Publications by authors named "Alharthi Waleed Khalid"

2 Publications

  • Page 1 of 1

Diverse patterns of bone regeneration in rabbit calvarial defects depending on the type of collagen membrane.

J Periodontal Implant Sci 2021 Feb;51(1):40-52

Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.

Purpose: Various crosslinking methods have been introduced to increase the longevity of collagen membranes. The aim of this study was to compare and evaluate the degradation and bone regeneration patterns of 3 collagen membranes.

Methods: Four 8-mm-diameter circular bone defects were created in the calvaria of 10 rabbits. In each rabbit, each defect was randomly allocated to 1) the sham control group, 2) the non-crosslinked collagen sponge (NS) group, 3) the chemically crosslinked collagen membrane (CCM) group, or 4) the biphasic calcium phosphate (BCP)-supplemented ultraviolet (UV)-crosslinked collagen membrane (UVM) group. Each defect was covered with the allocated membrane without any graft material. Rabbits were sacrificed at either 2 or 8 weeks post-surgery, and radiographic and histologic analyses were done.

Results: New bone formed underneath the membrane in defects in the CCM and UVM groups, with a distinctive new bone formation pattern, while new bone formed from the base of the defect in the NS and control groups. The CCM maintained its shape until 8 weeks, while the UVM and NS were fully degraded at 8 weeks; simultaneously, sustained inflammatory infiltration was found in the margin of the CCM, while it was absent in the UVM. In conclusion, the CCM showed longer longevity than the UVM, but was accompanied by higher levels of inflammation.

Conclusions: Both the CCM and UVM showed distinctive patterns of enhancement in new bone formation in the early phase. UV crosslinking can be a biocompatible alternative to chemical crosslinking.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5051/jpis.2004180209DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7920838PMC
February 2021

Distinctive bone regeneration of calvarial defects using biphasic calcium phosphate supplemented ultraviolet-crosslinked collagen membrane.

J Periodontal Implant Sci 2020 Feb 19;50(1):14-27. Epub 2019 Dec 19.

Department of Periodontology, Research Institute of Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, Korea.

Purpose: To overcome several drawbacks of chemically-crosslinked collagen membranes, modification processes such as ultraviolet (UV) crosslinking and the addition of biphasic calcium phosphate (BCP) to collagen membranes have been introduced. This study evaluated the efficacy and biocompatibility of BCP-supplemented UV-crosslinked collagen membrane for guided bone regeneration (GBR) in a rabbit calvarial model.

Methods: Four circular bone defects (diameter, 8 mm) were created in the calvarium of 10 rabbits. Each defect was randomly allocated to one of the following groups: 1) the sham control group (spontaneous healing); 2) the M group (defect coverage with a BCP-supplemented UV-crosslinked collagen membrane and no graft material); 3) the BG (defects filled with BCP particles without membrane coverage); and 4) the BG+M group (defects filled with BCP particles and covered with a BCP-supplemented UV-crosslinked collagen membrane in a conventional GBR procedure). At 2 and 8 weeks, rabbits were sacrificed, and experimental defects were investigated histologically and by micro-computed tomography (micro-CT).

Results: In both micro-CT and histometric analyses, the BG and BG+M groups at both 2 and 8 weeks showed significantly higher new bone formation than the control group. On micro-CT, the new bone volume of the BG+M group (48.39±5.47 mm) was larger than that of the BG group (38.71±2.24 mm, =0.032) at 8 weeks. Histologically, greater new bone area was observed in the BG+M group than in the BG or M groups. BCP-supplemented UV-crosslinked collagen membrane did not cause an abnormal cellular reaction and was stable until 8 weeks.

Conclusions: Enhanced new bone formation in GBR can be achieved by simultaneously using bone graft material and a BCP-supplemented UV-crosslinked collagen membrane, which showed high biocompatibility and resistance to degradation, making it a biocompatible alternative to chemically-crosslinked collagen membranes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.5051/jpis.2020.50.1.14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7040443PMC
February 2020