Publications by authors named "Alexej Schmidt"

10 Publications

  • Page 1 of 1

Cytokine Secretion, Viability, and Real-Time Proliferation of Apical-Papilla Stem Cells Upon Exposure to Oral Bacteria.

Front Cell Infect Microbiol 2020 24;10:620801. Epub 2021 Feb 24.

Department of Endodontics, County Council of Västerbotten, Umeå, Sweden.

The use of stem cells from the apical papilla (SCAPs) has been proposed as a means of promoting root maturation in permanent immature teeth, and plays a significant role in regenerative dental procedures. However, the role of SCAPs may be compromised by microenvironmental factors, such as hypoxic conditions and the presence of bacteria from infected dental root canals. We aim to investigate oral bacterial modulation of SCAP in terms of binding capacity using flow cytometry and imaging, real-time cell proliferation monitoring, and cytokine secretion (IL-6, IL-8, and TGF-β isoforms) under anaerobic conditions. SCAPs were exposed to key species in dental root canal infection, namely , , , and , as well as two probiotic strains, strain B6 and (DSM 17938). We found that , , , and , but not the probiotic strains bind to SCAPs on anaerobic conditions. and exhibited the strongest binding capacity, resulting in significantly reduced SCAP proliferation. Notably, , but not , induce production of the proinflammatory chemokine IL-8 and IL-10 from SCAPs. Production of TGF-β1 and TGF-β2 by SCAPs was dependent on species, cell line, and time, but secretion of TGF-β3 did not vary significantly over time. In conclusion, SCAP response is compromised when exposed to bacterial stimuli from infected dental root canals in anaerobic conditions. Thus, stem cell-mediated endodontic regenerative studies need to include microenvironmental conditions, such as the presence of microorganisms to promote further advantage in the field.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.3389/fcimb.2020.620801DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7945949PMC
June 2021

Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors.

EMBO J 2021 Apr 1;40(7):e106103. Epub 2021 Feb 1.

Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.

Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.15252/embj.2020106103DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8013792PMC
April 2021

Fluorophore-conjugated Helicobacter pylori recombinant membrane protein (HopQ) labels primary colon cancer and metastases in orthotopic mouse models by binding CEA-related cell adhesion molecules.

Transl Oncol 2020 Dec 28;13(12):100857. Epub 2020 Aug 28.

Department of Surgery, University of California, La Jolla, CA, USA; Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA. Electronic address:

HopQ is an outer-membrane protein of Helicobacter pylori that binds to human carcinoembryonic antigen-related cell-adhesion molecules (CEACAMs) with high specificity. We aimed to investigate fluorescence targeting of CEACAM-expressing colorectal tumors in patient-derived orthotopic xenograft (PDOX) models with fluorescently labeled recombinant HopQ (rHopQ). Western blotting, flow cytometry and ELISA were performed to determine the efficiency of rHopQ binding to CEACAMs. rHopQ was conjugated to IR800DyeCW (rHopQ-IR800). Nude mice received orthotopic implantation of colon cancer tumors. Three weeks later, mice were administered 25 μg or 50 μg HopQ-IR800 and imaged 24 or 48 h later. Intravital images were analyzed for tumor-to-background ratio (TBR). Flow cytometry and ELISA demonstrated binding of HopQ to CEACAM1, 3 and 5. Dose-response intravital imaging in PDOX models demonstrated optimal results 48 h after administration of 50 μg rHopQ-IR800 (TBR = 3.576) in our protocol. Orthotopic models demonstrated clear tumor margins of primary tumors and small regional metastases with a mean TBR = 3.678 (SD ± 1.027). rHopQ showed specific binding to various CEACAMs in PDOX models. rHopQ may be useful for CEACAM-positive tumor and metastasis detection for pre-surgical diagnosis, intra-operative imaging and fluorescence-guided surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.tranon.2020.100857DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7475271PMC
December 2020

Anti-carcinoembryonic antigen-related cell adhesion molecule antibody for fluorescence visualization of primary colon cancer and metastases in patient-derived orthotopic xenograft mouse models.

Oncotarget 2020 Jan 28;11(4):429-439. Epub 2020 Jan 28.

Department of Surgery, University of California, La Jolla, CA, USA.

Background: Monoclonal antibody (mAb) 6G5j is a novel anti-CEACAM monoclonal antibody. Our aim was to investigate mAb 6G5j binding characteristics and to validate fluorescence targeting of colorectal tumors and metastases in patient derived orthotopic xenograft (PDOX) models with fluorescently labeled 6G5j.

Materials/methods: The MAb 6G5j binding profile was analyzed with ELISA, Western blot and immunohistochemistry. MAb 6G5j was conjugated to near-infrared dye IR800CW (LI-COR). Western blotting was performed with various colon cancer cell lysates to determine CEACAM expression. Nude mice received orthotopic implantation of patient-derived primary colon cancer and patient-derived colon cancer metastases. Mice were administered varying doses of 6G5j-IR800CW via tail vein injection and imaged 24 and 48 hours later.

Results: MAb 6G5j bound to human CEACAM1, 3, 5, 6 and 8. Western blotting demonstrated varied expression of CEACAMs in 15 of 16 colon cancer lysates. Dose and time-response imaging demonstrated optimal imaging 48 hours after administration of 50 μg 6G5j-IR800CW (Tumor-to-liver ratio (TLR) 3.17, SEM ± 0.45). Primary cancers and multiple metastases were fluorescently visualized.

Conclusions: Anti-CEACAM antibody 6G5j binds multiple CEACAMs which may lead to improved detection of tumor margins for tumors and metastases that have variable expression of CEA and other CEACAMs. 6G5j mAb may be useful for colon cancer detection for pre-surgical diagnosis and fluorescence-guided surgery.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.18632/oncotarget.27446DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6996915PMC
January 2020

TRAF6 function as a novel co-regulator of Wnt3a target genes in prostate cancer.

EBioMedicine 2019 Jul 28;45:192-207. Epub 2019 Jun 28.

Medical Biosciences, Umeå University, Umeå, Sweden. Electronic address:

Background: Tumour necrosis factor receptor associated factor 6 (TRAF6) promotes inflammation in response to various cytokines. Aberrant Wnt3a signals promotes cancer progression through accumulation of β-Catenin. Here we investigated a potential role for TRAF6 in Wnt signaling.

Methods: TRAF6 expression was silenced by siRNA in human prostate cancer (PC3U) and human colorectal SW480 cells and by CRISPR/Cas9 in zebrafish. Several biochemical methods and analyses of mutant phenotype in zebrafish were used to analyse the function of TRAF6 in Wnt signaling.

Findings: Wnt3a-treatment promoted binding of TRAF6 to the Wnt co-receptors LRP5/LRP6 in PC3U and LNCaP cells in vitro. TRAF6 positively regulated mRNA expression of β-Catenin and subsequent activation of Wnt target genes in PC3U cells. Wnt3a-induced invasion of PC3U and SW480 cells were significantly reduced when TRAF6 was silenced by siRNA. Database analysis revealed a correlation between TRAF6 mRNA and Wnt target genes in patients with prostate cancer, and high expression of LRP5, TRAF6 and c-Myc correlated with poor prognosis. By using CRISPR/Cas9 to silence TRAF6 in zebrafish, we confirm TRAF6 as a key molecule in Wnt3a signaling for expression of Wnt target genes.

Interpretation: We identify TRAF6 as an important component in Wnt3a signaling to promote activation of Wnt target genes, a finding important for understanding mechanisms driving prostate cancer progression. FUND: KAW 2012.0090, CAN 2017/544, Swedish Medical Research Council (2016-02513), Prostatacancerförbundet, Konung Gustaf V:s Frimurarestiftelse and Cancerforskningsfonden Norrland. The funders did not play a role in manuscript design, data collection, data analysis, interpretation nor writing of the manuscript.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ebiom.2019.06.046DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6642315PMC
July 2019

Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence.

Cell Host Microbe 2017 Mar;21(3):376-389

Department of International Health, John Hopkins School of Public Health, Baltimore, MD 21205, USA.

The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chom.2017.02.013DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5392239PMC
March 2017

Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs.

Nat Microbiol 2016 Oct 17;2:16189. Epub 2016 Oct 17.

Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany.

Helicobacter pylori specifically colonizes the human gastric epithelium and is the major causative agent for ulcer disease and gastric cancer development. Here, we identify members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family as receptors of H. pylori and show that HopQ is the surface-exposed adhesin that specifically binds human CEACAM1, CEACAM3, CEACAM5 and CEACAM6. HopQ-CEACAM binding is glycan-independent and targeted to the N-domain. H. pylori binding induces CEACAM1-mediated signalling, and the HopQ-CEACAM1 interaction enables translocation of the virulence factor CagA into host cells and enhances the release of pro-inflammatory mediators such as interleukin-8. Based on the crystal structure of HopQ, we found that a β-hairpin insertion (HopQ-ID) in HopQ's extracellular 3+4 helix bundle domain is important for CEACAM binding. A peptide derived from this domain competitively inhibits HopQ-mediated activation of the Cag virulence pathway, as genetic or antibody-mediated abrogation of the HopQ function shows. Together, our data suggest the HopQ-CEACAM1 interaction to be a potentially promising novel therapeutic target to combat H. pylori-associated diseases.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1038/nmicrobiol.2016.189DOI Listing
October 2016

Helicobacter pylori Strains from Duodenal Ulcer Patients Exhibit Mixed babA/B Genotypes with Low Levels of BabA Adhesin and Lewis b Binding.

Dig Dis Sci 2016 10 18;61(10):2868-2877. Epub 2016 Jun 18.

HPGC Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.

Background: BabA is a Helicobacter pylori cell surface adhesin, which binds to the ABO/Le(b) histo-blood group antigens (Le(b)) and serves as a virulence factor.

Methods: H. pylori single colonies were isolated from 156 [non-ulcer dyspepsia (NUD) = 97, duodenal ulcer (DU) = 34, gastric cancer (GC) = 25)] patients. babA and babB genes were evaluated by gene/locus-specific PCR. BabA protein expression and Le(b) binding activity were determined by immunoblotting and ELISA, respectively.

Results: The combined categorization of H. pylori strains based on high, low or no levels of BabA expression and Le(b) binding, produced 4 groups: (I) BabA-high/Le(b)-high (36 %), (II) BabA-low/Le(b)-low (26 %), (III) BabA-neg/Le(b)-low (30 %) and (IV) BabA-neg/Le(b)-neg (8 %) strains. The majority (63 %) of the BabA-low/Le(b)-low strains exhibited mixed babA/B genotypes as compared to merely 18 % of the BabA-high/Le(b)-high, 15 % of the BabA-neg/Le(b)-neg and 11 % of the BabA-neg/Le(b)-low (P = 0.0001) strains. In contrast to NUD strains, the great majority (70 %) of DU strains were BabA-low/Le(b)-low (11 %, P = 0.0001), which compared to NUD strains, enhanced the risk of DU by 18.8-fold. In parallel, infection with babA/B mixed genotype strains amplified the risk of DU by 3.6-fold (vs. babA-positive: P = 0.01) to 6.9-fold (vs. babA-negative: P = 0.007).

Conclusions: Here, we show higher prevalence of mixed babA/B genotypes among BabA-low/Le(b)-low clinical strains. Recombination of babA and babB genes across their loci may yield lower BabA expression and lower Le(b) binding activity. We conclude that H. pylori strains with lower Le(b) binding activity are better adapted for colonization of the gastric metaplastic patches in the duodenum and enhance the risk of duodenal ulcers.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10620-016-4217-zDOI Listing
October 2016

Efficient expression of recombinant human monoclonal antibodies in Drosophila S2 cells.

J Immunol Methods 2007 Jan 25;318(1-2):37-46. Epub 2006 Sep 25.

Karolinska Institutet, Department of Medicine at Center for Molecular Medicine, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden.

We have explored the Drosophila S2 cell line for expression of Ig molecules isolated as Fab or scFv cDNA from phage-displayed libraries. We present a series of vectors for inducible expression and secretion of human Ig heavy (HC) and light chains (LC), both on separate plasmids and in combination constructs. Both HC (tested as human gamma(1)) and LC (human kappa) could be expressed separately and were secreted into the medium, confirming previous reports. When the combination vector carrying both the HC and LC cDNA, as well as when the HC and LC vectors were co-transfected, complete IgG1 was found in the medium. Transient transfection resulted in production levels of 0.5-1 mg/l. Stable cell lines could be established within 2-3 weeks. After 10-12 days of expression from such cell lines, Ig molecules accumulated and the medium contained typically 5-35 mg/l of IgG1. The IgG in these preparations was purified to more than 90% purity on protein G columns. Binding characteristics for IgG of the same clone expressed in S2 cells or mammalian cells were indistinguishable. The main advantages with this system compared to mammalian expression were its robustness and the much faster establishment of stable, high level producing cell lines.
View Article and Find Full Text PDF

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2006.08.017DOI Listing
January 2007
-->