origin, emergence, structural features, pathogenesis, and clinical features of COVID-19. We have also discussed the in-line treatment strategies, preventive measures, and vaccines to combat the emergence of COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejphar.2020.173375DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7366121PMC
September 2020

Recent advances of gold nanoparticles as biomaterial in dentistry.

Int J Pharm 2020 Aug 2;586:119596. Epub 2020 Jul 2.

Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India. Electronic address:

Major goal of dental treatment is to eradicate the existing diseases of the oral cavity and implement preventive measures to control the spread of the diseases. Various interventions are being used to cure the dental diseases. Due to the nanostructures, high surface volume and biocompatibility, Gold nanoparticles (GNPs) have been experimented in the treatment of gum diseases, dental caries, tissue engineering, dental implantology and diagnosis of cancers. GNPs possess antifungal and antibacterial activity, hence are incorporated in various biomaterials to potentiate the effect. They also enhance the mechanical properties of materials leading to improved outcomes. They are available in different sizes and concentrations to exhibits its beneficial outcomes. These properties of GNPs make these materials as choice of fillers in biomaterials. This review aims to discuss the effect of incorporation of GNPs in several biomaterials used for dental and medical applications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2020.119596DOI Listing
August 2020

Insulin mediated novel therapies for the treatment of Alzheimer's disease.

Life Sci 2020 May 10;249:117540. Epub 2020 Mar 10.

National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup-781125, Guwahati, Assam, India. Electronic address:

Alzheimer's disease, a progressive neurodegenerative disorder, is one of the leading causes of death in the USA, along with cancer and cardiac disorders. AD is characterized by various neurological factors like amyloid plaques, tau hyperphosphorylation, mitochondrial dysfunction, acetylcholine deficiency, etc. Together, impaired insulin signaling in the brain is also observed as essential factor to be considered in AD pathophysiology. Hence, currently researchers focused on studying the effect of brain insulin metabolism and relation of diabetes with AD. Based on the investigations, AD is also considered as type 3 or brain diabetes. Besides the traditional view of correlating AD with aging, a better understanding of various pathological factors and effects of other physical ailments is necessary to develop a promising therapeutic approach. There is a vast scope of studying the relation of systemic insulin level, insulin signaling, its neuroprotective potency and effect of diabetes on AD progression. The present work describes worldwide status of AD and its relation with diabetes mellitus and insulin metabolism; pathophysiology of AD; different metabolic pathways associating insulin metabolism with AD; insulin receptor and signaling in the brain; glucose metabolism; insulin resistance; and various preclinical and clinical studies reported insulin-based therapies to treat AD via systemic route and through direct intranasal delivery to the brain.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2020.117540DOI Listing
May 2020

Recent strategies and advances in the fabrication of nano lipid carriers and their application towards brain targeting.

J Control Release 2020 05 12;321:372-415. Epub 2020 Feb 12.

National Institute of Pharmaceutical Education and Research (NIPER-Guwahati), Department of Pharmaceuticals, Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup, 781125 Guwahati, Assam, India. Electronic address:

In last two decades, the lipid nanocarriers have been extensively investigated for their drug targeting efficiency towards the critical areas of the human body like CNS, cardiac region, tumor cells, etc. Owing to the flexibility and biocompatibility, the lipid-based nanocarriers, including nanoemulsion, liposomes, SLN, NLC etc. have gained much attention among various other nanocarrier systems for brain targeting of bioactives. Across different lipid nanocarriers, NLC remains to be the safest, stable, biocompatible and cost-effective drug carrier system with high encapsulation efficiency. Drug delivery to the brain always remains a challenging issue for scientists due to the complex structure and various barrier mechanisms surrounding the brain. The application of a suitable nanocarrier system and the use of any alternative route of drug administration like nose-to-brain drug delivery could overcome the hurdle and improves the therapeutic efficiency of CNS acting drugs thereof. NLC, a second-generation lipid nanocarrier, upsurges the drug permeation across the BBB due to its unique structural properties. The biocompatible lipid matrix and nano-size make it an ideal drug carrier for brain targeting. It offers many advantages over other drug carrier systems, including ease of manufacturing and scale-up to industrial level, higher drug targeting, high drug loading, control drug release, compatibility with a wide range of drug substances, non-toxic and non-irritant behavior. This review highlights recent progresses towards the development of NLC for brain targeting of bioactives with particular reference to its surface modifications, formulations aspects, pharmacokinetic behavior and efficacy towards the treatment of various neurological disorders like AD, PD, schizophrenia, epilepsy, brain cancer, CNS infection (viral and fungal), multiple sclerosis, cerebral ischemia, and cerebral malaria. This work describes in detail the role and application of NLC, along with its different fabrication techniques and associated limitations. Specific emphasis is given to compile a summary and graphical data on the area explored by scientists and researchers worldwide towards the treatment of neurological disorders with or without NLC. The article also highlights a brief insight into two prime approaches for brain targeting, including drug delivery across BBB and direct nose-to-brain drug delivery along with the current global status of specific neurological disorders.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2020.02.020DOI Listing
May 2020

Formulation Strategies of Nano Lipid Carrier for Effective Brain Targeting of Anti-AD Drugs.

Curr Pharm Des 2020 ;26(27):3269-3280

Research Institute of Pharmaceutical Sciences,Translational Bio-pharma Engineering Nanodelivery Research Laboratory, Department of Pharmaceutics and Drug Delivery, School of Pharmacy, University of Mississippi, University, MS 38677, United States.

NLC is a next-generation lipid nanocarrier, which holds many advantages over other colloidal lipid carrier systems like higher drug loading, better and controlled release and enhanced stability. Owing to the unique structural composition, i.e. crystallized solid and liquid lipid blend, it offers excellent biocompatibility and higher permeation across physiological membranes like BBB. Moreover, the surface of NLC can easily be modified with target-specific ligands, proteins, peptides, etc. which makes it a potential candidate for brain targeting of CNS acting drugs. NLC has found various applications for the treatment of various CNS disorders including Alzheimer's disease, Parkinson's disease, schizophrenia, epilepsy, migraine, cerebral ischemia, etc. Among these, the application of NLC towards the treatment of AD has been well-explored in the past two decades. In this piece of work, we have discussed the types of NLC, its composition, fabrication techniques, characterization, stability profile and application in the treatment of AD.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1381612826666200212120947DOI Listing
January 2021

Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials.

Curr Stem Cell Res Ther 2020 ;15(3):187-201

Tolani Institute of Pharmacy, Adipur, Kachchh, 370205, India.

Damaged or disabled tissue is life-threatening due to the lack of proper treatment. Many conventional transplantation methods like autograft, iso-graft and allograft are in existence for ages, but they are not sufficient to treat all types of tissue or organ damages. Stem cells, with their unique capabilities like self-renewal and differentiate into various cell types, can be a potential strategy for tissue regeneration. However, the challenges like reproducibility, uncontrolled propagation and differentiation, isolation of specific kinds of cell and tumorigenic nature made these stem cells away from clinical application. Today, various types of stem cells like embryonic, fetal or gestational tissue, mesenchymal and induced-pluripotent stem cells are under investigation for their clinical application. Tissue engineering helps in configuring the stem cells to develop into a desired viable tissue, to use them clinically as a substitute for the conventional method. The use of stem cell-derived Extracellular Vesicles (EVs) is being studied to replace the stem cells, which decreases the immunological complications associated with the direct administration of stem cells. Tissue engineering also investigates various biomaterials to use clinically, either to replace the bones or as a scaffold to support the growth of stemcells/ tissue. Depending upon the need, there are various biomaterials like bio-ceramics, natural and synthetic biodegradable polymers to support replacement or regeneration of tissue. Like the other fields of science, tissue engineering is also incorporating the nanotechnology to develop nano-scaffolds to provide and support the growth of stem cells with an environment mimicking the Extracellular matrix (ECM) of the desired tissue. Tissue engineering is also used in the modulation of the immune system by using patient-specific Mesenchymal Stem Cells (MSCs) and by modifying the physical features of scaffolds that may provoke the immune system. This review describes the use of various stem cells, biomaterials and the impact of nanotechnology in regenerative medicine.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X15666200103124821DOI Listing
December 2020

Recent avenues in Novel Patient-Friendly Techniques for the Treatment of Diabetes.

Curr Drug Deliv 2020 ;17(1):3-14

University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India.

Background: Diabetes is one of the most common chronic metabolic disorders which affect the quality of human life worldwide. As per the WHO report, between 1980 to 2014, the number of diabetes patients increases from 108 million to 422 million, with a global prevalence rate of 8.5% per year. Diabetes is the prime reason behind various other diseases like kidney failure, stroke, heart disorders, glaucoma, etc. It is recognized as the seventh leading cause of death throughout the world. The available therapies are painful (insulin injections) and inconvenient due to higher dosing frequency. Thus, to find out a promising and convenient treatment, extensive investigations are carried out globally by combining novel carrier system (like microparticle, microneedle, nanocarrier, microbeads etc.) and delivery devices (insulin pump, stimuli-responsive device, inhalation system, bioadhesive patch, insulin pen etc.) for more precise diagnosis and painless or less invasive treatment of disease.

Objective: The review article is made with an objective to compile information about various upcoming and existing modern technologies developed to provide greater patient compliance and reduce the undesirable side effect of the drug. These devices evade the necessity of daily insulin injection and offer a rapid onset of action, which sustained for a prolonged duration of time to achieve a better therapeutic effect.

Conclusion: Despite numerous advantages, various commercialized approaches, like Afrezza (inhalation insulin) have been a failure in recent years. Such results call for more potential work to develop a promising system. The novel approaches range from the delivery of non-insulin blood glucose lowering agents to insulin-based therapy with minimal invasion are highly desirable.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201816666191106102020DOI Listing
December 2020

Understanding the Pharmaceutical Aspects of Dendrimers for the Delivery of Anticancer Drugs.

Curr Drug Targets 2020 ;21(6):528-540

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER GUWAHATI), Ministry of Chemicals & Fertilizers, Govt. of India, NH 37, NITS Mirza, Kamrup- 781125, Guwahati (Assam), India.

Dendrimers are emerging class of nanoparticles used in targeted drug delivery systems. These are radially symmetric molecules with well-defined, homogeneous, and monodisperse structures. Due to the nano size, they can easily cross the biological membrane and increase bioavailability. The surface functionalization facilitates targeting of the particular site of action, assists the high drug loading and improves the therapeutic efficiency of the drug. These properties make dendrimers advantageous over conventional drug delivery systems. This article explains the features of dendrimers along with their method of synthesis, such as divergent growth method, convergent growth method, double exponential and mixed method, hyper-core and branched method. Dendrimers are effectively used in anticancer delivery and can be targeted at the site of tumor either by active or passive targeting. There are three mechanisms by which drugs interact with dendrimers, and they are physical encapsulation, electrostatic interaction, chemical conjugation of drug molecules. Drug releases from dendrimer either by in vivo cleavage of the covalent bond between drugdendrimer complexes or by physical changes or stimulus like pH, temperature, etc.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1389450120666191031092259DOI Listing
February 2021

Recent expansions of novel strategies towards the drug targeting into the brain.

Int J Nanomedicine 2019 30;14:5895-5909. Epub 2019 Jul 30.

Pharmaceutics Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.

The treatment of central nervous system (CNS) disorders always remains a challenge for the researchers. The presence of various physiological barriers, primarily the blood-brain barrier (BBB) limits the accessibility of the brain and hinders the efficacy of various drug therapies. Hence, drug targeting to the brain, particularly to the diseased cells by circumventing the physiological barriers is essential to develop a promising therapy for the treatment of brain disorders. Presently, the investigations emphasize the role of different nanocarrier systems or surface modified target specific novel carrier system to improve the efficiency and reduce the side effects of the brain therapeutics. Such approaches supposed to circumvent the BBB or have the ability to cross the barrier function and thus increases the drug concentration in the brain. Although the efficacy of novel carrier system depends upon various physiological factors like active efflux transport, protein corona of the brain, stability, and toxicity of the nanocarrier, physicochemical properties, patient-related factors and many more. Hence, to develop a promising carrier system, it is essential to understand the physiology of the brain and BBB and also the other associated factors. Along with this, some alternative route like direct nose-to-brain drug delivery can also offer a better means to access the brain without exposure of the BBB. In this review, we have discussed the role of various physiological barriers including the BBB and blood-cerebrospinal fluid barrier (BCSFB) on the drug therapy and the mechanism of drug transport across the BBB. Further, we discussed different novel strategies for brain targeting of drug including, polymeric nanoparticles, lipidic nanoparticles, inorganic nanoparticles, liposomes, nanogels, nanoemulsions, dendrimers, quantum dots, etc. along with the intranasal drug delivery to the brain. We have also illustrated various factors affecting the drug targeting efficiency of the developed novel carrier system.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2147/IJN.S210876DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6679699PMC
November 2019

Design and Biological Evaluation of Lipoprotein-Based Donepezil Nanocarrier for Enhanced Brain Uptake through Oral Delivery.

ACS Chem Neurosci 2019 09 29;10(9):4124-4135. Epub 2019 Aug 29.

Department of Pharmacy , Birla Institute of Technology and Science, Pilani (BITS-PILANI) , Pilani Campus , Rajasthan 333031 , India.

Alzheimer's disease (AD) is a progressive neurodegenerative disorder associated with memory and cognitive impairment. Donepezil is an acetylcholinesterase inhibitor used for the symptomatic treatment of AD. However, high dose of donepezil is prescribed to achieve effective concentration in the brain, which leads to significant side effects, gastrointestinal alterations, and hepatotoxicity. In the present study, ApoE3 conjugated polymeric nanoparticles derived from diblock copolymer methoxy poly(ethylene glycol)-polycaprolactone (mPEG-PCL) have been used to boost the delivery of donepezil to the brain. mPEG-PCL is an amphiphilic diblock polymer with a tendency to avoid nanoparticle uptake by phagocytic cells in the liver and can significantly reduce the gastric mucosal irritations. Moreover, ApoE3-based nanocarriers showed a promising ability to enhance brain uptake, binding to amyloid beta with high affinity and accelerating its clearance. Donepezil-loaded polymeric nanoparticles were performed by using a nanoprecipitation method and further surface modified with polysorbate 80 and ApoE3 to increase the brain bioavailability and reduce the dose. Optimization of various process parameters were performed using quality by design approach. ApoE3 polymeric nanoparticles were found to be stable in simulated gastric fluids and exhibited a sustained drug release pattern. Cellular uptake studies confirmed better neuronal uptake of the developed formulation, which is further corroborated with pharmacokinetic and biodistribution studies. Orally administered ApoE3 polymeric nanoparticles resulted in significantly higher brain donepezil levels after 24 h (84.97 ± 11.54 ng/mg tissue) as compared to the pure drug (not detected), suggesting a significant role of surface coating. Together, these findings are promising and offer preclinical evidence for better brain availability of donepezil by oral administration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.9b00343DOI Listing
September 2019

Recent Expansions on Cellular Models to Uncover the Scientific Barriers Towards Drug Development for Alzheimer's Disease.

Cell Mol Neurobiol 2019 Mar 23;39(2):181-209. Epub 2019 Jan 23.

Department of Pharmaceutics, Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India.

Globally, the central nervous system (CNS) disorders appear as the most critical pathological threat with no proper cure. Alzheimer's disease (AD) is one such condition frequently observed with the aged population and sometimes in youth too. Most of the research utilizes different animal models for in vivo study of AD pathophysiology and to investigate the potency of the newly developed therapy. These in vivo models undoubtably provide a powerful investigation tool to study human brain. Although, it sometime fails to mimic the exact environment and responses as the human brain owing to the distinctive genetic and anatomical features of human and rodent brain. In such condition, the in vitro cell model derived from patient specific cell or human cell lines can recapitulate the human brain environment. In addition, the frequent use of animals in research increases the cost of study and creates various ethical issues. Instead, the use of in vitro cellular models along with animal models can enhance the translational values of in vivo models and represent a better and effective mean to investigate the potency of therapeutics. This strategy also limits the excessive use of laboratory animal during the drug development process. Generally, the in vitro cell lines are cultured from AD rat brain endothelial cells, the rodent models, human astrocytes, human brain capillary endothelial cells, patient derived iPSCs (induced pluripotent stem cells) and also from the non-neuronal cells. During the literature review process, we observed that there are very few reviews available which describe the significance and characteristics of in vitro cell lines, for AD investigation. Thus, in the present review article, we have compiled the various in vitro cell lines used in AD investigation including HBMEC, BCECs, SHSY-5Y, hCMEC/D3, PC-2 cell line, bEND3 cells, HEK293, hNPCs, RBE4 cells, SK-N-MC, BMVECs, CALU-3, 7W CHO, iPSCs and cerebral organoids cell lines and different types of culture media such as SCM, EMEM, DMEM/F12, RPMI, EBM and 3D-cell culture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-019-00653-zDOI Listing
March 2019

Biomedical applications of microemulsion through dermal and transdermal route.

Biomed Pharmacother 2018 Dec 8;108:1477-1494. Epub 2018 Oct 8.

Rungta College of Pharmaceutical Sciences and Research, Kohka-Kurud Road, Bhilai, Chhattisgarh, 490 024, India. Electronic address:

Microemulsions are thermodynamically stable, transparent, colloidal drug carrier system extensively used by the scientists for effective drug delivery across the skin. It is a spontaneous isotropic mixture of lipophilic and hydrophilic substances stabilized by suitable surfactant and co-surfactant. The easy fabrication, long-term stability, enhanced solubilization, biocompatibility, skin-friendly appearance and affinity for both the hydrophilic and lipophilic drug substances make it superior for skin drug delivery over the other carrier systems. The topical administration of most of the active compounds is impaired by limited skin permeability due to the presence of skin barriers. In this sequence, the microemulsion represents a cost-effective and convenient drug carrier system which successfully delivers the drug to and across the skin. In the present review work, we compiled various attempts made in last 20 years, utilizing the microemulsion for dermal and transdermal delivery of various drugs. The review emphasizes the potency of microemulsion for topical and transdermal drug delivery and its effect on drug permeability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.10.021DOI Listing
December 2018

Nose-to-brain drug delivery approach: A key to easily accessing the brain for the treatment of Alzheimer's disease.

Neural Regen Res 2018 Dec;13(12):2102-2104

Durg University, Govt. Vasudev Vaman Patankar Girls' P.G. College Campus, Raipur Naka, Durg; University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India.

View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4103/1673-5374.241458DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6199953PMC
December 2018

Stem Cell-Based Therapies: A New Ray of Hope for Diabetic Patients.

Curr Stem Cell Res Ther 2019 ;14(2):146-151

University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur Chhattisgarh 492010, India.

Diabetes and its complications are a significant health concern throughout the globe. There are physiological differences in the mechanism of type-I and type-II diabetes and the conventional drug therapy as well as insulin administration seem to be insufficient to address the problem at large successfully. Hypoglycemic swings, frequent dose adjustments and resistance to the drug are major problems associated with drug therapy. Cellular approaches through stem cell based therapeutic interventions offer a promising solution to the problem. The need for pancreatic transplants in case of Type- I diabetes can also be by-passed/reduced due to the formation of insulin producing β cells via stem cells. Embryonic Stem Cells (ESCs) and induced Pluripotent Stem Cells (iPSCs), successfully used for generating insulin producing β cells. Although many experiments have shown promising results with stem cells in vitro, their clinical testing still needs more exploration. The review attempts to bring into light the clinical studies favoring the transplantation of stem cells in diabetic patients with an objective of improving insulin secretion and improving degeneration of different tissues in response to diabetes. It also focuses on the problems associated with successful implementation of the technique and possible directions for future research.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X13666181002154110DOI Listing
July 2019

Recent Biomedical Applications on Stem Cell Therapy: A Brief Overview.

Curr Stem Cell Res Ther 2019 ;14(2):127-136

University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh 492 010, India.

Stem cells are the specialized cell population with unique self-renewal ability and act as the precursor of all the body cells. Broadly, stem cells are of two types one is embryonic stem cells while the other is adult or somatic stem cells. Embryonic stem cells are the cells of zygote of the blastocyst which give rise to all kind of body cells including embryonic cells, and it can reconstruct a complete organism. While the adult stem cells have limited differentiation ability in comparison with embryonic stem cells and it proliferates into some specific kind of cells. This unique ability of the stem cell makes it a compelling biomedical and therapeutic tool. Stem cells primarily serve as regenerative medicine for particular tissue regeneration or the whole organ regeneration in any physical injury or disease condition (like diabetes, cancer, periodontal disorder, etc.), tissue grafting and plastic surgery, etc. Along with this, it is also used in various preclinical and clinical investigations, biomedical engineering and as a potential diagnostic tool (such as the development of biomarkers) for non-invasive diagnosis of severe disorders. In this review article, we have summarized the application of stem cell as regenerative medicine and in the treatment of various chronic diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X13666181002161700DOI Listing
July 2019

Boosted Memory and Improved Brain Bioavailability of Rivastigmine: Targeting Effort to the Brain Using Covalently Tethered Lower Generation PAMAM Dendrimers with Lactoferrin.

Mol Pharm 2018 10 29;15(10):4538-4549. Epub 2018 Aug 29.

Department of Pharmacy, School of Chemical Sciences and Pharmacy , Central University of Rajasthan, Bandarsindri , Ajmer , Rajasthan 305817 , India.

Currently, there is no treatment strategy which can reverse the process of neuro-degeneration in progression of Alzheimer's disease (AD). Practically, it is desired to achieve and maintain high therapeutic doses in the brain, but it is hard due to selective permeability of the blood-brain barrier (BBB). In the present study, lactoferrin (Lf) was conjugated to polyamidoamine generation 3.0 (PAMAM G3.0) dendrimers for the effective delivery of rivastigmine (RIV) to the brain. Conjugation of PAMAM G3.0 with lactoferrin was confirmed by FT-IR, H NMR, and 2D-NMR spectroscopy as well as AFM techniques. Further, RIV was loaded into PAMAM G3.0 and PAMAM-Lf conjugates. RP-HPLC was used to quantify the drug loading and release as well. Spectroscopic analysis confirmed PAMAM-Lf conjugation, the size of the conjugate was 100.04 ± 3.1 nm, and after RIV loading, the size was increased up to 216.13 ± 2.3 nm. Atomic force microscopic results revealed that the root-mean-square roughness ( R) and surface roughness ( R) were 6.31 and 5.27 nm, respectively, along with other parameters, Skewness and Kurtosis, which were 0.522 and 2.50, respectively. In vitro drug release from the PAMAM-Lf-RIV conjugate was sustained up to more than 100 h, and that of naive RIV was quite rapid (approxmately 99% release was observed in 8 h). Ex vivo hemotoxicity of the PAMAM-Lf-RIV conjugate was almost 9.8-fold lesser than the PAMAM G3.0 ( p < 0.0001), 7.77 times that of PAMAM-enc-RIV and 5 times that of naïve RIV ( p < 0.0001), respectively. The in vivo targeting potency of the conjugate was investigated in a rat model. Bioavailability of the RIV was enhanced 7.87 times compared to RIV along with improved pharmacokinetic parameters. Brain uptake of the drug was improved when treated with PAMAM-Lf-RIV over the RIV and PAMAM-enc-RIV, almost 8 and 4.2 times, respectively, after 4 h of the administration. Additionally, the behavioral studies revealed that PAMAM-Lf-RIV significantly enhanced the overall locomotor activity with higher ambulations over the pure drug and PAMAM-enc-RIV formulation. The outcome of the novel object recognition test was an indirect evidence of memory improvement. Conclusively, the development and characterization of PAMAM-Lf-RIV resulted in improved brain uptake and brain bioavailability with boosted memory, which can be beneficial in the treatment of Alzheimer's.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.8b00537DOI Listing
October 2018

Understanding the prospective of nano-formulations towards the treatment of psoriasis.

Biomed Pharmacother 2018 Nov 10;107:447-463. Epub 2018 Aug 10.

Rungta College of Pharmaceutical Sciences and Research, Kohka, Kurud Road, Bhilai, Chhattisgarh, 490024, India. Electronic address:

Psoriasis is a consistently recurring, inflammatory, autoimmune disorder of the skin, affecting about 2-5% of the world population. Abundant therapeutic agents are accessible for the treatment of psoriasis. Nevertheless, none of them are entirely secure and effective to treat the disease without compromising patient compliance. Furthermore, already existing drugs are supposed to restrain the ailment and alleviate the sign and symptoms with no complete cure. However, they focus on restraining the disease and alleviating the symptoms without providing an absolute cure. Therefore there remains a vital challenge, to explore a new drug moiety or delivery system which could safely and effectively manage psoriasis without compromising patient compliance. Furthermore, conventional formulations offer reduced benefit/risk ratio of anti-psoriatic drugs, which limits the use of existing conventional formulations. Novel formulations based on nanocarriers are a promising prospect to overcome the limitation of conventional formulations by offering a reduction in dose, dosing frequency, dose-dependent, side effects with enhanced efficacy. Presently nano-formulations have gained widespread application for effective and safe treatment of psoriasis. The present review primarily focuses on conventional therapeutic strategy and recent advances in lipid-based, polymer-based and metallic nano-formulations of a variety of anti-psoriatic drugs. The practicability of various nanocarrier systems including liposomes, nanostructured lipid carriers, ethosomes, solid lipid nanoparticles, nanocapsules, micelles, dendrimers, gold nanoparticles and silver nanoparticles have been discussed in detail. The review also traces related patents to exemplify the role of various nanoparticles in psoriasis treatment. In a nutshell, nano-formulations remain established as a promising modality for treating psoriasis treatment as they propose better penetration, targeted delivery, enhanced safety, and efficacy.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2018.07.156DOI Listing
November 2018

Amalgamation of Stem Cells with Nanotechnology: A Unique Therapeutic Approach.

Curr Stem Cell Res Ther 2019 ;14(2):83-92

Rungta College of Pharmaceutical Sciences and Research, Bhilai, Chhattisgarh 490024, India.

In the last few years, the stem cell therapy has gained much popularity among researchers and scientists of biomedical field. It became an effective and alternative approach for the treatment of various physiological conditions (like accidental injuries, burn damage, organ failure, bone marrow transfusion, etc.) and chronic disorders (diabetes, cancer, neurodegenerative disorders, periodontal diseases, etc.). Due to the unique ability of cellular differentiation and regeneration, stem cell therapy serves as the last hope for various incurable conditions and severe damages. The amalgamation of stem cell therapy with nanotechnology brings new prospects to the stem cell research, as it improves the specificity of the treatment and controls the stem cell proliferation and differentiation. In this review article, we have discussed various nanocarrier systems such as carbon nanotubes, quantum dots, nanofibers, nanoparticles, nanodiamonds, nanoparticle scaffold, etc. utilized for the delivery of stem cell inside the body.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2174/1574888X13666180703143219DOI Listing
July 2019
-->