Publications by authors named "Alfredo Pezzicoli"

31 Publications

The Secretome landscape of Escherichia coli O157:H7: Deciphering the cell-surface, outer membrane vesicle and extracellular subproteomes.

J Proteomics 2021 02 4;232:104025. Epub 2020 Nov 4.

Université Clermont Auvergne, INRAE, MEDiS, F-63000 Clermont-Ferrand, France. Electronic address:

Among diarrheagenic E. coli (DEC), enterohaemorrhagic E. coli (EHEC) are the most virulent anthropozoonotic agents. The ability of bacterial cells to functionally interact with their surrounding essentially relies on the secretion of different protein effectors. To experimentally determine the repertoire of extracytoproteins in E. coli O157:H7, a subproteomic analysis was performed not only considering the extracellular milieu but the cell surface and outer membrane vesicles. Following a secretome-based approach, the proteins trafficking from the interior to the exterior of the cell were depicted considering cognate protein transport systems and subcellular localisation. Label-free quantitative analysis of the proteosurfaceome, proteovesiculome and exoproteome from E. coli O157:H7 grown in three different nutrient media revealed differential protein expression profiles and allowed defining the core and variant subproteomes. Network analysis further revealed the higher abundance of some protein clusters in chemically defined medium over rich complex medium, especially related to some outer membrane proteins, ABC transport and Type III secretion systems. This first comprehensive study of the EHEC secretome unravels the profound influence of environmental conditions on the extracytoplasmic proteome, provides new insight in the physiology of E. coli O157:H7 and identifies potentially important molecular targets for the development of preventive strategies against EHEC/STEC. SIGNIFICANCE: Escherichia coli O157:H7 is responsible for severe diarrhoea especially in young children. Despite years of investigations, the global view of the extracytoplasmic proteins expressed in this microorganism was eluded. To provide the first comprehensive view of the secretome landscape of E. coli O157:H7, the exoproteome, proteosurfaceome and proteovesiculome were profiled using growth conditions most likely to induce changes in bacterial protein secretion. The profound influence of growth conditions on the extracytoplasmic proteome was unravelled and allowed identifying the core and variant subproteomes. Besides new insight in the physiology of enterohaemorrhagic E. coli, these proteins potentially constitute important molecular targets for the development of preventive strategies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2020.104025DOI Listing
February 2021

A LONELY GUY protein of Bordetella pertussis with unique features is related to oxidative stress.

Sci Rep 2019 11 19;9(1):17016. Epub 2019 Nov 19.

School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032, Camerino, Italy.

The Gram-negative bacterium B. pertussis is the causative agent of whooping cough. This infection is re-emerging and new features related to Bordetella pathogenesis and microbiology could be relevant to defeat it. Therefore, we focused our attention on BP1253, a predicted exported protein from B. pertussis erroneously classified as lysine decarboxylase. We showed that BP1253 shares the highly conserved motif PGGxGTxxE and the key catalytic amino-acid residues with newly structurally characterized "LONELY GUY" (LOG) proteins. Biochemical studies have confirmed that this protein functions as a cytokinin-activating enzyme since it cleaves the N-glycosidic linkage between the base and the ribose, leading to the formation of free bases, which are the active form of plant hormones called cytokinins. Remarkably, BP1253 selectively binds monophosphate nucleotides such as AMP, GMP and CMP, showing a wider variety in binding capacity compared to other LOGs. Cytokinin production studies performed with B. pertussis have revealed 6-O-methylguanine to be the physiological product of BP1253 in agreement with the higher activity of the enzyme towards GMP. 6-O-methylguanine is likely to be responsible for the increased sensitivity of B. pertussis to oxidative stress. Although BP1253 has a primary sequence resembling the hexameric type-II LOGs, the dimeric state and the presence of specific amino-acids suggests that BP1253 can be classified as a novel type-II LOG. The discovery of a LOG along with its product 6-O-methylguanine in the human pathogen B. pertussis may lead to the discovery of unexplored functions of LOGs, broadening their role beyond plants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-019-53171-9DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6864091PMC
November 2019

Differential biotin labelling of the cell envelope proteins in lipopolysaccharidic diderm bacteria: Exploring the proteosurfaceome of Escherichia coli using sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin.

J Proteomics 2018 06 30;181:16-23. Epub 2018 Mar 30.

Université Clermont Auvergne, INRA, UMR454 MEDiS, F-63000 Clermont-Ferrand, France. Electronic address:

Surface proteins are the major factor for the interaction between bacteria and its environment, playing an important role in infection, colonisation, virulence and adaptation. However, the study of surface proteins has proven difficult mainly due to their hydrophobicity and/or relatively low abundance compared with cytoplasmic proteins. To overcome these issues new proteomic strategies have been developed, such as cell-surface protein labelling using biotinylation reagents. Sulfo-NHS-SS-biotin is the most commonly used reagent to investigate the proteins expressed at the cell surface of various organisms but its use in lipopolysaccharidic diderm bacteria (archetypical Gram-negative bacteria) remains limited to a handful of species. While generally pass over in silence, some periplasmic proteins, but also some inner membrane lipoproteins, integral membrane proteins and cytoplasmic proteins (cytoproteins) are systematically identified following this approach. To limit cell lysis and diffusion of the sulfo-NHS-SS-biotin through the outer membrane, biotin labelling was tested over short incubation times and proved to be as efficient for 1 min at room temperature. To further limit labelling of protein located below the outer membrane, the use of high-molecular weight sulfo-NHS-PEG4-bismannose-SS-biotin appeared to recover differentially cell-envelope proteins compared to low-molecular weight sulfo-NHS-SS-biotin. Actually, the sulfo-NHS-SS-biotin recovers at a higher extent the proteins completely or partly exposed in the periplasm than sulfo-NHS-PEG4-bismannose-SS-biotin, namely periplasmic and integral membrane proteins as well as inner membrane and outer membrane lipoproteins. These results highlight that protein labelling using biotinylation reagents of different sizes provides a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.

Significance: While generally pass over in silence, some periplasmic proteins, inner membrane lipoproteins (IMLs), integral membrane proteins (IMPs) and cytoplasmic proteins (cytoproteins) are systematically identified following cell-surface biotin labelling in lipopolysaccharidic diderm bacteria (archetypal Gram-negative bacteria). The use of biotinylation molecules of different sizes, namely sulfo-NHS-SS-biotin and sulfo-NHS-PEG4-bismannose-SS-biotin, was demonstrated to provide a sophisticated and accurate way to differentially explore the cell envelope proteome of lipopolysaccharidic diderm bacteria.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2018.03.026DOI Listing
June 2018

Neisseria Heparin Binding Antigen is targeted by the human alternative pathway C3-convertase.

PLoS One 2018 26;13(3):e0194662. Epub 2018 Mar 26.

GSK, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein specific for Neisseria and constitutes one of the three main protein antigens of the Bexsero vaccine. Meningococcal and human proteases, cleave NHBA protein upstream or downstream of a conserved Arg-rich region, respectively. The cleavage results in the release of the C-terminal portion of the protein. The C-terminal fragment originating from the processing of meningococcal proteases, referred to as C2 fragment, exerts a toxic effect on endothelial cells altering the endothelial permeability. In this work, we reported that recombinant C2 fragment has no influence on the integrity of human airway epithelial cell monolayers, consistent with previous findings showing that Neisseria meningitidis traverses the epithelial barrier without disrupting the junctional structures. We showed that epithelial cells constantly secrete proteases responsible for a rapid processing of C2 fragment, generating a new fragment that does not contain the Arg-rich region, a putative docking domain reported to be essential for C2-mediated toxic effect. Moreover, we found that the C3-convertase of the alternative complement pathway is one of the proteases responsible for this processing. Overall, our data provide new insights on the cleavage of NHBA protein during meningococcal infection. NHBA cleavage may occur at different stages of the infection, and it likely has a different role depending on the environment the bacterium is interacting with.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0194662PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868813PMC
July 2018

Vaccine adjuvant MF59 promotes the intranodal differentiation of antigen-loaded and activated monocyte-derived dendritic cells.

PLoS One 2017 31;12(10):e0185843. Epub 2017 Oct 31.

GSK Vaccines, Siena, Italy.

MF59 is an oil-in-water emulsion adjuvant approved for human influenza vaccination in European Union. The mode of action of MF59 is not fully elucidated yet, but results from several years of investigation indicate that MF59 establishes an immunocompetent environment at injection site which promotes recruitment of immune cells, including antigen presenting cells (APCs), that are facilitated to engulf antigen and transport it to draining lymph node (dLN) where the antigen is accumulated. In vitro studies showed that MF59 promotes the differentiation of monocytes to dendritic cells (Mo-DCs). Since after immunization with MF59, monocytes are rapidly recruited both at the injection site and in dLN and appear to have a morphological change toward a DC-like phenotype, we asked whether MF59 could play a role in inducing differentiation of Mo-DC in vivo. To address this question we immunized mice with the auto-fluorescent protein Phycoerythrin (PE) as model antigen, in presence or absence of MF59. We measured the APC phenotype and their antigen uptake within dLNs, the antigen distribution within the dLN compartments and the humoral response to PE. In addition, using Ovalbumin as model antigen, we measured the capacity of dLN APCs to induce antigen-specific CD4 T cell proliferation. Here, we show, for the first time, that MF59 promotes differentiation of Mo-DCs within dLNs from intranodal recruited monocytes and we suggest that this differentiation could take place in the medullary compartment of the LN. In addition we show that the Mo-DC subset represents the major source of antigen-loaded and activated APCs within the dLN when immunizing with MF59. Interestingly, this finding correlates with the enhanced triggering of antigen-specific CD4 T cell response induced by LN APCs. This study therefore demonstrates that MF59 is able to promote an immunocompetent environment also directly within the dLN, offering a novel insight on the mechanism of action of vaccine adjuvants based on emulsions.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0185843PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5663329PMC
November 2017

Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells.

PLoS One 2016 25;11(10):e0162878. Epub 2016 Oct 25.

GSK Vaccines, Siena, Italy.

Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0162878PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5079597PMC
June 2017

3D Reconstruction of the Human Airway Mucosa In Vitro as an Experimental Model to Study NTHi Infections.

PLoS One 2016 21;11(4):e0153985. Epub 2016 Apr 21.

GSK Vaccines S.r.l., via Fiorentina 1, 53100, Siena, Italy.

We have established an in vitro 3D system which recapitulates the human tracheo-bronchial mucosa comprehensive of the pseudostratified epithelium and the underlying stromal tissue. In particular, we reported that the mature model, entirely constituted of primary cells of human origin, develops key markers proper of the native tissue such as the mucociliary differentiation of the epithelial sheet and the formation of the basement membrane. The infection of the pseudo-tissue with a strain of NonTypeable Haemophilus influenzae results in bacteria association and crossing of the mucus layer leading to an apparent targeting of the stromal space where they release large amounts of vesicles and form macro-structures. In summary, we propose our in vitro model as a reliable and potentially customizable system to study mid/long term host-pathogen processes.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153985PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839639PMC
March 2017

Dual RNA-seq of Nontypeable Haemophilus influenzae and Host Cell Transcriptomes Reveals Novel Insights into Host-Pathogen Cross Talk.

mBio 2015 Nov 17;6(6):e01765-15. Epub 2015 Nov 17.

R&D Centre, GSK Vaccines, Siena, Italy.

Unlabelled: The ability to adhere and adapt to the human respiratory tract mucosa plays a pivotal role in the pathogenic lifestyle of nontypeable Haemophilus influenzae (NTHi). However, the temporal events associated with a successful colonization have not been fully characterized. In this study, by reconstituting the ciliated human bronchial epithelium in vitro, we monitored the global transcriptional changes in NTHi and infected mucosal epithelium simultaneously for up to 72 h by dual RNA sequencing. The initial stage of colonization was characterized by the binding of NTHi to ciliated cells. Temporal profiling of host mRNA signatures revealed significant dysregulation of the target cell cytoskeleton elicited by bacterial infection, with a profound effect on the intermediate filament network and junctional complexes. In response to environmental stimuli of the host epithelium, NTHi downregulated its central metabolism and increased the expression of transporters, indicating a change in the metabolic regime due to the availability of host substrates. Concurrently, the oxidative environment generated by infected cells instigated bacterial expression of stress-induced defense mechanisms, including the transport of exogenous glutathione and activation of the toxin-antitoxin system. The results of this analysis were validated by those of confocal microscopy, Western blotting, Bio-plex, and real-time quantitative reverse transcription-PCR (qRT-PCR). Notably, as part of our screening for novel signatures of infection, we identified a global profile of noncoding transcripts that are candidate small RNAs (sRNAs) regulated during human host infection in Haemophilus species. Our data, by providing a robust and comprehensive representation of the cross talk between the host and invading pathogen, provides important insights into NTHi pathogenesis and the development of efficacious preventive strategies.

Importance: Simultaneous monitoring of infection-linked transcriptome alterations in an invading pathogen and its target host cells represents a key strategy for identifying regulatory responses that drive pathogenesis. In this study, we report the progressive events of NTHi colonization in a highly differentiated model of ciliated bronchial epithelium. Genome-wide transcriptome maps of NTHi during infection provided mechanistic insights into bacterial adaptive responses to the host niche, with modulation of the central metabolism as an important signature of the evolving milieu. Our data indicate that infected epithelia respond by substantial alteration of the cytoskeletal network and cytokine repertoire, revealing a dynamic cross talk that is responsible for the onset of inflammation. This work significantly enhances our understanding of the means by which NTHi promotes infection on human mucosae and reveals novel strategies exploited by this important pathogen to cause invasive disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.01765-15DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4659474PMC
November 2015

Identification of a Monoclonal Antibody Against Pneumococcal Pilus 1 Ancillary Protein Impairing Bacterial Adhesion to Human Epithelial Cells.

J Infect Dis 2016 Feb 23;213(4):516-22. Epub 2015 Sep 23.

GSK Vaccines, Siena.

The adhesion of Streptococcus pneumoniae is a key step during colonization of human respiratory tract mucosae. Here we demonstrate that pneumococcal type I pilus significantly increases the adhesiveness of poorly adhering highly capsulated strains in vitro. Interestingly, preincubation of bacteria with antibodies against the major pilus backbone subunit (RrgB) or the adhesin component (RrgA) impaired pneumococcal association to human epithelial cells. Screening for anti-RrgA monoclonal antibodies specifically affecting the adhesive capacity of S. pneumoniae led to the identification of the monoclonal 11B9/61 antibody, which greatly reduced pilus-dependent cell contact. Proteomic-based epitope mapping of 11B9/61 monoclonal antibody revealed a well-exposed epitope on the D2 domain of RrgA as the target of this functional antibody. The data presented here confirm the importance of pilus I for S. pneumoniae pathogenesis and the potential use of antipilus antibodies to prevent bacterial colonization.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jiv461DOI Listing
February 2016

An Innovative Pseudotypes-Based Enzyme-Linked Lectin Assay for the Measurement of Functional Anti-Neuraminidase Antibodies.

PLoS One 2015 12;10(8):e0135383. Epub 2015 Aug 12.

GSK, Research Center, Via Fiorentina 1, 53100, Siena, Italy; GSK, Peter Merian Strasse, 4056, Basel, Switzerland.

Antibodies (Ab) to neuraminidase (NA) play a role in limiting influenza infection and might help reduce the disease impact. The most widely used serological assay to measure functional anti-NA immune responses is the Enzyme-Linked Lectin Assay (ELLA) which relies on hemagglutinin (HA) mismatched virus reassortants, or detergent treated viruses as the NA source to overcome interference associated with steric hindrance of anti-HA Ab present in sera. The difficulty in producing and handling these reagents, which are not easily adapted for screening large numbers of samples, limits the routine analysis of functional anti-NA Ab in clinical trials. In this study, we produced influenza lentiviral pseudoparticles (PPs) containing only the NA antigen (NA-PPs) with a simple two-plasmid co-transfection system. NA-PPs were characterized and tested as an innovative source of NA in the NA inhibition (NI) assay. Both swine A/California/07/2009 (H1N1) and avian A/turkey/Turkey/01/2005 (H5N1) N1s within NA-PPs retained their sialidase activity and were specifically inhibited by homologous and N1 subtype-specific, heterologous sheep sera. Moreover, A/California/07/2009 N1-PPs were a better source of NA compared to whole live and detergent treated H1N1 viruses in ELLA, likely due to lack of interference by anti-HA Ab, and absence of possible structural modifications caused by treatment with detergent. This innovative assay is safer and applicable to all NAs. Taken together, these results highlight the potential of NA-PPs-based NI assays to be developed as sensitive, flexible, easy to handle and scalable serological tests for routine NA immune response analysis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0135383PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4534301PMC
May 2016

Exploring the Effect of Conjugation Site and Chemistry on the Immunogenicity of an anti-Group B Streptococcus Glycoconjugate Vaccine Based on GBS67 Pilus Protein and Type V Polysaccharide.

Bioconjug Chem 2015 Aug 31;26(8):1839-49. Epub 2015 Jul 31.

‡Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States.

We have recently described a method for tyrosine-ligation of complex glycans that was proven efficient for the site selective coupling of GBS capsular polysaccharides (PSs). Herein, we explored the effect of conjugation of type V polysaccharide onto predetermined lysine or tyrosine residues of the GBS67 pilus protein with the dual role of T-cell carrier for the PS and antigen. For the preparation of a conjugate at predetermined lysine residues of the protein, we investigated a two-step procedure based on microbial Transglutaminase (mTGase) catalyzed insertion of a tag bearing an azide for following copper-free strain-promoted azide-alkyne [3 + 2] cycloaddition (SPAAC) with the polysaccharide. Two glycoconjugates were obtained by tyrosine-ligation through the known SPAAC and a novel thiol-maleimide addition based approach. Controls were prepared by random conjugation of PSV to GBS67 and CRM197, a carrier protein present in many commercial vaccines. Immunological evaluation in mice showed that all the site-directed constructs were able to induce good levels of anti-polysaccharide and anti-protein antibodies inducing osponophagocytic killing of strains expressing individually PSV or GBS67. GBS67 randomly conjugated to PSV showed carrier properties similar to CRM197. Among the tested site-directed conjugates, tyrosine-directed ligation and thiol-malemide addition was elected as the best combination to ensure production of anti-polysaccharide and anti-protein functional antibodies (in vitro opsonophagocytic killing titers) comparable to the controls made by random conjugation, while avoiding anti-linker antibodies. Our findings demonstrate that (i) mTGase based conjugation at lysine residues is an alternative approach for the synthesis of large capsular polysaccharide-protein conjugates; (ii) GBS67 can be used with the dual role of antigen and carrier for PSV; and (iii) thiol-maleimide addition in combination with tyrosine-ligation ensures the production of anti-polysaccharide and anti-protein functional antibodies while maintaining low levels of anti-linker antibodies. Site-specific conjugation methods aid in defining conjugation site and chemistry in carbohydrate-protein conjugates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.bioconjchem.5b00365DOI Listing
August 2015

Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2.

Sci Transl Med 2015 Jul;7(294):294ra105

Neurology and Neuroscience, Stanford University School of Medicine, Stanford, CA 94305, USA.

The sleep disorder narcolepsy is linked to the HLA-DQB1*0602 haplotype and dysregulation of the hypocretin ligand-hypocretin receptor pathway. Narcolepsy was associated with Pandemrix vaccination (an adjuvanted, influenza pandemic vaccine) and also with infection by influenza virus during the 2009 A(H1N1) influenza pandemic. In contrast, very few cases were reported after Focetria vaccination (a differently manufactured adjuvanted influenza pandemic vaccine). We hypothesized that differences between these vaccines (which are derived from inactivated influenza viral proteins) explain the association of narcolepsy with Pandemrix-vaccinated subjects. A mimic peptide was identified from a surface-exposed region of influenza nucleoprotein A that shared protein residues in common with a fragment of the first extracellular domain of hypocretin receptor 2. A significant proportion of sera from HLA-DQB1*0602 haplotype-positive narcoleptic Finnish patients with a history of Pandemrix vaccination (vaccine-associated narcolepsy) contained antibodies to hypocretin receptor 2 compared to sera from nonnarcoleptic individuals with either 2009 A(H1N1) pandemic influenza infection or history of Focetria vaccination. Antibodies from vaccine-associated narcolepsy sera cross-reacted with both influenza nucleoprotein and hypocretin receptor 2, which was demonstrated by competitive binding using 21-mer peptide (containing the identified nucleoprotein mimic) and 55-mer recombinant peptide (first extracellular domain of hypocretin receptor 2) on cell lines expressing human hypocretin receptor 2. Mass spectrometry indicated that relative to Pandemrix, Focetria contained 72.7% less influenza nucleoprotein. In accord, no durable antibody responses to nucleoprotein were detected in sera from Focetria-vaccinated nonnarcoleptic subjects. Thus, differences in vaccine nucleoprotein content and respective immune response may explain the narcolepsy association with Pandemrix.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1126/scitranslmed.aab2354DOI Listing
July 2015

The Human Pathogen Streptococcus pyogenes Releases Lipoproteins as Lipoprotein-rich Membrane Vesicles.

Mol Cell Proteomics 2015 Aug 27;14(8):2138-49. Epub 2015 May 27.

From the ‡Novartis Vaccines and Diagnostics (a GSK company), Via Fiorentiina 1, 53100 Siena, Itlay;

Bacterial lipoproteins are attractive vaccine candidates because they represent a major class of cell surface-exposed proteins in many bacteria and are considered as potential pathogen-associated molecular patterns sensed by Toll-like receptors with built-in adjuvanticity. Although Gram-negative lipoproteins have been extensively characterized, little is known about Gram-positive lipoproteins. We isolated from Streptococcus pyogenes a large amount of lipoproteins organized in vesicles. These vesicles were obtained by weakening the bacterial cell wall with a sublethal concentration of penicillin. Lipid and proteomic analysis of the vesicles revealed that they were enriched in phosphatidylglycerol and almost exclusively composed of lipoproteins. In association with lipoproteins, a few hypothetical proteins, penicillin-binding proteins, and several members of the ExPortal, a membrane microdomain responsible for the maturation of secreted proteins, were identified. The typical lipidic moiety was apparently not necessary for lipoprotein insertion in the vesicle bilayer because they were also recovered from the isogenic diacylglyceryl transferase deletion mutant. The vesicles were not able to activate specific Toll-like receptor 2, indicating that lipoproteins organized in these vesicular structures do not act as pathogen-associated molecular patterns. In light of these findings, we propose to name these new structures Lipoprotein-rich Membrane Vesicles.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M114.045880DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4528243PMC
August 2015

Anti-Group B Streptococcus Glycan-Conjugate Vaccines Using Pilus Protein GBS80 As Carrier and Antigen: Comparing Lysine and Tyrosine-directed Conjugation.

ACS Chem Biol 2015 Jul 6;10(7):1737-46. Epub 2015 May 6.

‡Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, United States.

Gram-positive Streptococcus agalactiae or group B Streptococcus (GBS) is a leading cause of invasive infections in pregnant women, newborns, and elderly people. Vaccination of pregnant women represents the best strategy for prevention of neonatal disease, and GBS polysaccharide-based conjugate vaccines are currently under clinical testing. The potential of GBS pilus proteins selected by genome-based reverse vaccinology as protective antigens for anti-streptococcal vaccines has also been demonstrated. Dressing pilus proteins with surface glycan antigens could be an attractive approach to extend vaccine coverage. We have recently developed an efficient method for tyrosine-directed ligation of large glycans to proteins via copper-free azide-alkyne [3 + 2] cycloaddition. This method enables targeting of predetermined sites of the protein, ensuring that protein epitopes are preserved prior to glycan coupling and a higher consistency in glycoconjugate batches. Herein, we compared conjugates of the GBS type II polysaccharide (PSII) and the GBS80 pilus protein obtained by classic lysine random conjugation and by the recently developed tyrosine-directed ligation. PSII conjugated to CRM197, a carrier protein used for vaccines in the market, was used as a control. We found that the constructs made from PSII and GBS80 were able to elicit murine antibodies recognizing individually the glycan and protein epitopes on the bacterial surface. The generated antibodies were efficacious in mediating opsonophagocytic killing of strains expressing exclusively PSII or GBS80 proteins. The two glycoconjugates were also effective in protecting newborn mice against GBS infection following vaccination of the dams. Altogether, these results demonstrated that polysaccharide-conjugated GBS80 pilus protein functions as a carrier comparably to CRM197, while maintaining its properties of protective protein antigen. Glycoconjugation and reverse vaccinology can, therefore, be combined to design vaccines with broad coverage. This approach opens a path to a new generation of vaccines. Tyrosine-ligation allows creation of more homogeneous vaccines, correlation of the immune response to defined connectivity points, and fine-tuning of the conjugation site in glycan-protein conjugates.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschembio.5b00247DOI Listing
July 2015

LytM proteins play a crucial role in cell separation, outer membrane composition, and pathogenesis in nontypeable Haemophilus influenzae.

mBio 2015 Feb 24;6(2):e02575. Epub 2015 Feb 24.

Novartis Vaccines, Siena, Italy

Unlabelled: LytM proteins belong to a family of bacterial metalloproteases. In Gram-negative bacteria, LytM factors are mainly reported to have a direct effect on cell division by influencing cleavage and remodeling of peptidoglycan. In this study, mining nontypeable Haemophilus influenzae (NTHI) genomes, three highly conserved open reading frames (ORFs) containing a LytM domain were identified, and the proteins encoded by the ORFs were named YebA, EnvC, and NlpD on the basis of their homology with the Escherichia coli proteins. Immunoblotting and confocal analysis showed that while NTHI NlpD is exposed on the bacterial surface, YebA and EnvC reside in the periplasm. NTHI ΔyebA and ΔnlpD deletion mutants revealed an aberrant division phenotype characterized by an altered cell architecture and extensive membrane blebbing. The morphology of the ΔenvC deletion mutant was identical to that of the wild-type strain, but it showed a drastic reduction of periplasmic proteins, including the chaperones HtrA, SurA, and Skp, and an accumulation of β-barrel-containing outer membrane proteins comprising the autotransporters Hap, IgA serine protease, and HMW2A, as observed by proteomic analysis. These data suggest that EnvC may influence the bacterial surface protein repertoire by facilitating the passage of the periplasmic chaperones through the peptidoglycan layer to the close vicinity of the inner face of the outer membrane. This hypothesis was further corroborated by the fact that an NTHI envC defective strain had an impaired capacity to adhere to epithelial cells and to form biofilm. Notably, this strain also showed a reduced serum resistance. These results suggest that LytM factors are not only important components of cell division but they may also influence NTHI physiology and pathogenesis by affecting membrane composition.

Importance: Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen that colonizes the human nasopharynx and can cause serious infections in children (acute otitis media) and adults (chronic obstructive pulmonary disease). Several virulence factors are well studied, but the complete scenario of NTHI pathogenesis is still unclear. We identified and characterized three NTHI LytM factors homologous to the Escherichia coli LytM proteins. Although LytM factors are reported to play a crucial role in the cell division process, in NTHI they are also involved in other bacterial functions. In particular, YebA and NlpD are fundamental for membrane stability: indeed, their absence causes an increased release of outer membrane vesicles (OMVs). On the other hand, our data suggest that EnvC could directly or indirectly affect peptidoglycan permeability and consequently, bacterial periplasmic and outer membrane protein distribution. Interestingly, by modulating the surface composition of virulence determinants, EnvC also has an impact on NTHI pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/mBio.02575-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4358004PMC
February 2015

Vaccine adjuvant MF59 promotes retention of unprocessed antigen in lymph node macrophage compartments and follicular dendritic cells.

J Immunol 2015 Feb 14;194(4):1717-25. Epub 2015 Jan 14.

Novartis Vaccines and Diagnostics, 53100, Siena, Italy

Ag retention within lymph nodes (LNs) upon vaccination is critical for the development of adaptive immune responses, because it facilitates the encounter of the Ag with cognate lymphocytes. During a secondary exposure of the immune system to an Ag, immune complexes (ICs) that contain the unprocessed Ag are captured by subcapsular sinus macrophages and are transferred onto follicular dendritic cells, where they persist for weeks, facilitating Ag presentation to cognate memory B cells. The impact of adjuvants on Ag retention within the draining LNs is unknown. In this article, we provide the first evidence, to our knowledge, that the oil-in-water emulsion adjuvant MF59 localizes in subcapsular sinus and medullary macrophage compartments of mouse draining LNs, where it persists for at least 2 wk. In addition, we demonstrate that MF59 promotes accumulation of the unprocessed Ag within these LN compartments and facilitates the consequent deposition of the IC-trapped Ag onto activated follicular dendritic cells. These findings correlate with the ability of MF59 to boost germinal center generation and Ag-specific Ab titers. Our data suggest that the adjuvant effect of MF59 is, at least in part, due to an enhancement of IC-bound Ag retention within the LN and offer insights to improve the efficacy of new vaccine adjuvants.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1400623DOI Listing
February 2015

Staphylococcal Esx proteins modulate apoptosis and release of intracellular Staphylococcus aureus during infection in epithelial cells.

Infect Immun 2014 Oct 21;82(10):4144-53. Epub 2014 Jul 21.

Novartis Vaccines and Diagnostics, Siena, Italy Division of Microbiology and Infection, Warwick Medical School, University of Warwick, Coventry, United Kingdom

The opportunistic pathogen Staphylococcus aureus is one of the major causes of health care-associated infections. S. aureus is primarily an extracellular pathogen, but it was recently reported to invade and replicate in several host cell types. The ability of S. aureus to persist within cells has been implicated in resistance to antimicrobials and recurrent infections. However, few staphylococcal proteins that mediate intracellular survival have been identified. Here we examine if EsxA and EsxB, substrates of the ESAT-6-like secretion system (Ess), are important during intracellular S. aureus infection. The Esx proteins are required for staphylococcal virulence, but their functions during infection are unclear. While isogenic S. aureus esxA and esxB mutants were not defective for epithelial cell invasion in vitro, a significant increase in early/late apoptosis was observed in esxA mutant-infected cells compared to wild-type-infected cells. Impeding secretion of EsxA by deleting C-terminal residues of the protein also resulted in a significant increase of epithelial cell apoptosis. Furthermore, cells transfected with esxA showed an increased protection from apoptotic cell death. A double mutant lacking both EsxA and EsxB also induced increased apoptosis but, remarkably, was unable to escape from cells as efficiently as the single mutants or the wild type. Thus, using in vitro models of intracellular staphylococcal infection, we demonstrate that EsxA interferes with host cell apoptotic pathways and, together with EsxB, mediates the release of S. aureus from the host cell.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.01576-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4187876PMC
October 2014

SslE elicits functional antibodies that impair in vitro mucinase activity and in vivo colonization by both intestinal and extraintestinal Escherichia coli strains.

PLoS Pathog 2014 May 8;10(5):e1004124. Epub 2014 May 8.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

SslE, the Secreted and surface-associated lipoprotein from Escherichia coli, has recently been associated to the M60-like extracellular zinc-metalloprotease sub-family which is implicated in glycan recognition and processing. SslE can be divided into two main variants and we recently proposed it as a potential vaccine candidate. By applying a number of in vitro bioassays and comparing wild type, knockout mutant and complemented strains, we have now demonstrated that SslE specifically contributes to degradation of mucin substrates, typically present in the intestine and bladder. Mutation of the zinc metallopeptidase motif of SslE dramatically impaired E. coli mucinase activity, confirming the specificity of the phenotype observed. Moreover, antibodies raised against variant I SslE, cloned from strain IHE3034 (SslEIHE3034), are able to inhibit translocation of E. coli strains expressing different variants through a mucin-based matrix, suggesting that SslE induces cross-reactive functional antibodies that affect the metallopeptidase activity. To test this hypothesis, we used well-established animal models and demonstrated that immunization with SslEIHE3034 significantly reduced gut, kidney and spleen colonization by strains producing variant II SslE and belonging to different pathotypes. Taken together, these data strongly support the importance of SslE in E. coli colonization of mucosal surfaces and reinforce the use of this antigen as a component of a broadly protective vaccine against pathogenic E. coli species.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1371/journal.ppat.1004124DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014459PMC
May 2014

SpyAD, a moonlighting protein of group A Streptococcus contributing to bacterial division and host cell adhesion.

Infect Immun 2014 Jul 28;82(7):2890-901. Epub 2014 Apr 28.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

Group A streptococcus (GAS) is a human pathogen causing a wide repertoire of mild and severe diseases for which no vaccine is yet available. We recently reported the identification of three protein antigens that in combination conferred wide protection against GAS infection in mice. Here we focused our attention on the characterization of one of these three antigens, Spy0269, a highly conserved, surface-exposed, and immunogenic protein of unknown function. Deletion of the spy0269 gene in a GAS M1 isolate resulted in very long bacterial chains, which is indicative of an impaired capacity of the knockout mutant to properly divide. Confocal microscopy and immunoprecipitation experiments demonstrated that the protein was mainly localized at the cell septum and could interact in vitro with the cell division protein FtsZ, leading us to hypothesize that Spy0269 is a member of the GAS divisome machinery. Predicted structural domains and sequence homologies with known streptococcal adhesins suggested that this antigen could also play a role in mediating GAS interaction with host cells. This hypothesis was confirmed by showing that recombinant Spy0269 could bind to mammalian epithelial cells in vitro and that Lactococcus lactis expressing Spy0269 on its cell surface could adhere to mammalian cells in vitro and to mice nasal mucosa in vivo. On the basis of these data, we believe that Spy0269 is involved both in bacterial cell division and in adhesion to host cells and we propose to rename this multifunctional moonlighting protein as SpyAD (Streptococcus pyogenes Adhesion and Division protein).
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/IAI.00064-14DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4097626PMC
July 2014

Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains.

Appl Environ Microbiol 2014 Apr 31;80(7):2176-85. Epub 2014 Jan 31.

Novartis Vaccines and Diagnostics, Siena, Italy.

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/AEM.03627-13DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3993151PMC
April 2014

Exogenous sialic acid transport contributes to group B streptococcus infection of mucosal surfaces.

J Infect Dis 2012 Sep 24;206(6):924-31. Epub 2012 Jul 24.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

By sequence analysis of available group B streptococcus (GBS) genomes, we discovered a conserved putative operon involved in the catabolism of sialic acid, containing a tripartite transporter formed by two integral membrane components and a sugar-binding unit, named SAL0039. Expression analysis in the presence of different substrates revealed that SAL0039 was specifically upregulated by the presence of sialic acid and downregulated when bacteria were grown in human blood or in the presence of a high concentration of glucose. The role of SAL0039 in sugar transport was supported by the inability of the sal0039 deletion mutant strain to import exogenous sialic acid and to grow in semidefined medium supplemented with this sugar. Furthermore, in vivo evidence showed that the presence of exogenous sialic acid significantly increased the capacity of GBS to infect mice at the mucosal level. These findings suggest that transport of sialic acid may also contribute to GBS infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jis451DOI Listing
September 2012

Staphylococcus aureus FhuD2 is involved in the early phase of staphylococcal dissemination and generates protective immunity in mice.

J Infect Dis 2012 Oct 24;206(7):1041-9. Epub 2012 Jul 24.

Novartis Vaccines, Research Center, Siena, Italy.

Iron availability plays an essential role in staphylococcal pathogenesis. We selected FhuD2, a lipoprotein involved in iron-hydroxamate uptake, as a novel vaccine candidate against Staphylococcus aureus. Unprecedented for staphylococcal lipoproteins, the protein was demonstrated to have a discrete, punctate localization on the bacterial surface. FhuD2 vaccination generated protective immunity against diverse clinical S. aureus isolates in murine infection models. Protection appeared to be associated with functional antibodies that were shown to mediate opsonophagocytosis, to be effective in passive transfer experiments, and to potentially block FhuD2-mediated siderophore uptake. Furthermore, the protein was found to be up-regulated in infected tissues and was required for staphylococcal dissemination and abscess formation. Herein we show that the staphylococcal iron-hydroxamate uptake system is important in invasive infection and functions as an efficacious vaccine target.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/infdis/jis463DOI Listing
October 2012

Surface interactome in Streptococcus pyogenes.

Mol Cell Proteomics 2012 Apr 22;11(4):M111.015206. Epub 2011 Dec 22.

Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

Very few studies have so far been dedicated to the systematic analysis of protein interactions occurring between surface and/or secreted proteins in bacteria. Such interactions are expected to play pivotal biological roles that deserve investigation. Taking advantage of the availability of a detailed map of surface and secreted proteins in Streptococcus pyogenes (group A Streptococcus (GAS)), we used protein array technology to define the "surface interactome" in this important human pathogen. Eighty-three proteins were spotted on glass slides in high density format, and each of the spotted proteins was probed for its capacity to interact with any of the immobilized proteins. A total of 146 interactions were identified, 25 of which classified as "reciprocal," namely, interactions that occur irrespective of which of the two partners was immobilized on the chip or in solution. Several of these interactions were validated by surface plasmon resonance and supported by confocal microscopy analysis of whole bacterial cells. By this approach, a number of interesting interactions have been discovered, including those occurring between OppA, DppA, PrsA, and TlpA, proteins known to be involved in protein folding and transport. These proteins, all localizing at the septum, might be part, together with HtrA, of the recently described ExPortal complex of GAS. Furthermore, SpeI was found to strongly interact with the metal transporters AdcA and Lmb. Because SpeI strictly requires zinc to exert its function, this finding provides evidence on how this superantigen, a major player in GAS pathogenesis, can acquire the metal in the host environment, where it is largely sequestered by carrier proteins. We believe that the approach proposed herein can lead to a deeper knowledge of the mechanisms underlying bacterial invasion, colonization, and pathogenesis.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M111.015206DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3322576PMC
April 2012

The Streptococcus pneumoniae pilus-1 displays a biphasic expression pattern.

PLoS One 2011 22;6(6):e21269. Epub 2011 Jun 22.

Novartis Vaccines and Diagnostics, Siena, Italy.

The Streptococcus pneumoniae pilus-1 is encoded by pilus islet 1 (PI-1), which has three clonal variants (clade I, II and III) and is present in about 30% of clinical pneumococcal isolates. In vitro and in vivo assays have demonstrated that pilus-1 is involved in attachment to epithelial cells and virulence, as well as protection in mouse models of infection. Several reports suggest that pilus-1 expression is tightly regulated and involves the interplay of numerous genetic regulators, including the PI-1 positive regulator RlrA. In this report we provide evidence that pilus expression, when analyzed at the single-cell level in PI-1 positive strains, is biphasic. In fact, the strains present two phenotypically different sub-populations of bacteria, one that expresses the pilus, while the other does not. The proportions of these two phenotypes are variable among the strains tested and are not influenced by genotype, serotype, growth conditions, colony morphology or by the presence of antibodies directed toward the pilus components. Two sub-populations, enriched in pilus expressing or not expressing bacteria were obtained by means of colony selection and immuno-detection methods for five strains. PI-1 sequencing in the two sub-populations revealed the absence of mutations, thus indicating that the biphasic expression observed is not due to a genetic modification within PI-1. Microarray expression profile and western blot analyses on whole bacterial lysates performed comparing the two enriched sub-populations, revealed that pilus expression is regulated at the transcriptional level (on/off regulation), and that there are no other genes, in addition to those encoded by PI-1, concurrently regulated across the strains tested. Finally, we provide evidence that the over-expression of the RrlA positive regulator is sufficient to induce pilus expression in pilus-1 negative bacteria. Overall, the data presented here suggest that the observed biphasic pilus expression phenotype could be an example of bistability in pneumococcus.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0021269PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3120856PMC
November 2011

Group B streptococcus pullulanase crystal structures in the context of a novel strategy for vaccine development.

J Bacteriol 2009 Jun 27;191(11):3544-52. Epub 2009 Mar 27.

Department of Biomolecular Sciences and Biotechnology, University of Milan, Via Celoria 26, I-20133 Milan, Italy.

The group B streptococcus type I pullulanase (SAP) is a class 13 glycoside hydrolase that is anchored to the bacterial cell surface via a conserved C-terminal anchoring motif and involved in alpha-glucan degradation. Recent in vitro functional studies have shown that SAP is immunogenic in humans and that anti-SAP sera derived from immunized animals impair both group A and group B streptococcus pullulanase activities, suggesting that in vivo immunization with this antigen could prevent streptococcal colonization. To further investigate the putative role of SAP in bacterial pathogenesis, we carried out functional studies and found that recombinant SAP binds to human cervical epithelial cells. Furthermore, with a view of using SAP as a vaccine candidate, we present high-resolution crystal structure analyses of an N-terminally truncated form of SAP lacking the carbohydrate binding module but containing the catalytic domain and displaying glycosidase hydrolase activity, both in its apo form and in complex with maltotetraose, at resolutions of 2.1 and 2.4 A, respectively.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1128/JB.01755-08DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2681907PMC
June 2009

Functional characterization of a newly identified group B Streptococcus pullulanase eliciting antibodies able to prevent alpha-glucans degradation.

PLoS One 2008 21;3(11):e3787. Epub 2008 Nov 21.

Novartis Vaccines and Diagnostics Srl, Siena, Italy.

Streptococcal pullulanases have been recently proposed as key components of the metabolic machinery involved in bacterial adaptation to host niches. By sequence analysis of the Group B Streptococcus (GBS) genome we found a novel putative surface exposed protein with pullulanase activity. We named such a protein SAP. The sap gene is highly conserved among GBS strains and homologous genes, such as PulA and SpuA, have been described in other pathogenic streptococci. The SAP protein contains two N-terminal carbohydrate-binding motifs, followed by a catalytic domain and a C-terminal LPXTG cell wall-anchoring domain. In vitro analysis revealed that the recombinant form of SAP is able to degrade alpha-glucan polysaccharides, such as pullulan, glycogen and starch. Moreover, NMR analysis showed that SAP acts as a type I pullulanase. Studies performed on whole bacteria indicated that the presence of alpha-glucan polysaccharides in culture medium up-regulated the expression of SAP on bacterial surface as confirmed by FACS analysis and confocal imaging. Deletion of the sap gene resulted in a reduced capacity of bacteria to grow in medium containing pullulan or glycogen, but not glucose or maltose, confirming the pivotal role of SAP in GBS metabolism of alpha-glucans. As reported for other streptococcal pullulanases, we found specific anti-SAP antibodies in human sera from healthy volunteers. Investigation of the functional role of anti-SAP antibodies revealed that incubation of GBS in the presence of sera from animals immunized with SAP reduced the capacity of the bacterium to degrade pullulan. Of interest, anti-SAP sera, although to a lower extent, also inhibited Group A Streptococcus pullulanase activity. These data open new perspectives on the possibility to use SAP as a potential vaccine component inducing functional cross-reacting antibodies interfering with streptococcal infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0003787PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2582482PMC
June 2009

Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells.

J Infect Dis 2008 Sep;198(6):890-8

Novartis Vaccines and Diagnostics, Siena, Italy.

We have recently shown that group B Streptococcus (GBS) crosses the epithelial barrier by a paracellular route. Here, we show that, although deletion of the pilus backbone protein did not affect GBS adhesiveness, it reduced the pathogen's capacity to transcytose through differentiated human epithelial cells. In addition, contrary to our expectation, a strain with a mutant pilus ancillary protein and reduced adhesiveness translocated through the epithelial monolayer in a fashion identical to that of the isogenic wild-type strain. To monitor the localization of pili during GBS paracytosis, we performed 3-dimensional confocal experiments. By this approach, we observed that pili located in the intercellular space ahead of translocating bacteria. These results were also confirmed by a novel in vitro model of GBS infection in which bacteria bind to epithelial surfaces against the action of gravitation. These findings suggest a dual role for pilus components during the critical steps leading to GBS dissemination in the host.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1086/591182DOI Listing
September 2008

BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood.

Mol Microbiol 2007 Feb 8;63(3):754-67. Epub 2007 Jan 8.

Novartis Vaccines and Diagnostics Srl, Via Fiorentina 1, 53100, Siena, Italy.

By the analysis of the recently sequenced genomes of Group B Streptococcus (GBS) we have identified a novel immunogenic adhesin with anti-phagocytic activity, named BibA. The bibA gene is present in 100% of the 24 GBS strains analysed. BibA-specific IgG were found in human sera from normal healthy donors. The putative protein product is a polypeptide of 630 amino acids containing a helix-rich N-terminal domain, a proline-rich region and a canonical LPXTG cell wall-anchoring domain. BibA is expressed on the surface of several GBS strains, but is also recovered in GBS culture supernatants. BibA specifically binds to human C4-binding protein, a regulator of the classic complement pathway. Deletion of the bibA gene severely reduced the capacity of GBS to survive in human blood and to resist opsonophagocytic killing by human neutrophils. In addition, BibA expression increased the virulence of GBS in a mouse infection model. The role of BibA in GBS adhesion was demonstrated by the impaired ability of a bibA knockout mutant strain to adhere to both human cervical and lung epithelial cells. Furthermore, we calculated that recombinant BibA bound to human epithelial cells of distinct origin with an affinity constant of approximately 10(-8) M for cervical epithelial cells. Hence BibA is a novel multifunctional protein involved in both resistance to phagocytic killing and adhesion to host cells. The identification of this potential new virulence factor represents an important step in the development of strategies to combat GBS-associated infections.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.2006.05555.xDOI Listing
February 2007