Publications by authors named "Amélie Rodrigues"

2 Publications

  • Page 1 of 1

Generation of a Transplantable Population of Human iPSC-Derived Retinal Ganglion Cells.

Front Cell Dev Biol 2020 27;8:585675. Epub 2020 Oct 27.

Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France.

Optic neuropathies are a major cause of visual impairment due to retinal ganglion cell (RGC) degeneration. Human induced-pluripotent stem cells (iPSCs) represent a powerful tool for studying both human RGC development and RGC-related pathological mechanisms. Because RGC loss can be massive before the diagnosis of visual impairment, cell replacement is one of the most encouraging strategies. The present work describes the generation of functional RGCs from iPSCs based on innovative 3D/2D stepwise differentiation protocol. We demonstrate that targeting the cell surface marker THY1 is an effective strategy to select transplantable RGCs. By generating a fluorescent GFP reporter iPSC line to follow transplanted cells, we provide evidence that THY1-positive RGCs injected into the vitreous of mice with optic neuropathy can survive up to 1 month, intermingled with the host RGC layer. These data support the usefulness of iPSC-derived RGC exploration as a potential future therapeutic strategy for optic nerve regeneration.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcell.2020.585675DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7652757PMC
October 2020

Reprogramming of Adult Retinal Müller Glial Cells into Human-Induced Pluripotent Stem Cells as an Efficient Source of Retinal Cells.

Stem Cells Int 2019 15;2019:7858796. Epub 2019 Jul 15.

Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France.

The reprogramming of human somatic cells to induced pluripotent stem cells (iPSCs) has broad applications in regenerative medicine. The generation of self-organized retinal structures from these iPSCs offers the opportunity to study retinal development and model-specific retinal disease with patient-specific iPSCs and provides the basis for cell replacement strategies. In this study, we demonstrated that the major type of glial cells of the human retina, Müller cells, can be reprogrammed into iPSCs that acquire classical signature of pluripotent stem cells. These Müller glial cell-derived iPSCs were able to differentiate toward retinal fate and generate concomitantly retinal pigmented epithelial cells and self-forming retinal organoid structures containing retinal progenitor cells. Retinal organoids recapitulated retinal neurogenesis with differentiation of retinal progenitor cells into all retinal cell types in a sequential overlapping order. With a modified retinal maturation protocol characterized by the presence of serum and high glucose levels, our study revealed that the retinal organoids contained pseudolaminated neural retina with important features reminiscent of mature photoreceptors, both rod and cone subtypes. This advanced maturation of photoreceptors not only supports the possibility to use 3D retinal organoids for studying photoreceptor development but also offers a novel opportunity for disease modeling, particularly for inherited retinal diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1155/2019/7858796DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664555PMC
July 2019