Publications by authors named "Alexia Cardona"

16 Publications

  • Page 1 of 1

Genomic and phenotypic insights from an atlas of genetic effects on DNA methylation.

Nat Genet 2021 09 6;53(9):1311-1321. Epub 2021 Sep 6.

Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia.

Characterizing genetic influences on DNA methylation (DNAm) provides an opportunity to understand mechanisms underpinning gene regulation and disease. In the present study, we describe results of DNAm quantitative trait locus (mQTL) analyses on 32,851 participants, identifying genetic variants associated with DNAm at 420,509 DNAm sites in blood. We present a database of >270,000 independent mQTLs, of which 8.5% comprise long-range (trans) associations. Identified mQTL associations explain 15-17% of the additive genetic variance of DNAm. We show that the genetic architecture of DNAm levels is highly polygenic. Using shared genetic control between distal DNAm sites, we constructed networks, identifying 405 discrete genomic communities enriched for genomic annotations and complex traits. Shared genetic variants are associated with both DNAm levels and complex diseases, but only in a minority of cases do these associations reflect causal relationships from DNAm to trait or vice versa, indicating a more complex genotype-phenotype map than previously anticipated.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41588-021-00923-xDOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612069PMC
September 2021

Identification of a unique epigenetic profile in women with diminished ovarian reserve.

Fertil Steril 2021 03 4;115(3):732-741. Epub 2020 Dec 4.

Department of Obstetrics and Gynaecology, Department of Reproductive Medicine, Hospital Herlev, Copenhagen University, Copenhagen, Denmark.

Objective: To investigate whether epigenetic profiles of mural granulosa cells (MGC) and leukocytes from women with diminished ovarian reserve (DOR) differ from those of women with normal or high ovarian reserve.

Design: Prospectively collected material from a multicenter cohort of women undergoing fertility treatment.

Setting: Private and university-based facilities for clinical services and research.

Patient(s): One hundred and nineteen women of various ages and ovarian reserve status (antimüllerian hormone level) who provided blood samples and MGC.

Intervention(s): None.

Main Outcome Measure(s): Measures of epigenetic aging rates from whole-genome methylation array data: DNA methylation variability, age acceleration, DNA methylation telomere length estimator (DNAmTL), and accumulation of epimutations.

Result(s): Comparison of DOR or high ovarian reserve samples to controls (normal ovarian reserve) showed differential methylation variability between DOR and normal samples at 4,199 CpGs in MGC, and 447 between high and normal (false-discovery rate < 0.05). Variable sites in MGC from DOR were enriched in regions marked with the repressive histone modification H3K27me3, and also included genes involved in folliculogenesis, such as insulin growth factor 2 (IGF2) and antimüllerian hormone (AMH). Regardless of ovarian reserve, very few signals were detected in leukocytes, and no overlaps with those in MGC were found. Furthermore, we found a higher number of epimutations in MGC from women with DOR (Kruskal-Wallis test, difference in mean = 3,485).

Conclusion(s): The somatic cells of human ovarian follicles have a distinctive epigenetic profile in women with DOR. A high frequency of epimutations suggests premature aging. Ovarian reserve status was not reflected in the leukocyte epigenetic profile.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fertnstert.2020.09.009DOI Listing
March 2021

Epigenome-Wide Association Study of Incident Type 2 Diabetes in a British Population: EPIC-Norfolk Study.

Diabetes 2019 12 10;68(12):2315-2326. Epub 2019 Sep 10.

MRC Epidemiology Unit, Institute of Metabolic Science, School of Clinical Medicine, University of Cambridge, Cambridge, U.K.

Epigenetic changes may contribute substantially to risks of diseases of aging. Previous studies reported seven methylation variable positions (MVPs) robustly associated with incident type 2 diabetes mellitus (T2DM). However, their causal roles in T2DM are unclear. In an incident T2DM case-cohort study nested within the population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk cohort, we used whole blood DNA collected at baseline, up to 11 years before T2DM onset, to investigate the role of methylation in the etiology of T2DM. We identified 15 novel MVPs with robust associations with incident T2DM and robustly confirmed three MVPs identified previously (near to , , and ). All 18 MVPs showed directionally consistent associations with incident and prevalent T2DM in independent studies. Further conditional analyses suggested that the identified epigenetic signals appear related to T2DM via glucose and obesity-related pathways acting before the collection of baseline samples. We integrated genome-wide genetic data to identify methylation-associated quantitative trait loci robustly associated with 16 of the 18 MVPs and found one MVP, cg00574958 at , with a possible direct causal role in T2DM. None of the implicated genes were previously highlighted by genetic association studies, suggesting that DNA methylation studies may reveal novel biological mechanisms involved in tissue responses to glycemia.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.2337/db18-0290DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868468PMC
December 2019

Identifying and correcting epigenetics measurements for systematic sources of variation.

Clin Epigenetics 2018 21;10:38. Epub 2018 Mar 21.

1Nutritional Methodology and Biostatistics Group, International Agency for Research on Cancer (IARC), World Health Organization, 150 cours Albert Thomas, 69372 Lyon CEDEX 08, France.

Background: Methylation measures quantified by microarray techniques can be affected by systematic variation due to the technical processing of samples, which may compromise the accuracy of the measurement process and contribute to bias the estimate of the association under investigation. The quantification of the contribution of the systematic source of variation is challenging in datasets characterized by hundreds of thousands of features.In this study, we introduce a method previously developed for the analysis of metabolomics data to evaluate the performance of existing normalizing techniques to correct for unwanted variation. Illumina Infinium HumanMethylation450K was used to acquire methylation levels in over 421,000 CpG sites for 902 study participants of a case-control study on breast cancer nested within the EPIC cohort. The principal component partial R-square (PC-PR2) analysis was used to identify and quantify the variability attributable to potential systematic sources of variation. Three correcting techniques, namely ComBat, surrogate variables analysis (SVA) and a linear regression model to compute residuals were applied. The impact of each correcting method on the association between smoking status and DNA methylation levels was evaluated, and results were compared with findings from a large meta-analysis.

Results: A sizeable proportion of systematic variability due to variables expressing 'batch' and 'sample position' within 'chip' was identified, with values of the partial R statistics equal to 9.5 and 11.4% of total variation, respectively. After application of ComBat or the residuals' methods, the contribution was 1.3 and 0.2%, respectively. The SVA technique resulted in a reduced variability due to 'batch' (1.3%) and 'sample position' (0.6%), and in a diminished variability attributable to 'chip' within a batch (0.9%). After ComBat or the residuals' corrections, a larger number of significant sites ( = 600 and  = 427, respectively) were associated to smoking status than the SVA correction ( = 96).

Conclusions: The three correction methods removed systematic variation in DNA methylation data, as assessed by the PC-PR2, which lent itself as a useful tool to explore variability in large dimension data. SVA produced more conservative findings than ComBat in the association between smoking and DNA methylation.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1186/s13148-018-0471-6DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863487PMC
February 2019

GWAS of epigenetic aging rates in blood reveals a critical role for TERT.

Nat Commun 2018 01 26;9(1):387. Epub 2018 Jan 26.

Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.

DNA methylation age is an accurate biomarker of chronological age and predicts lifespan, but its underlying molecular mechanisms are unknown. In this genome-wide association study of 9907 individuals, we find gene variants mapping to five loci associated with intrinsic epigenetic age acceleration (IEAA) and gene variants in three loci associated with extrinsic epigenetic age acceleration (EEAA). Mendelian randomization analysis suggests causal influences of menarche and menopause on IEAA and lipoproteins on IEAA and EEAA. Variants associated with longer leukocyte telomere length (LTL) in the telomerase reverse transcriptase gene (TERT) paradoxically confer higher IEAA (P < 2.7 × 10). Causal modeling indicates TERT-specific and independent effects on LTL and IEAA. Experimental hTERT-expression in primary human fibroblasts engenders a linear increase in DNA methylation age with cell population doubling number. Together, these findings indicate a critical role for hTERT in regulating the epigenetic clock, in addition to its established role of compensating for cell replication-dependent telomere shortening.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-017-02697-5DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786029PMC
January 2018

Evidence of Early-Stage Selection on EPAS1 and GPR126 Genes in Andean High Altitude Populations.

Sci Rep 2017 10 12;7(1):13042. Epub 2017 Oct 12.

Department of Archaeology and Anthropology, University of Cambridge, Cambridge, Cambridgeshire, UK.

The aim of this study is to identify genetic variants that harbour signatures of recent positive selection and may facilitate physiological adaptations to hypobaric hypoxia. To achieve this, we conducted whole genome sequencing and lung function tests in 19 Argentinean highlanders (>3500 m) comparing them to 16 Native American lowlanders. We developed a new statistical procedure using a combination of population branch statistics (PBS) and number of segregating sites by length (nSL) to detect beneficial alleles that arose since the settlement of the Andes and are currently present in 15-50% of the population. We identified two missense variants as significant targets of selection. One of these variants, located within the GPR126 gene, has been previously associated with the forced expiratory volume/forced vital capacity ratio. The other novel missense variant mapped to the EPAS1 gene encoding the hypoxia inducible factor 2α. EPAS1 is known to be the major selection candidate gene in Tibetans. The derived allele of GPR126 is associated with lung function in our sample of highlanders (p < 0.05). These variants may contribute to the physiological adaptations to hypobaric hypoxia, possibly by altering lung function. The new statistical approach might be a useful tool to detect selected variants in population studies.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-017-13382-4DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5638799PMC
October 2017

Genetic variants associated with mosaic Y chromosome loss highlight cell cycle genes and overlap with cancer susceptibility.

Nat Genet 2017 May 27;49(5):674-679. Epub 2017 Mar 27.

MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK.

The Y chromosome is frequently lost in hematopoietic cells, which represents the most common somatic alteration in men. However, the mechanisms that regulate mosaic loss of chromosome Y (mLOY), and its clinical relevance, are unknown. We used genotype-array-intensity data and sequence reads from 85,542 men to identify 19 genomic regions (P < 5 × 10) that are associated with mLOY. Cumulatively, these loci also predicted X chromosome loss in women (n = 96,123; P = 4 × 10). Additional epigenome-wide methylation analyses using whole blood highlighted 36 differentially methylated sites associated with mLOY. The genes identified converge on aspects of cell proliferation and cell cycle regulation, including DNA synthesis (NPAT), DNA damage response (ATM), mitosis (PMF1, CENPN and MAD1L1) and apoptosis (TP53). We highlight the shared genetic architecture between mLOY and cancer susceptibility, in addition to inferring a causal effect of smoking on mLOY. Collectively, our results demonstrate that genotype-array-intensity data enables a measure of cell cycle efficiency at population scale and identifies genes implicated in aneuploidy, genome instability and cancer susceptibility.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng.3821DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5973269PMC
May 2017

Genomic analyses inform on migration events during the peopling of Eurasia.

Nature 2016 Oct 21;538(7624):238-242. Epub 2016 Sep 21.

Department of Evolutionary Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

High-coverage whole-genome sequence studies have so far focused on a limited number of geographically restricted populations, or been targeted at specific diseases, such as cancer. Nevertheless, the availability of high-resolution genomic data has led to the development of new methodologies for inferring population history and refuelled the debate on the mutation rate in humans. Here we present the Estonian Biocentre Human Genome Diversity Panel (EGDP), a dataset of 483 high-coverage human genomes from 148 populations worldwide, including 379 new genomes from 125 populations, which we group into diversity and selection sets. We analyse this dataset to refine estimates of continent-wide patterns of heterozygosity, long- and short-distance gene flow, archaic admixture, and changes in effective population size through time as well as for signals of positive or balancing selection. We find a genetic signature in present-day Papuans that suggests that at least 2% of their genome originates from an early and largely extinct expansion of anatomically modern humans (AMHs) out of Africa. Together with evidence from the western Asian fossil record, and admixture between AMHs and Neanderthals predating the main Eurasian expansion, our results contribute to the mounting evidence for the presence of AMHs out of Africa earlier than 75,000 years ago.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature19792DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5164938PMC
October 2016

Multi-layered population structure in Island Southeast Asians.

Eur J Hum Genet 2016 11 15;24(11):1605-1611. Epub 2016 Jun 15.

Division of Biological Anthropology, University of Cambridge, Cambridge, UK.

The history of human settlement in Southeast Asia has been complex and involved several distinct dispersal events. Here, we report the analyses of 1825 individuals from Southeast Asia including new genome-wide genotype data for 146 individuals from three Mainland Southeast Asian (Burmese, Malay and Vietnamese) and four Island Southeast Asian (Dusun, Filipino, Kankanaey and Murut) populations. While confirming the presence of previously recognised major ancestry components in the Southeast Asian population structure, we highlight the Kankanaey Igorots from the highlands of the Philippine Mountain Province as likely the closest living representatives of the source population that may have given rise to the Austronesian expansion. This conclusion rests on independent evidence from various analyses of autosomal data and uniparental markers. Given the extensive presence of trade goods, cultural and linguistic evidence of Indian influence in Southeast Asia starting from 2.5 kya, we also detect traces of a South Asian signature in different populations in the region dating to the last couple of thousand years.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045871PMC
http://dx.doi.org/10.1038/ejhg.2016.60DOI Listing
November 2016

Positive selection of AS3MT to arsenic water in Andean populations.

Mutat Res 2015 Oct 29;780:97-102. Epub 2015 Jul 29.

Division of Biological Anthropology, University of Cambridge, Cambridge CB2 1QH, Cambridgeshire, UK; Faculty of Humanities and Social Sciences, University of Winchester, Winchester SO22 4NR, Hampshire, UK. Electronic address:

Arsenic is a carcinogen associated with skin lesions and cardiovascular diseases. The Colla population from the Puna region in Northwest Argentinean is exposed to levels of arsenic in drinking water exceeding the recommended maximum by a factor of 20. Yet, they thrive in this challenging environment since thousands of years and therefore we hypothesize strong selection signatures in genes involved in arsenic metabolism. We analyzed genome-wide genotype data for 730,000 loci in 25 Collas, considering 24 individuals of the neighbouring Calchaquíes and 24 Wichí from the Gran Chaco region in the Argentine province of Salta as control groups. We identified a strong signal of positive selection in the main arsenic methyltransferase AS3MT gene, which has been previously associated with lower concentrations of the most toxic product of arsenic metabolism monomethylarsonic acid. This study confirms recent studies reporting selection signals in the AS3MT gene albeit using different samples, tests and control populations.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2015.07.007DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4896383PMC
October 2015

Genetic and phenotypic differentiation of an Andean intermediate altitude population.

Physiol Rep 2015 May;3(5)

Division of Biological Anthropology, University of Cambridge, Cambridge, Cambridgeshire, UK Faculty of Humanities and Social Sciences, University of Winchester, Winchester, Hampshire, UK School of Chemistry, University of East Anglia, Norwich, Norfolk, UK.

Highland populations living permanently under hypobaric hypoxia have been subject of extensive research because of the relevance of their physiological adaptations for the understanding of human health and disease. In this context, what is considered high altitude is a matter of interpretation and while the adaptive processes at high altitude (above 3000 m) are well documented, the effects of moderate altitude (below 3000 m) on the phenotype are less well established. In this study, we compare physiological and anthropometric characteristics as well as genetic variations in two Andean populations: the Calchaquíes (2300 m) and neighboring Collas (3500 m). We compare their phenotype and genotype to the sea-level Wichí population. We measured physiological (heart rate, oxygen saturation, respiration rate, and lung function) as well as anthropometric traits (height, sitting height, weight, forearm, and tibia length). We conducted genome-wide genotyping on a subset of the sample (n = 74) and performed various scans for positive selection. At the phenotypic level (n = 179), increased lung capacity stood out in both Andean groups, whereas a growth reduction in distal limbs was only observed at high altitude. At the genome level, Calchaquíes revealed strong signals around PRKG1, suggesting that the nitric oxide pathway may be a target of selection. PRKG1 was highlighted by one of four selection tests among the top five genes using the population branch statistic. Selection tests results of Collas were reported previously. Overall, our study shows that some phenotypic and genetic differentiation occurs at intermediate altitude in response to moderate lifelong selection pressures.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.14814/phy2.12376DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4463816PMC
May 2015

A recent bottleneck of Y chromosome diversity coincides with a global change in culture.

Genome Res 2015 Apr 13;25(4):459-66. Epub 2015 Mar 13.

Center of Molecular Diagnosis and Genetic Research, University Hospital of Obstetrics and Gynecology, Tirana, ALB1005, Albania;

It is commonly thought that human genetic diversity in non-African populations was shaped primarily by an out-of-Africa dispersal 50-100 thousand yr ago (kya). Here, we present a study of 456 geographically diverse high-coverage Y chromosome sequences, including 299 newly reported samples. Applying ancient DNA calibration, we date the Y-chromosomal most recent common ancestor (MRCA) in Africa at 254 (95% CI 192-307) kya and detect a cluster of major non-African founder haplogroups in a narrow time interval at 47-52 kya, consistent with a rapid initial colonization model of Eurasia and Oceania after the out-of-Africa bottleneck. In contrast to demographic reconstructions based on mtDNA, we infer a second strong bottleneck in Y-chromosome lineages dating to the last 10 ky. We hypothesize that this bottleneck is caused by cultural changes affecting variance of reproductive success among males.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1101/gr.186684.114DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4381518PMC
April 2015

A Selective Sweep on a Deleterious Mutation in CPT1A in Arctic Populations.

Am J Hum Genet 2014 11 23;95(5):584-589. Epub 2014 Oct 23.

Department of Archaeology and Anthropology, University of Cambridge, Cambridge CB2 3QG, UK; Estonian Biocentre, Tartu 51010, Estonia. Electronic address:

Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajhg.2014.09.016DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4225582PMC
November 2014

Genome-wide analysis of cold adaptation in indigenous Siberian populations.

PLoS One 2014 21;9(5):e98076. Epub 2014 May 21.

Department of Archaeology and Anthropology, University of Cambridge, Cambridge, United Kingdom; Estonian Biocentre, Tartu, Estonia.

Following the dispersal out of Africa, where hominins evolved in warm environments for millions of years, our species has colonised different climate zones of the world, including high latitudes and cold environments. The extent to which human habitation in (sub-)Arctic regions has been enabled by cultural buffering, short-term acclimatization and genetic adaptations is not clearly understood. Present day indigenous populations of Siberia show a number of phenotypic features, such as increased basal metabolic rate, low serum lipid levels and increased blood pressure that have been attributed to adaptation to the extreme cold climate. In this study we introduce a dataset of 200 individuals from ten indigenous Siberian populations that were genotyped for 730,525 SNPs across the genome to identify genes and non-coding regions that have undergone unusually rapid allele frequency and long-range haplotype homozygosity change in the recent past. At least three distinct population clusters could be identified among the Siberians, each of which showed a number of unique signals of selection. A region on chromosome 11 (chr11:66-69 Mb) contained the largest amount of clustering of significant signals and also the strongest signals in all the different selection tests performed. We present a list of candidate cold adaption genes that showed significant signals of positive selection with our strongest signals associated with genes involved in energy regulation and metabolism (CPT1A, LRP5, THADA) and vascular smooth muscle contraction (PRKG1). By employing a new method that paints phased chromosome chunks by their ancestry we distinguish local Siberian-specific long-range haplotype signals from those introduced by admixture.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0098076PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4029955PMC
January 2015

The Andean adaptive toolkit to counteract high altitude maladaptation: genome-wide and phenotypic analysis of the Collas.

PLoS One 2014 31;9(3):e93314. Epub 2014 Mar 31.

Division of Biological Anthropology, University of Cambridge, Cambridge, Cambridgeshire, United Kingdom; School of Chemistry, University of East Anglia, Norwich, Norfolk, United Kingdom.

During their migrations out of Africa, humans successfully colonised and adapted to a wide range of habitats, including extreme high altitude environments, where reduced atmospheric oxygen (hypoxia) imposes a number of physiological challenges. This study evaluates genetic and phenotypic variation in the Colla population living in the Argentinean Andes above 3500 m and compares it to the nearby lowland Wichí group in an attempt to pinpoint evolutionary mechanisms underlying adaptation to high altitude hypoxia. We genotyped 730,525 SNPs in 25 individuals from each population. In genome-wide scans of extended haplotype homozygosity Collas showed the strongest signal around VEGFB, which plays an essential role in the ischemic heart, and ELTD1, another gene crucial for heart development and prevention of cardiac hypertrophy. Moreover, pathway enrichment analysis showed an overrepresentation of pathways associated with cardiac morphology. Taken together, these findings suggest that Colla highlanders may have evolved a toolkit of adaptative mechanisms resulting in cardiac reinforcement, most likely to counteract the adverse effects of the permanently increased haematocrit and associated shear forces that characterise the Andean response to hypoxia. Regulation of cerebral vascular flow also appears to be part of the adaptive response in Collas. These findings are not only relevant to understand the evolution of hypoxia protection in high altitude populations but may also suggest new avenues for medical research into conditions where hypoxia constitutes a detrimental factor.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0093314PLOS
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3970967PMC
June 2015

Genetic signatures reveal high-altitude adaptation in a set of ethiopian populations.

Mol Biol Evol 2013 Aug 10;30(8):1877-88. Epub 2013 May 10.

Department of Integrative Biology, University of California, Berkeley, CA, USA.

The Tibetan and Andean Plateaus and Ethiopian highlands are the largest regions to have long-term high-altitude residents. Such populations are exposed to lower barometric pressures and hence atmospheric partial pressures of oxygen. Such "hypobaric hypoxia" may limit physical functional capacity, reproductive health, and even survival. As such, selection of genetic variants advantageous to hypoxic adaptation is likely to have occurred. Identifying signatures of such selection is likely to help understanding of hypoxic adaptive processes. Here, we seek evidence of such positive selection using five Ethiopian populations, three of which are from high-altitude areas in Ethiopia. As these populations may have been recipients of Eurasian gene flow, we correct for this admixture. Using single-nucleotide polymorphism genotype data from multiple populations, we find the strongest signal of selection in BHLHE41 (also known as DEC2 or SHARP1). Remarkably, a major role of this gene is regulation of the same hypoxia response pathway on which selection has most strikingly been observed in both Tibetan and Andean populations. Because it is also an important player in the circadian rhythm pathway, BHLHE41 might also provide insights into the mechanisms underlying the recognized impacts of hypoxia on the circadian clock. These results support the view that Ethiopian, Andean, and Tibetan populations living at high altitude have adapted to hypoxia differently, with convergent evolution affecting different genes from the same pathway.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1093/molbev/mst089DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3708501PMC
August 2013
-->