Publications by authors named "Amir Mustakim Ab Rashid"

2 Publications

  • Page 1 of 1

Effects of badminton insole design on stress distribution, displacement and bone rotation of ankle joint during single-leg landing: a finite element analysis.

Sports Biomech 2022 Jun 20:1-22. Epub 2022 Jun 20.

Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.

Previous research has reported that up to 92% of injuries amongst badminton players consist of lower limb, whereby 35% of foot fractures occurred at the metatarsal bone. In sports, insoles are widely used to increase athletes' performance and prevent many injuries. However, there is still a lack of badminton insole analysis and improvements. Therefore, this study aimed to biomechanically analyse three different insole designs. A validated and converged three-dimensional (3D) finite element model of ankle-foot complex was developed, which consisted of the skin, talus, calcaneus, navicular, three cuneiform, cuboid, five metatarsals and five phalanges. Three existing insoles from the market, (1) Yonex Active Pro Truactive, (2) Victor VT-XD 8 and (3) Li-Ning L6200LA, were scanned using a 3D scanner. For the analysis, single-leg landing was simulated. On the superior surface of the skin, 2.57 times of the bodyweight was axially applied, and the inferior surface of the outsole was fixed. The results showed that Insole 3 was the most optimum design to reduce peak stress on the metatarsals (3.807 MPa). In conclusion, the optimum design of Insole 3, based on the finite element analysis, could be a justification of athletes' choices to prevent injury and other complications.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1080/14763141.2022.2086168DOI Listing
June 2022

Biomechanical effects of cross-pin's diameter in reconstruction of anterior cruciate ligament - A specific case study via finite element analysis.

Injury 2022 Jul 19;53(7):2424-2436. Epub 2022 May 19.

Bioinspired Devices and Tissue Engineering (BIOINSPIRA) Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia; Sports Innovation and Technology Centre (SITC), Institute of Human Centered Engineering (iHumEn), Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.

For anterior cruciate ligament reconstruction (ACL-R), one of the crucial aspects of treatment is the fixator selection that could provide initial graft fixation post-operatively. Literature on biomechanical stabilities of different sizes of fixators as femoral graft fixation is limited. Therefore, this study aims to analyse the influence of different diameters of cross-pins on the stability of graft fixations after ACL-R via finite element analysis (FEA). In the methodology, three-dimensional (3D) models of three different diameters of cross-pins were developed, of which anterior tibial loads (ATL) were applied onto the tibia. From the findings, the cross-pin with a smaller diameter (4 mm) provided optimum stability than larger diameter cross-pins, whereby it demonstrated acceptable stresses at the fixators (both cross-pin and interference screw) with a different percentage of 28%, while the stresses at the corresponding bones were favourable for osseointegration to occur. Besides, the strains of the knee joint with 4 mm diameter cross-pin were also superior in providing a good biomechanical environment for bone healing, while the recorded strain values at fixators were comparable with a larger diameter of cross-pins without being inferior in terms of deformation. To conclude, the cross-pin with 4 mm diameter depicted the best biomechanical aspects in graft fixation for ACL-R since it allows better assistance for the osseointegration process and can minimise the possibility of the breakage and migration of fixators. This study is not only useful for medical surgeons to justify their choices of pin diameter to treat patients, but also for researchers to conduct future studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.injury.2022.05.021DOI Listing
July 2022
-->