Publications by authors named "Amit A Upadhyay"

18 Publications

  • Page 1 of 1

A modified vaccinia Ankara vector-based vaccine protects macaques from SARS-CoV-2 infection, immune pathology, and dysfunction in the lungs.

Immunity 2021 03 4;54(3):542-556.e9. Epub 2021 Feb 4.

Emory Vaccine Center, Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA. Electronic address:

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8 T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8 T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.immuni.2021.02.001DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859620PMC
March 2021

Clinical and whole genome characterization of SARS-CoV-2 in India.

PLoS One 2021 2;16(2):e0246173. Epub 2021 Feb 2.

Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.

We report clinical profile of hundred and nine patients with SARS CoV-2 infection, and whole genome sequences (WGS) of seven virus isolates from the first reported cases in India, with various international travel histories. Comorbidities such as diabetes, hypertension, and cardiovascular disease were frequently associated with severity of the disease. WBC and neutrophil counts showed an increase, while lymphocyte counts decreased in patients with severe infection suggesting a possible neutrophil mediated organ damage, while immune activity may be diminished with decrease in lymphocytes leading to disease severity. Increase in SGOT, SGPT and blood urea suggests the functional deficiencies of liver, heart, and kidney in patients who succumbed to the disease when compared to the group of recovered patients. The WGS analysis showed that these isolates were classified into two clades: I/A3i, and A2a (four according to GISAID: O, L, GR, and GH). Further, WGS phylogeny and travel history together indicate possible transmission from Middle East and Europe. Three S protein variants: Wuhan reference, D614G, and Y28H were identified predicted to possess different binding affinities to host ACE2.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0246173PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853523PMC
February 2021

Early T follicular helper cell activity accelerates hepatitis C virus-specific B cell expansion.

J Clin Invest 2021 Jan;131(2)

Division of Infectious diseases, Emory Vaccine Center, Division of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA.

Early appearance of neutralizing antibodies during acute hepatitis C virus (HCV) infection is associated with spontaneous viral clearance. However, the longitudinal changes in antigen-specific memory B cell (MBCs) associated with divergent HCV infection outcomes remain undefined. We characterized longitudinal changes in E2 glycoprotein-specific MBCs from subjects who either spontaneously resolved acute HCV infection or progressed to chronic infection, using single-cell RNA-seq and functional assays. HCV-specific antibodies in plasma from chronically infected subjects recognized multiple E2 genotypes, while those from spontaneous resolvers exhibited variable cross-reactivity to heterotypic E2. E2-specific MBCs from spontaneous resolvers peaked early after infection (4-6 months), following expansion of activated circulating T follicular helper cells (cTfh) expressing interleukin 21. In contrast, E2-specific MBCs from chronically infected subjects, enriched in VH1-69, expanded during persistent infection (> 1 year), in the absence of significantly activated cTfh expansion. Early E2-specific MBCs from spontaneous resolvers produced monoclonal antibodies (mAbs) with fewer somatic hypermutations and lower E2 binding but similar neutralization as mAbs from late E2-specific MBCs of chronically infected subjects. These findings indicate that early cTfh activity accelerates expansion of E2-specific MBCs during acute infection, which might contribute to spontaneous clearance of HCV.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1172/JCI140590DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7810471PMC
January 2021

Baricitinib treatment resolves lower-airway macrophage inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques.

Cell 2021 01 10;184(2):460-475.e21. Epub 2020 Nov 10.

Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA 30322, USA. Electronic address:

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2020.11.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7654323PMC
January 2021

Baricitinib treatment resolves lower airway inflammation and neutrophil recruitment in SARS-CoV-2-infected rhesus macaques.

bioRxiv 2020 Sep 16. Epub 2020 Sep 16.

Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/2020.09.16.300277DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7523106PMC
September 2020

Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans.

Science 2020 09 11;369(6508):1210-1220. Epub 2020 Aug 11.

Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA 94305, USA.

Coronavirus disease 2019 (COVID-19) represents a global crisis, yet major knowledge gaps remain about human immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed immune responses in 76 COVID-19 patients and 69 healthy individuals from Hong Kong and Atlanta, Georgia, United States. In the peripheral blood mononuclear cells (PBMCs) of COVID-19 patients, we observed reduced expression of human leukocyte antigen class DR (HLA-DR) and proinflammatory cytokines by myeloid cells as well as impaired mammalian target of rapamycin (mTOR) signaling and interferon-α (IFN-α) production by plasmacytoid dendritic cells. By contrast, we detected enhanced plasma levels of inflammatory mediators-including EN-RAGE, TNFSF14, and oncostatin M-which correlated with disease severity and increased bacterial products in plasma. Single-cell transcriptomics revealed a lack of type I IFNs, reduced HLA-DR in the myeloid cells of patients with severe COVID-19, and transient expression of IFN-stimulated genes. This was consistent with bulk PBMC transcriptomics and transient, low IFN-α levels in plasma during infection. These results reveal mechanisms and potential therapeutic targets for COVID-19.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abc6261DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7665312PMC
September 2020

Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures.

J Virol 2020 09 15;94(19). Epub 2020 Sep 15.

Center for Childhood Infections and Vaccines (CCIV), Atlanta, Georgia, USA

The newly emerged human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a pandemic of respiratory illness. Current evidence suggests that severe cases of SARS-CoV-2 are associated with a dysregulated immune response. However, little is known about how the innate immune system responds to SARS-CoV-2. In this study, we modeled SARS-CoV-2 infection using primary human airway epithelial (pHAE) cultures, which are maintained in an air-liquid interface. We found that SARS-CoV-2 infects and replicates in pHAE cultures and is directionally released on the apical, but not basolateral, surface. Transcriptional profiling studies found that infected pHAE cultures had a molecular signature dominated by proinflammatory cytokines and chemokine induction, including interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and CXCL8, and identified NF-κB and ATF-4 as key drivers of this proinflammatory cytokine response. Surprisingly, we observed a complete lack of a type I or III interferon (IFN) response to SARS-CoV-2 infection. However, pretreatment and posttreatment with type I and III IFNs significantly reduced virus replication in pHAE cultures that correlated with upregulation of antiviral effector genes. Combined, our findings demonstrate that SARS-CoV-2 does not trigger an IFN response but is sensitive to the effects of type I and III IFNs. Our studies demonstrate the utility of pHAE cultures to model SARS-CoV-2 infection and that both type I and III IFNs can serve as therapeutic options to treat COVID-19 patients. The current pandemic of respiratory illness, COVID-19, is caused by a recently emerged coronavirus named SARS-CoV-2. This virus infects airway and lung cells causing fever, dry cough, and shortness of breath. Severe cases of COVID-19 can result in lung damage, low blood oxygen levels, and even death. As there are currently no vaccines approved for use in humans, studies of the mechanisms of SARS-CoV-2 infection are urgently needed. Our research identifies an excellent system to model SARS-CoV-2 infection of the human airways that can be used to test various treatments. Analysis of infection in this model system found that human airway epithelial cell cultures induce a strong proinflammatory cytokine response yet block the production of type I and III IFNs to SARS-CoV-2. However, treatment of airway cultures with the immune molecules type I or type III interferon (IFN) was able to inhibit SARS-CoV-2 infection. Thus, our model system identified type I or type III IFN as potential antiviral treatments for COVID-19 patients.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.00985-20DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7495371PMC
September 2020

Systemic HIV and SIV latency reversal via non-canonical NF-κB signalling in vivo.

Nature 2020 02 22;578(7793):160-165. Epub 2020 Jan 22.

International Center for the Advancement of Translational Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Long-lasting, latently infected resting CD4 T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow-liver-thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4 T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal-in combination with appropriate tools for systemic clearance of persistent HIV infection-greatly increases opportunities for HIV eradication.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41586-020-1951-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7111210PMC
February 2020

How Bacterial Chemoreceptors Evolve Novel Ligand Specificities.

mBio 2020 01 21;11(1). Epub 2020 Jan 21.

Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain

Chemoreceptor-based signaling pathways are among the major modes of bacterial signal transduction, and PAO1 is an important model to study their function. Of the 26 chemoreceptors of this strain, PctA has a broad ligand range and responds to most of the proteinogenic amino acids, whereas PctB and PctC have a much narrower range and show strong ligand preference for l-glutamine and γ-aminobutyrate, respectively. Using several comparative genomics approaches, we show that these receptors are paralogs: gene duplication in the common ancestor of the genus led to , whereas originated through another, independent duplication in the common ancestor of Thus, the broad-range amino acid chemoreceptor was evolutionarily older, and chemoreceptors that complemented "missing" amino acid sensing abilities arose later in specific lineages. Using comparative sequence analysis, newly solved crystal structures of PctA, PctB, and PctC ligand-binding domains, and their molecular dynamics simulations, we identified a conserved amino acid recognition motif and changes in the ligand-binding pocket that led to novel ligand specificities. In addition, we determined major forces driving the evolution of this group of chemoreceptors. Many bacteria possess a large number of chemoreceptors that recognize a variety of different compounds. More than 60% of the genomes analyzed in this study contain paralogous chemoreceptors, suggesting that they emerge with high frequency. We provide first insight on how paralogous receptors have evolved and show that two chemoreceptors with a narrow ligand range have evolved from an ancestral protein with a broad chemoeffector spectrum. Protein structures show that multiple changes in the ligand-binding site account for the differences in the ligand spectrum. This work lays the ground for further studies aimed at establishing whether the principles of ligand-binding evolution reported here can be generalized for a wider spectrum of sensory proteins in bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.03066-19DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6974571PMC
January 2020

Rapid Germinal Center and Antibody Responses in Non-human Primates after a Single Nanoparticle Vaccine Immunization.

Cell Rep 2019 11;29(7):1756-1766.e8

Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA. Electronic address:

The first immunization in a protein prime-boost vaccination is likely to be critical for how the immune response unfolds. Using fine needle aspirates (FNAs) of draining lymph nodes (LNs), we tracked the kinetics of the primary immune response in rhesus monkeys immunized intramuscularly (IM) or subcutaneously (s.c.) with an eOD-GT8 60-mer nanoparticle immunogen to facilitate clinical trial design. Significant numbers of germinal center B (B) cells and antigen-specific CD4 T cells were detectable in the draining LN as early as 7 days post-immunization and peaked near day 21. Strikingly, s.c. immunization results in 10-fold larger antigen-specific B cell responses compared to IM immunization. Lymphatic drainage studies revealed that s.c. immunization resulted in faster and more consistent axillary LN drainage than IM immunization. These data indicate robust antigen-specific germinal center responses can occur rapidly to a single immunization with a nanoparticle immunogen and vaccine drainage substantially impacts immune responses in local LNs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2019.10.008DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6905039PMC
November 2019

Slow Delivery Immunization Enhances HIV Neutralizing Antibody and Germinal Center Responses via Modulation of Immunodominance.

Cell 2019 05 9;177(5):1153-1171.e28. Epub 2019 May 9.

Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (Scripps CHAVI-ID), The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA. Electronic address:

Conventional immunization strategies will likely be insufficient for the development of a broadly neutralizing antibody (bnAb) vaccine for HIV or other difficult pathogens because of the immunological hurdles posed, including B cell immunodominance and germinal center (GC) quantity and quality. We found that two independent methods of slow delivery immunization of rhesus monkeys (RMs) resulted in more robust T follicular helper (T) cell responses and GC B cells with improved Env-binding, tracked by longitudinal fine needle aspirates. Improved GCs correlated with the development of >20-fold higher titers of autologous nAbs. Using a new RM genomic immunoglobulin locus reference, we identified differential IgV gene use between immunization modalities. Ab mapping demonstrated targeting of immunodominant non-neutralizing epitopes by conventional bolus-immunized animals, whereas slow delivery-immunized animals targeted a more diverse set of epitopes. Thus, alternative immunization strategies can enhance nAb development by altering GCs and modulating the immunodominance of non-neutralizing epitopes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cell.2019.04.012DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6619430PMC
May 2019

West Nile Virus-Inclusive Single-Cell RNA Sequencing Reveals Heterogeneity in the Type I Interferon Response within Single Cells.

J Virol 2019 03 5;93(6). Epub 2019 Mar 5.

Department of Pediatrics, Division of Infectious Disease, Emory University School of Medicine, Atlanta, Georgia, USA

West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus of global importance. Neuroinvasive WNV infection results in encephalitis and can lead to prolonged neurological impairment or death. Type I interferon (IFN-I) is crucial for promoting antiviral defenses through the induction of antiviral effectors, which function to restrict viral replication and spread. However, our understanding of the antiviral response to WNV infection is mostly derived from analysis of bulk cell populations. It is becoming increasingly apparent that substantial heterogeneity in cellular processes exists among individual cells, even within a seemingly homogenous cell population. Here, we present WNV-inclusive single-cell RNA sequencing (scRNA-seq), an approach to examine the transcriptional variation and viral RNA burden across single cells. We observed that only a few cells within the bulk population displayed robust transcription of IFN-β mRNA, and this did not appear to depend on viral RNA abundance within the same cell. Furthermore, we observed considerable transcriptional heterogeneity in the IFN-I response, with genes displaying high unimodal and bimodal expression patterns. Broadly, IFN-stimulated genes negatively correlated with viral RNA abundance, corresponding with a precipitous decline in expression in cells with high viral RNA levels. Altogether, we demonstrated the feasibility and utility of WNV-inclusive scRNA-seq as a high-throughput technique for single-cell transcriptomics and WNV RNA detection. This approach can be implemented in other models to provide insights into the cellular features of protective immunity and identify novel therapeutic targets. West Nile virus (WNV) is a clinically relevant pathogen responsible for recurrent epidemics of neuroinvasive disease. Type I interferon is essential for promoting an antiviral response against WNV infection; however, it is unclear how heterogeneity in the antiviral response at the single-cell level impacts viral control. Specifically, conventional approaches lack the ability to distinguish differences across cells with varying viral abundance. The significance of our research is to demonstrate a new technique for studying WNV infection at the single-cell level. We discovered extensive variation in antiviral gene expression and viral abundance across cells. This protocol can be applied to primary cells or models to better understand the underlying cellular heterogeneity following WNV infection for the development of targeted therapeutic strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JVI.01778-18DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6401468PMC
March 2019

The human naive B cell repertoire contains distinct subclasses for a germline-targeting HIV-1 vaccine immunogen.

Sci Transl Med 2018 07;10(448)

Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.

Traditional vaccine development to prevent some of the worst current pandemic diseases has been unsuccessful so far. Germline-targeting immunogens have potential to prime protective antibodies (Abs) via more targeted immune responses. Success of germline-targeting vaccines in humans will depend on the composition of the human naive B cell repertoire, including the frequencies and affinities of epitope-specific B cells. However, the human naive B cell repertoire remains largely undefined. Assessment of antigen-specific human naive B cells among hundreds of millions of B cells from multiple donors may be used as pre-phase 1 ex vivo human testing to potentially forecast B cell and Ab responses to new vaccine designs. VRC01 is an HIV broadly neutralizing Ab (bnAb) against the envelope CD4-binding site (CD4bs). We characterized naive human B cells recognizing eOD-GT8, a germline-targeting HIV-1 vaccine candidate immunogen designed to prime VRC01-class Abs. Several distinct subclasses of VRC01-class naive B cells were identified, sharing sequence characteristics with inferred precursors of known bnAbs VRC01, VRC23, PCIN63, and N6. Multiple naive B cell clones exactly matched mature VRC01-class bnAb L-CDR3 sequences. Non-VRC01-class B cells were also characterized, revealing recurrent public light chain sequences. Unexpectedly, we also identified naive B cells related to the IOMA-class CD4bs bnAb. These different subclasses within the human repertoire had strong initial affinities () to the immunogen, up to 13 nM, and represent encouraging indications that multiple independent pathways may exist for vaccine-elicited VRC01-class bnAb development in most individuals. The frequencies of these distinct eOD-GT8 B cell specificities give insights into antigen-specific compositional features of the human naive B cell repertoire and provide actionable information for vaccine design and advancement.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aat0381DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145074PMC
July 2018

BALDR: a computational pipeline for paired heavy and light chain immunoglobulin reconstruction in single-cell RNA-seq data.

Genome Med 2018 03 20;10(1):20. Epub 2018 Mar 20.

Division of Microbiology and Immunology, Yerkes National Primate Research Center, Atlanta, GA, USA.

B cells play a critical role in the immune response by producing antibodies, which display remarkable diversity. Here we describe a bioinformatic pipeline, BALDR (BCR Assignment of Lineage using De novo Reconstruction) that accurately reconstructs the paired heavy and light chain immunoglobulin gene sequences from Illumina single-cell RNA-seq data. BALDR was accurate for clonotype identification in human and rhesus macaque influenza vaccine and simian immunodeficiency virus vaccine induced vaccine-induced plasmablasts and naïve and antigen-specific memory B cells. BALDR enables matching of clonotype identity with single-cell transcriptional information in B cell lineages and will have broad application in the fields of vaccines, human immunodeficiency virus broadly neutralizing antibody development, and cancer.BALDR is available at https://github.com/BosingerLab/BALDR .
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13073-018-0528-3DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5859752PMC
March 2018

Class III Histidine Kinases: a Recently Accessorized Kinase Domain in Putative Modulators of Type IV Pilus-Based Motility.

J Bacteriol 2017 09 22;199(18). Epub 2017 Aug 22.

Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA

Histidine kinases are key components of regulatory systems that enable bacteria to respond to environmental changes. Two major classes of histidine kinases are recognized on the basis of their modular design: classical (HKI) and chemotaxis specific (HKII). Recently, a new type of histidine kinase that appeared to have features of both HKIs and HKIIs was identified and termed HKIII; however, the details of HKIII's relationship to other two classes of histidine kinases, their function, and evolutionary history remain unknown. Here, we carried out genomic, phylogenetic, and protein sequence analyses that allowed us to reveal the unusual evolutionary history of this protein family, formalize its distinctive features, and propose its putative function. HKIIIs are characterized by the presence of sensory domains and the lack of a dimerization domain, which is typically present in all histidine kinases. In addition to a single-domain response regulator, HKIII signal transduction systems utilize CheX phosphatase and, in many instances, an unorthodox soluble chemoreceptor that are usual components of chemotaxis signal transduction systems. However, many HKIII genes are found in genomes completely lacking chemotaxis genes, thus decoupling their function from chemotaxis. By contrast, all HKIII-containing genomes also contain , a marker gene for bacterial type IV pilus-based motility, whose regulation is proposed as a putative function for HKIII. These signal transduction systems have a narrow phyletic distribution but are present in many emerging and opportunistic pathogens, thus offering an attractive potential target for future antimicrobial drug design. Bacteria adapt to their environment and their hosts by detecting signals and regulating their cellular functions accordingly. Here, we describe a largely unexplored family of signal transduction histidine kinases, called HKIII, that have a unique modular design. While they are currently identified in a relatively short list of bacterial species, this list contains many emerging pathogens. We show that HKIIIs likely control bacterial motility across solid surfaces, which is a key virulence factor in many bacteria, including those causing severe infections. Full understanding of this putative function may help in designing effective drugs against pathogens that will not affect the majority of the beneficial human microbiome.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JB.00218-17DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573082PMC
September 2017

Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures.

Drug Discov Today 2016 10 26;21(10):1672-1680. Epub 2016 Jun 26.

Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA; South Carolina Center for Therapeutic Discovery and Development, Medical University of South Carolina, 280 Calhoun St, Charleston, SC 29425, USA. Electronic address:

There is a continuing need to hasten and improve protein-ligand docking to facilitate the next generation of drug discovery. As the drug-like chemical space reaches into the billions of molecules, increasingly powerful computer systems are required to probe, as well as tackle, the software engineering challenges needed to adapt existing docking programs to use next-generation massively parallel processing systems. We demonstrate docking setup using the wrapper code approach to optimize the DOCK program for large-scale computation as well as docking analysis using variance and promiscuity as examples. Wrappers provide faster docking speeds when compared with the naive multi-threading system MPI-DOCK, making future endeavors in large-scale docking more feasible; in addition, eliminating highly variant or promiscuous compounds will make databases more useful.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drudis.2016.06.023DOI Listing
October 2016

Cache Domains That are Homologous to, but Different from PAS Domains Comprise the Largest Superfamily of Extracellular Sensors in Prokaryotes.

PLoS Comput Biol 2016 Apr 6;12(4):e1004862. Epub 2016 Apr 6.

Genome Science and Technology Graduate Program, University of Tennessee-Oak Ridge National Laboratory, Knoxville, Tennessee, United States of America.

Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly built computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms. Furthermore, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.pcbi.1004862DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4822843PMC
April 2016